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ABSTRACT

In this paper the boundary elements method is used as numerical techniques for solving elastomeric
materials (rubber or rubber-like materials) under small and large strains analysis. Under small
deformations, the formulations are based on assuming that the elastomer is linear elastic isotropic
incompressible solid. While for the large deformation, the formulation is based on decomposing the
1% Piola-Kirchhoff stresses into linear and nonlinear parts. Thereafter, the final derived equations
are composed of both boundary integral and non-linear domain integrals. The non-linear analyses
were performed using an incremental procedure with an iterative algorithm.

Solving some numerical examples and comparing the results with that obtained from some
available results and ANSYS 10.0 showed that the boundary elements method is a good numerical
technique for solving incompressible elastomeric materials. And the formulation used for the
boundary elements derivations for large strain analysis gave satisfactory results as compared with
that of ANSY'S ver. 10.0.
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INTRODUCTION

Successful analysis of elastomers (rubber or rubber-like materials) requires robust numerical
methods and representative material models applicable to small/large strains and multiple
deformation modes. Although the mathematical foundation of strain energy density function has
been studied by many researchers, the application to engineering problems is not straightforward.

Two major challenges are encountered in the numerical analysis of rubber materials. The first is
due to the material incompressibility of rubber. The material incompressibility leads to a locking
difficulty when using the conventional finite element method. The finite element prediction is often
much stiffer (locking) than analytical solution or experimental data resulting from the imposition of
"constant volume constraint” in the numerical formulation. Locking usually accompanies with
pressure oscillation that completely corrupts the numerical stress solution, Herrmann 1985. The
second difficulty is the mesh distortion caused by the large deformation nature in many elastomeric
applications. Therefore it is necessary to search for other numerical techniques that may help in
getting improved numerical analysis. In this work the boundary elements method has been chosen
as numerical technique for solving elastomeric problems.

The boundary elements method is relatively a new technique and successfully applied to many
engineering problems. The most remarkable feature of these methods are that instead of attempting
to find an approximate solution for the governing differential equations throughout the relevant
solution domain, as in the domain methods, the equations are converted into an integral form, often
involving only integrals over the boundary of the domain, consequently, only the boundary has to
be discretised in order to carry out the integration. Although these methods successfully applied to
many engineering problems have had limited application with elastomers, Polyzos 1998.

The lack of inaccurate results of the conventional finite element method is due to Poisson’s ratio
values in elastomers, which ranges between 0.499 and 0.5. The elements used in FEA need to be
reformulated to accommodate this high value of Poisson's ratio. This is usually accomplished by
utilizing an approach developed by Herrmann 1985, by introducing a new variational principle that
includes another degree of freedom called the “mean pressure function.” When using the boundary
elements method there is no such restriction and the method can handle elastomeric materials or
generally incompressible materials accurately.

When managing elastomeric components using the boundary elements method, or any
numerical technique, two major decisions will present themselves:

e Is anonlinear analysis required, or will a linear analysis suffice?
e What material properties will be used?

These two decisions are interrelated, and the answer depends on what application the elastomeric
components are designed for.

Keeping this in mind, therefore, one has to adopt either linear or non-linear analyses. As a
result, in the present work, the boundary elements method is applied to elastomers by considering
both small and large deformations. For small deformation the formulation is considered by
assuming that the elastomers are linear elastic isotropic axisymmetric solids. The derivations lead to
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a fact that only the boundary of the region being investigated has to be discretised. In large, or
finite, deformation elastomers are considered to be hyperelastic solids, and nonlinear boundary
elements method has been used. The derivations of the boundary integral equations were done by
splitting the first Piola-Kirchoff stresses or total stresses into linear and non-linear components.
Thereafter, the final derived equations are composed of both boundary integral and non-linear
domain integration terms, consequently, both the boundary and the domain of the problem are
discretised.

SMALL DEFORMATION BEM

In this section rubber components are considered under small deformations or small strains. A good
approximation for the corresponding stresses is given by conventional elastic analysis, assuming
simple linear stress-strain relationships, because, like all solids, rudder behaves as a linearly elastic
substance at relatively small strains, Gent 2001. When applying the boundary elements technique to
an axisymmetric elastomeric solid under axisymmetric loading and by taking the advantage of
symmetry, the original three-dimensional problem will be reduced to a two-dimensional one.
Therefore, it is only required to discretise the boundary of the radial plane, as shown in Fig. 1.

The boundary integral equation, BIE, can be obtained using weighted residual technique. Now,
consider that one desire to minimize the error involved in the numerical approximation of the
governing equations of axisymmetric solid,;

oT loj

oo -0,
r rz + r + — O
or oz r P
0t ,09:  Tu g _
or 0z r

Which usually have to satisfy the essential and the natural boundary conditions.

