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ABSTRACT 

In this paper the boundary elements method is used as numerical techniques for solving elastomeric 

materials (rubber or rubber-like materials) under small and large strains analysis. Under small