\ (b) Boundary Element

3-Node Element

Figure 1: Discretisation of axisymmetric solid using BEM;
(a) original 3D problem, (b) radial plane BEM mesh

Minimizing the above equations by displacement type functions u™ and v* using weighted
residual technique as;
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oo, 8z'rz o, 0'6 oo, 1, .
H + + L udQ+_U +—L+—"2+ 4, |vdQ=0 (1)
() or 0z oz r

where dQQ =27 r dr dz, carrying out the integration by parts for each term separately leads to

ia, anr dl“—ﬂarg(u*r)dr dz+Ir,z un, rdr-[o, u'n, rdr—ga%(u*r)dr dz

Q r

J.z' un, rdr- J]r,zairdrduﬂ %%, rdrdz+Ir vin rdr- ﬂ ar(rv*)drdz (2

r Q

Q
+I<yZ vin rdl - Ha ﬁr dr dz+ﬂ%v*r dr dz+_U(,Bru*+,Bzv*)r drdz=0
Q Q Q

r

Further simplifications and rearranging, gives

j(a . n)u" rdl“+_[(rrz n +o,n ) rdr jj(a +a—)rdrdz

_U rz(—+—)rdrdz 'Ua(—+—)rdrdz+.|]' To y"r dr dz (3)
+ﬂiv*r dr dz+ﬂ (BU +BN)rdrdz=0
Q r Q
Define
8*:{‘9:’8;’8;’7;} and GZ{O-HO-Z’O-H’Trz} (4)
This leads to

J‘(tr u+tv)r dl“—ﬂ (0,6, +0,6, +0,6,+1,7,)rdrdz+ J] (BU +BV)rdrdz=0
r Q Q

or in a vectorial form
_[(tr u +t,v)r dr—ﬂa”c r dr dz +H(ﬂru* + BNV )rdrdz=0 (5)
r Q Q

- - - * * - - - - T
For linear elastic solids, €"6=¢ " De, and since D is a symmetric matrix, therefore D=D,

subsequently
g'oco=¢'D' e=0c""¢
Substitute above into equation (5), leads to
J‘(tr u +t,Vv)r dF—H (0., +0,6, +0,8,+1,y,,)r drdz +ﬂ (BU +BN)rdrdz=0 (6)
) " 4729 ’
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The first domain integral of the above equation can further be simplified by integrating by parts
getting the following equation:

62-rz + O, — 0y
0z r

J'(tr u +t, v*)rdl“—'|'(t:u+t:v)rd1“+ﬂ‘[aar - Ju rdrdz+
r r Q ar (7)

g(%&+aa—?+%;]vrdrdz+g(ﬂru*+ﬁzv*)r drdz=0

Eq. (7) represents the inverse wieghted residual expression, which can be used to obtain
the boundary integral equation. Considering now a ring source load j; =A‘ej applied at a point

i(r;, ;) inan infinte domain, in the direction of the unit vector €, where j=r, 7, i.e.
oo, N or,, o, -0,

rz +
or 0z r

+Ae, =0
@)

or. Oo. 1. .
—4+—r4+-24ANe,=0
or 0z r

where i refer to the point at which the load is applied, Al is the Dirac delta function, which is define
as, Kyuichiro Washizo 1975;

. ingular at pointi
N [singular at poin _|] ©
0[at any other point]
and A" has the following property:
[[A(p.Q)u,(Q d2=Cyu(p) (10)
Q
where
1 if peQ
if peQ+l
Ci=105 if p is on smooth continuous boundary I"
2“—‘ if p isona corner of angle ¢, on the boundary I
T

Substiute eq. (8) into eq. (7) one get
J‘(tr u +t,v')rdr —I(t: u+t v)rdrC —H Ae, U dQ—H Ae v dQ+ H (BU+ pN)rdrdz=0(11)
r Q Q Q

r
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ZQ

Figure 2: Domain of axisymmetric solid.
Consider each direction independently, the displacement at any point in the infinite domain is;
u: =U,e, +U, e, 12)
V :UI‘ZeI’ +UZZeZ
€,,€, is the components of the ring loads at point p inrand z direction, respectively, as shown

in Fig. 2. U,,,U_,,U,, and U,, are displacement kernel functions. The first subscript refers to

the direction of the displacement at the boundary point Q (feild point), while the second refers to
the direction of the ring load at point p (source point) causing the displacement at Q.

Similarly, the traction vector components at Q can be expressed as:
tE =T e +T,e, 13)
tZ =-I-I’Zel’ +TZZeZ
whereT,,,T,,,T,, and T,, are the traction kernels.

Substitute eq. (12) and eq. (13) into eq. (11), gives

Htr U,e +U,e)+t (U.e +U,e,)|rdr —I[(T,rer +T,e,)u+(Te +T.e,)v]|rdC
r r

rz=r

—ﬂ Ne, udQ— J.I Ne,vdQ+ ﬂ [B.U,e +U,e)+A,U,e +U,e)|rdrdz=0 (4
Q Q Q

Since e, and e, are independent on each other, then eq. (14) can be split as:

4731



Numberl Volume 16 march 2010 Journal of Engineering

[ U, +t, U, )rdr—[(T, u+T, v)rdr—[[AudQ+[[(8 U, +5,U,)d2=0 (15)
r r Q Q

and

[t U, +t, U, )rdr—[(T, u+Tv)rdr—[[Avde+[[(8 U, +5U,)d2=0 (16)
r r Q Q

When the source point is at an interior point ‘p’ then equations (15) and (16) lead to

Somiglianna’s identity, Rizzo and Shippy 1986, defined as:

u(p) = [ (.U, (p.Q) +t,(QU,,(p,Q))r, dr -
' (17)
[T (P.QUQ +T,.(p.QVQ) 1, dT+[[ (B U, (p,Q)+ B,U .(p.Q))d

I
and

v(p) = [((Q)U,(p,Q) +1,(QU,,(p,Q))r dT -
' (18)
[T (P, QUQ) +T,.(P. QVQ) 1, AT +[[ (8, U, (., Q) + 8,U,.(p, Q) d2

r

The above equations give the displacement components at an interior point p. To find the final
boundary integral equation, each term in equations (17) and (18) is taken to the limits as the interior

point p approach the boundary point P, i.e. p— P. Therefore, these integral equations have now a
singularity and the integral on I" is defined only in the sense of the Cauchy principal value, Rizzo
and Shippy 1986, and Brebbia 1989, resulting the following:
Cou' +Cv + [(T u+T, v)rgdl = [(t U, +t,U,)ro dr+[[ (8 U, + 8 U,,)d2=0 (19)

r r Q
and

Cu'+C V' + [(T, u+T,V)rpdl = [(t U, +t,U,)rodr+[[ (8, U, +B,U,)d2=0 (20)
r r Q

or in a matrix form

C. C i T T U U |t U U
rr rz U- +J‘ rr rz || U rQ dr :J‘ rr rz r rQ dr+I_[ rr rz ﬁr rQ dr (21)
Czr sz V' r Tzr Tzz v r Uzr Uzz tz Q Uzr Uzz ﬂz

C
and the value of Cij (i,j=r, z) equal unity at interior point and C; =9;/2, (5”- is the Kronecker

where C C,, and C,, can be determined from the nature of the boundary geometry at “P”,

re? rz?

delta), when the boundary at P is smooth, i.e. have unique tangent at P, but can be expressed
generally using rigid body motion, Nouri and Husain 2000.
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LARGE DEFORMATION BEM

The large deformation BEM derivation, also, will starts from minimizing the error involved in the
numerical approximation of the governing differential equations of axisymmetric solid,;

oo, +0”rn+ o, —0,

+p, =0

or o1z r (22)
orT oo T

—2+—=+—"24+ 4 =0

ar o1 r

where Sy and p; are the radial and axial body forces, the stresses in eq. (22) is the first Piola-
Kirchoff stresses or total stresses and can be split into linear and non-linear components as follows:

oy = O'i?l + O'ilj (23)

where the superscript nl refers to non-linear component and the superscript | refer to the linear one.
Therefore, equations (22) can now be rewritten as follows:

| | r
00 %, O o1 £+ B =0
or 0z r

0*) | a | | (24)
i_ki_}_i_{_ onI +ﬂz =0
or 0z r
where;
nl nl nl _ _nl nl nl nl
fr”':é’ar +0”Trz + O Oy ’ and fznlzé)frz +0’)O-Z +i
aor oz r or o1 r
Minimizing equations. (24) by displacement type functions u™ and v* as:
I [ I I
ﬂ ﬂa +- 21 7% g0y B u*dQ+ﬂ %+&+i+fz’”+ﬂz vidQ=0 (25)
ar a z r o\ar Jdz r
Using integration by parts and rearranging gives:
I(a: n, +7., nz)u* r dF+J'(rlz n, +o, nz)v* rdr
r r
- o OU gt OV W OV U (26)
S or oz r aor 0z

[+ V) rdrdz+ [[ (B, uT+ B, V) rdrdz=0
Q Q

writing
tl =on, +7,N t' =z.n +oin,,

rz''z?

€ ={gr,gz,5€,7/rz}, and0'={(7:,al,0"9,rlz},
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where:

g*_ﬂu*. U g*_ﬁv*_ y*_o”u*Jrﬁv*
"oor’ o top7] " fz7 Or

Substitute the above expressions, into equation (26) gives;

[+t v)rdr-[[ (0,6 + 0,8 +0,) +7,77,) rdr dz
Q

r

) . \ ) (27)
+H(f,”'u + ") rdr dz+ﬂ(ﬁru +B,N)rdrdz=0
Q Q

Neglecting the body forces, i.e. g, =, =0, eq. (27) can be writtin in vectorial form as:

[t v+t v )rdr- jj rdrdz+ﬂ(f"'u +f")rdrdz=0 (28)

r

For the linear o' :

£'6=¢"'De=0c"¢

where ¢” = {G:, C.,0,,T } D'g"
Therefore, eq. (28) can be written as:

'[(tl u +t! v*)r dl"—jj (c¢, +0o,6,+0,6,+1,y,)rdrdz +ﬂ (f"u"+ f"™)rdrdz=0 (29)

r Q Q

The first domain integral of the above equation can further simplified by integrating by parts, and
equation (29) will be as follows:

j(tlu*+tiv*)rdF—J(t:u+th)rdF+H[ao— aT”+Mjurdrdz+ﬂ[%+8i+ijvrdrdz
L . o\ ar o1 r o\ or oz oor (30)
+ [+ £V rdr dz=0

Q

Eq. (30) represents the inverse wieghted residual expression. Considering a ring source
load f,=Ae, applied at a point i(r;,z) in an infinte domain, in the direction of the unit vector

e, , where m=r, z, i.e.

oo, +ﬁrrz L0 =9

or o0t r
or., Jdo. . -
—2y—24+-24ANe,=0
or o0t r

+Ae, =0
(31)

where i refers to the point at which the load is applied, A’ is the Dirac delta function.

Therefore eq. (30) will be
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I(tl u +t! v*)r dF—j(t:uH:v)r dl“—’[[Ai e urdr dz—J:[Ai e,vrdrdz
r Q Q

r

(32)
+[[ (£ + £7V)rdr dz=0
Q

From the property of Dirac delta function, eq. (10), eq. (32) gives the nonlinear boundary
integral equations of axisymmetric elastomeric solids sustaining large or hyperelastic deformation:

Cue, +Cue, + j(t: u+t v)r dr = j(tl u +t! v*)r dr + J] (f"u"+ f"V)rdrdz (33)
r r Q

The domain integral of equation (33) represnts the non-linear part of this equation. This domain
integral is defined as:

ﬂ (f"u”+ £V )rdrdz= ﬂ(agrﬂl + 0ty + o r_d‘)u*r dr dz +J'J‘ (GLPZI s +r_rn2|]v*r dr dz
Q Q Q

+
or o1 or 0z r

Integrating by parts and rearranging

H (fMu"+ f"V)rdrdz = I(a;" n +z0 n)u rdrC +I(rfz' n+oln)v rdl—
Q r r

n +o,n,, therefore

rz-r z 7!

since t, =o,n, +7,,n,, and t, =7,

rz'z?

r

nl GU* nl aV* nl U* nl 6U* aV* (34)
ﬂ o, —+o0, —+o0, —+71,| —+—||[rdrdz
o or r 0

Subsititute eq. (34) into eq. (33) gives:

[ (M + £V rdrdz= [ (@' u” +t]' v rdr -
Q r

cue +Cue, +I(t: U+t v)r dr= j(t: U+t v*)r dF+j(tr“' U+t V) rdl -

r r r

J' nl aU* nl aV* nl U* nl 8U* aV* (35)
o, —+o0, —+0, —+1,| —+—||rdrdz
or 07 r 07 or

Noting that:
t =t +t" =o.n +7.n

t =t +t"=7_n +o,n

Then, eq. (35) gives:

4735



Numberl Volume 16 march 2010 Journal of Engineering

Cue +Cue, +.[(t,* u+t v)r dr= j(tr U+t v*)r dr
r r

Gou oV U fou oy (36)
+ j o, —+0, —+0, —+1,| —+——||rdrdz
S ar o1 r di Or

Similarly, as performed in the small deformation derivations, uand V', considering each
direction independently, may be written as:

u'=U,e +U,e, and v =U_e +U,pe,.

r~z?

similarly, the traction vector components at the field point Q can be expressed as;

t'=T.e+T,e, and =T e +T.e,.

=z

Substitute the above equations into eq. (36), and simplified the final boundary integral equation
will be given in a matrix form as;

C, C i T T, |ju u, U_|t
rr rz U. +I rr rz rdr :J' rr rz r rdr+
Czr sz V! r Tzr Tzz v r U zr U z tz

nl aUrr +O_n| aUrz+o_n|Urr+ n|(aurr +% (37)

+”‘ T %y 0T T Ty ar] rdr dz

| aUzr nl oJ 24 nl Uzr nl aUzr oJ 24
‘|'O'Z +0, +T,| ——t+t—
0 oz r 0z or

n
Qo-r

Equation (37) represents the final boundary integral equation for the large strain elastomeric
materials. The boundary integral terms can be evaluated numerically by descretising the boundary
of the problem. Whereas, the domain integral terms required the domain to be descretised in similar
manner as usually used in the finite element techniques.

BOUNDARY ELEMENT FORMULATION
Small Deformation BE Formulation

In small deformation analysis, the problem is considered to be for linear elastic axisymmetric
solids. Therefore as stated previously only the boundary of the radial plane has to be discretised. In
order to solve the integral equations numerically the boundary, I", of the domain, eq. (21) will be
discretized into a number of boundary elements over which the displacements and traction are
written in terms of nodal points, and the numerical integration performed over each elements and
added together.
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3-node Boundary
Element

Figure 3: Discretisation of the boundary of linear axisymmetric solid into Mg quadratic
element.

After discretising the boundary into Mg elements, eq. (21) may be rewritten, in the absence of
body forces, as:

C., C,llu"| M T, T, |u MU, Ut
rr rz 4 rr rz r dl" — i rz r I dr 38
¢ el B L gl e e

In a matrix form

C'u'+ZjTurdr Zjuudr (39)

=l =l

or in terms of the shape functions as:

.. Mg Mg
C'u'+) ITTerFj u; = IU F r1odl; |t (40)
IRy =T
where
Trr TFZ UI’I’ Urz
T= ; U=
TZI’ TZZ UZI’ UZZ

And Fis the shape function matrix.
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LARGE DEFORMATION BE FORMULATION

In this section elastomeric problem with large deformation is considered. It is noted that eq. (37)
contains both boundary integral terms and domain integral terms. The boundary integral terms
require the discretisation of the boundary in order to evaluate it. Thus, the boundary of the problem
is discretised into boundary elements. The domain terms require the domain to be subdivided into
cells or elements to evaluate the integrals. In this work the domain of the problem is discretised
using 8-nodes isoparametric elements.

3-node Boundary
Element

Figure 4: Discretisation of the boundary into Mg quadratic element, and the domain into Mp 8-
node element.
To evaluate eq. (37) numerically, it is required that the boundary ‘I"” of the domain, and the
domain of the problem to be discretised into boundary elements and domain cells, repectively. The
boundary and the domain discretisation are shown in Fig. 4.

After discretising the boundary into Mg elements and the domain into Mp elements, equation
(37) can be rewritten in a discretised form as:

Mg Mg Mp
c'u' +z.|.Tu rodr; =z.|.U t rydrl; +ZHDrdr dz (41)
I I =l g,

where

nl oU rr nl 8Urz nl Urr nl[aurr aUrzj
o +o, +0, +7, +—-=

D "oor 0z For or
nl aU zr nl 6U 74 nl Uzr nl aU zr aU 74
o, +o, +0, +7,| —+—=

or 0z oz or

or in terms of the shape function matrices as;

Mg Mg Mp
c'u’ +Z{jTTerFJ]uJ _Z[IU TerFJ:ItJ +ZﬂDrdr dz (42)
= T =

=l o;
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Solution Algorithm
Eq. (42) may be written as

Cul+3 Fu, = Gt + 3D, (43)
j=1 j=1 j=1
Define
oo &j | it i
" |H;+C it i=]j

Therefore, eq. (43) will be written as:

Mg Mg Mp
D Hyu; =2 Gyt;+> Dy (44)
j=1 j=1 j=1

And the global system of equations is written as,
Hu=Gt+o (45)

Applying the boundary condition and rearranging the columns in H and G matrix, eq. 45 can be
rewritten as:

AX=Y+0 (46)

It can be seen that the boundary integral equations involves a non-linear term, which is a function of
the displacement derivatives and the hydrostatic pressure. With the above equations it is possible to
formulate the iterative solution procedure for non-linear boundary element analysis as follows.
From eq. (45) it can be seen that non-linear terms are involved which are a function of the
displacement derivatives and hydrostatic pressure. The dependence of this term on the hydrostatic
pressure and the displacement derivatives stems from the term's involvement of the first Piola-
Kirchhoff stress (total stress) in its derivative. These non-linear terms can be seen to augment the
force/traction vector Y in eq. (46), the reduced system of equations after prescribed boundary
conditions have been applied. Thus a solution to eq. (46) must involve an iterative solution
procedure.

As with most iterative solution procedures the first step is to solve the equivalent linear problem
to obtain an initial estimate of the solution. This involves solving eq. (46) but ignoring the domain
term with the non-linear stresses i.e. @ =0. The solution vector to this equation can then be used to
evaluate the displacement derivatives and hydrostatic pressures to use in the full non-linear
boundary integral equations including the non-linear term.

Evidently this first solution vector, and subsequent solution vectors before convergence, will not
fully satisfy the full non-linear set of boundary integral equations and a residual or error value will
result if the solution vector is substituted back into eq. (46). This residual can be reduced if a new
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set of hydrostatic pressures and stresses are calculated based on the previous iteration results. These
values can then be used to compute new non-linear domain terms to augment the standard linear
BIE force vector. The solution to this set of equations will result in an improved vector of total
nodal displacements and tractions. The difference between the new solution vector and the old one
gives the iterative improvement in the solution vector. This process is repeated until the ratio of the
square of the solution vector increment over the square of the total solution vector results in a value
less than a given permissible, as depicted in Fig. 5a.

Incremental Modification to the Solution Algorithm

In the preceding section the basic iterative solution procedure was explained. It is the case that for
non-linear problems the only way to achieve convergence of the iterative process for most load
cases is to break the applied load down into load increments. This is certainly the only way to
achieve convergence for the type of non-linear hyperelastic stress, Bayliss 2004. Therefore it is
essential to develop an incremental version of the basic iterative solution algorithm. This can be
achieved with the following algorithm shown in Fig. 5b.

As is usual for most non-linear numerical algorithms the first iteration of the first increment is
the solution of the equivalent linear problem. The next part of the algorithm is as discussed in the
preceding section where by the previous solution vector (tractions and displacements) is used to
evaluate the displacement derivatives, and therefore, to enable the non-linear stresses to be found so
as to compute the nonlinear domain terms in the system of boundary integral equations.

The significant difference however with the incremental algorithm is that for each iteration the
‘old" and 'new’ values of the solution vector and the non-linear stresses (at each domain Gauss point
and at each source point) are stored. Therefore the total solution vector is formed from the total
cumulative sum of the change in displacements and tractions at each iteration of each increment.
The change in non-linear stress, or the difference between the current and previous iteration values,
is used in the non-linear domain term. This means that for each increment the non-linear domain
term reduces for each iteration until convergence occurs. Therefore this algorithm is pseudo
incremental because at each iteration of every increment the system of boundary integral equations
are still solved for the total displacements and tractions, Bayliss 2004 and Burn et. al. 2003.

Because the geometry is always changing as the displacements become large due increments of
larger loads, therefore some additional steps are required. Because the boundary integral derivations
are based on 1% Piola-Kirchhoff stress values the prescribed tractions (surface stresses) need to be
converted to 1% Piola-Kirchhoff values, which will start to differ from nominal values as the strain
increases.
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Start with linear case as a first approximation
AXn=Y

Start with linear case as a first approximation ‘
AXn=Y

A v
Compute the hydrostatic pressure base on Xn ‘ ‘ Store X1 ‘ ‘
Calculate displacements from equation (4.108) for n+1 base on ‘ ‘ Calculate @ ., and solve equation (4.108) to get X, ‘ ‘
D (Un, Pn) i
L No ‘ ‘ Store X, ‘ ‘ No
D (Un+1, Pne1) i
L Increment From X, evaluate Au,, AD, and AX=X;-Xn1
Loop
AXpui=Y+D (Unsa, Prsa) !
‘ ‘ Kiotal=Xtota+AX ‘ ‘
3 v
AXN=Xpe1-XN ‘ ‘ Compute o, and Ao, using Au,, A®,, and Ay, ‘ ‘
Error < Permissible

Figure 5: (a) Iterative solution procedure for non-linear boundary integral equations;
(b) Incremental modification to iterative solution procedure.

SMALL DEFORMATION OF INCOMPRESSIBLE MATERIALS
Compression of Bonded Rubber Block

In this example the deformation due to compression of bonded thin rubber block, which is widely
used as spring, is studied. The rubber block, as shown in Fig. 6, is bonded on its major surfaces to
rigid plates. Gent and Lindley, 1959, assumed that the deformation takes place in two stages: a pure
homogeneous compression of amount e, requiring a uniform compressive stress 6=3Ge, i.e. v=0.5,
and a shear deformation restoring points in the planes of the bonded surfaces to their original
positions in these planes.

The material is completely incompressible with a Poisson’s ratio of 0.5 exactly. The numerical
values are chosen to be: e=10%h, (a/h)=4.5, v=0.5, and E=23 N/mm?®. The problem is solved by
boundary element method of the present work and compared with the finite element software
ANSYS Release 10.0. The boundary of the problem is discretised with 22 quadratic 3-node
boundary elements with total number of nodes of 45. The Poisson’s ratio is chosen of 0.5 exactly.
While for the ANSYS the Poisson’s ratio has to be approximated as close as 0.5. Firstly, the value
is chosen as 0.49 and, secondly as 0.49999 with element type 183 of 8-node, the problem is solved
as axisymmetric solid with mixed u/p (displacement/pressure). In ANSYS the Poisson’s ratio has to
be approximated as 0.49+, exact value of 0.5 is not allowed.
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Rigid Plates

Rubber Block

F
Figure 6: Compression of bonded rubber block

The results from the boundary element methods of the present work are compared with that of
the analytical solution of Gent and Lindley 1959, as shown in Fig. 7. On the same graph the finite
element results from ANSYS are plotted with Poisson’s ratio of 0.49 and 0.49999. From this graph
it is shown that the boundary element results are in good agreement with that of analytical solution.
While for ANSYS the results are very sensitive to the chosen value of Poisson’s ratio. For ANSYS
selecting Poisson’s ratio value close to 0.5 gives us better results.

[— Analytical ® FEM ANSYS with v=0.49999 & FEM ANSYS with v=0.49 4 BEM =0.5|
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Figure 7: Axial stress for bonded rubber block

AXISYMMETRIC PRESSURE VESSEL

In this example an epoxy flat-headed pressure vessel subjected to internal pressure of 2.61 psi of a
dimension shown in Fig. 8, is considered. Floyd, 1984, analyzed this vessel using experimental and
theoretical analysis. The experimental Floyd’s pressure vessel was made of epoxy resin, which is an
almost incompressible material (v=0.5), the experimental analysis was performed using photo-
elastic model and all the stresses are computed along the line BE, as shown in Fig. 8.

The problem is solved numerically using boundary elements method of the present work, and
compared with finite element solution using ANSYS 10.0. The boundary elements mesh used is of
38 of 3-node quadratic elements. The houndary conditions are as follows: The material originally
on the axis of rotation was constrained to remain on the center line (i.e. u=0) and the material of
vessel along CD is constrained to move only in horizontal direction (i.e. v=0). These boundary
conditions properly reflect the symmetry of the problem.

The stress results from boundary elements solution of the present work are compared with
corresponding values obtained from and ANSY'S 10.0, and these results are compared with Floyd’s
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experimental (photo-elastic) results obtained by at the inner and outer surface of a line of interest
(BE), as shown in the following table.

0.6in.
Line of Stress Output \h
¢ ine of Stress Outpu c D 7y
0.15in. R 1.5681n. (39.8 mm)
(a) Pressure = 2.61 psi \\ \
> B E_ 3.15in.
A
1.5in.
G F M
l< 6in (152.4mm) .|
(b)
Figure 8: Axisymmetric pressure vessel geometry. (a) Schematic drawing. (b) Dimensions
o Floyd 1984 BEM ANSYS 10.0 | ANSYS 10.0
Principal Stresses .
Experimental | Present Work v=0.49 v=0.49999
Inner surface 2130 2101 2344 2398
O
’ Outer surface -1000 -990 11022 11029
Inner surface -138 -203 299 291
O
? Outer surface -1517 -1476 -1356 -1348
Inner surface 5310 5320 5308 5291
(¢}
. Outer surface 0 0 -15 -13

The analysis using ANSYS required refined mesh near the fillet to produce results of sufficient
accuracy. While for the boundary elements method it is only requires very simple data input with
small number of elements to attain accurate results. It is seen from the above table that the results
from the boundary elements method of the present work gives accurate results compared with the
experimental analysis. And these results are better than ANSYS results with comparatively very
little total number of nodes. The Poisson’s ratio used in the boundary element data input is 0.5
exactly, while in the finite element, i.e. ANSYS, it has to be approximated as 0.49+, in the same
table the results is given for the finite element with 0.49 as a first case and 0.49999 as a second
case. It is seen from these results that the chosen value of the approximated Poisson’s ratio affect
the results significantly and the results are not converged as increasing the value from 0.49 to as
close value as near 0.5, and the question arises if there is a specific value of approximated Poisson’s
ratio that gives better results?
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LARGE DEFORMATION ANALYSIS
Large Deformation of Rubber Cylinder

In this example a rubber thick cylinder of a finite length subjected to internal pressure is studied, the
cylinder is considered as an axisymmetric hyperelastic solid and solved via finite and boundary
element methods.

Shi Shouxia and Yang Jialing 1999 studied an infinite rubber cylinder subjected to internal
pressure, the analyses type used was by considering two dimensional plane strain finite
deformation. They solved the problem using Yeoh’s hyperelastic constitutive model.

The dimensions and geometry of the rubber cylinder, shown in Fig. 9, are chosen to coincide
with that of Shi Shouxia and Yang Jialing 1999. Therefore, the inner radius, R;, is 70 mm; and
R,=186 mm and, contrarily, the length is chosen to be of finite length, viz. L=500 mm. The cylinder
is subjected to internal pressure P.

Figure 9: Dimensions and geometry of rubber cylinder

The problem was solved by using both the boundary elements method of the present work,
which based on Mooney-Rivlin hyperelastic constitutive model. And using finite element methods
via ANSYS 10.0. The material properties are assumed to be of Treloar, 1975, experimental data,
and the stretch ratio is limited to 3. The material coefficients are calculated as: ¢10=1.37890 and
C01=0.324855.

The results of the radial displacement is plotted agianst radial distance, as shown in Fig. 10, for
both boundary elements and finite element using ANSYS. It is seen from the figure that the
boundary element results is in good agreement with that of ANSYS especially when the pressure
value is low, and as the value of the pressure increases the difference between the results of the
boundary and finite element is slightly increases. And for internal pressure value of 3 MPa, the
radial displacement is near 125 mm which gives a stretch ratio of approximately 2 in hoop,
therefore the results of the constructed boundary elements program gives satisfactory values for
both small and large deformations as compared with ANSYS.

4744




I. A. Hussain Boundary Elements Modelling For Small/Large
M.J. Jweeg Strain Analysis Of Elastomeric Materials

M. N. Hamza

‘ P=1WPa —P=1.5 MPa —P=2MPa —P=2.5 MPa —P=3 MPa‘

=3
[=>3

=~ !

106 x,r:\\ — AnsYs |
£ =~ -- BEM
s % [ Syt
% ““1-:::—_-.::—:-.
5 8= -
= ==
@ .
o 6 —— B S
Eze I s e T
é === P r—— —_—

G | ! : : : ‘ :

0 8 % 114 128 143 157 m 186

Radial Distance (mm)

Figure 10: Radial displacement vs radial distance for rubber cylinder subjected to different values
of internal pressure.

Figure 11 shows the results of the radial and hoop stresses along the radial distance for different
values of internal pressure for both boundary elements and finite element using ANSYS. It is seen
from the figure that results are in good agreement for both boundary and finite elements.
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Figure 11: Radial and Hoop stresses versus radial distance for rubber cylinder subjected to
different values of internal pressure.

Generally, for both FEM and BEM numerical results, it can be seen that good agreement of the
results is obtained and that the expected shape of displacement and stress distribution is correct.
Specifically, the radial stress is equal and opposite to the internal pressure on the internal radius and
zero radial stress on the outer radius. And the absolute value of hoop stress at all radial position is
greater than the absolute values of the radial stresses.

4745



Numberl Volume 16 march 2010 Journal of Engineering

CONCLUSIONS

The following conclusions have been made regarding the use of the boundary elements method for
solving elastomeric problems:

e The boundary element method is shown to be good and useful numerical technique for
solving problems of incompressible elastomeric materials. The numerical results are
improved by handling singularities using some sort of transformation or redistribution
techniques for the Gauss integration points.

e In using this method there is no need to approximate the Poisson’s ratio as required in
the finite element techniques.

e The formulation for the large strain analysis is based on decomposing the 1% Piola-
Kirchhoff stress into linear and nonlinear parts. For the non-linear analysis the
incremental procedure is used with an iterative algorithm.

e Comparing the results with the available ones or with ANSYS 10.0 shows that this
technique is satisfactory approximation and gives good results.

REFERENCES

Bayliss, M.T., and El-Zafrany A. “Numerical modeling of elastomers using the boundary
element method,” Commun. numer. methods eng. vol. 20, 789-799, 2004.

Brebbia, C. and Dominguez, J., Boundary Element: An Introductory Course, McGraw-Hill,
1989.

Burn, M., Capuani, D. and Bigoni, D., “A boundary element technique for incremental, non-
linear elasticity,” Part I: Formulation, Comput. Methods Appl. Mech. Engrg. 192, 2461-
2479, 2003.

Floyd, C.G., “The determination of stress using combined theoretical and experimental
measurements,” Proc. 2" int. Conf., Ed. C.A. Brebbia, 1984.

Fung, Y.C., Foundations of Solid Mechanics, Prentice-Hall, Inc., Englewood Cliffs, NJ,
1965.

Herrmann, L.R., “Elasticity Equations for Incompressible and nearly Incompressible
Materials,” AIAA J. 3(10), 1896-1900, 1985.

Gent, A.N., Engineering with Rubber: How to Design Rubber Components, Hanser
Publishers, 2001.

Gent, A.N., and Lindley, P.B., “The compression of bonded rubber blocks,” Proc. 1. Mech.
E., 173: 111-117, 1959.

Kyuichiro Washizo, Varitional Method in Elasticity and Plasticity, Pergamon Press,1975.

Polyzos, D., Tsinopoulos, S. V., and Beskos, D. E., “Static and Dynamic Boundary Element
Analysis in Incompressible Linear Elasticity”, Eur. J. Mech. Solids 17, 515-536, 1998.

Rizzo, F. J. and D. J. Shippy, “A Boundary Element Method for Axisymmetric Elastic
Bodies”, in Developments in Boundary Element Mothods-4, Eds. P.K. Banerjee, & J.O
Watson, 1986.

e Shi Shouxia and Yang Jialing, “Large deformation of incompressible rubber cylinder under

plane strain,” ACTA Mechanica Solida Sinica, Vol. 12, No. 4, December 1999.
4746




I. A. Hussain Boundary Elements Modelling For Small/Large
M.J. Jweeg Strain Analysis Of Elastomeric Materials

M. N. Hamza

e Treloar, L. R. G., The Physics of Rubber Elasticity, 3 Edition, Clarendon Press, Oxford,

1975.
NOMENCLATURE
Cij Cauchy principal value
E Modulus of elasticity N/m?
F Shape function matrix
G Shear modulus N/m?
Ny, Ny Direction cosines of the outward normal i
t Traction components N/m?
Ti; Traction kernel functions
u Displacements components m
U. Displacement kernel functions

&, &y, &, Strainsinr, g,z direction

o,, 0,, 0, Stressesinr, 6,z direction N/m?
Dr Radial components of the body force

Sz Axial components of the body force

0ij Kronecker delta

& Interpolation (shape) function

I Boundary of the problem

v Poisson's ratio
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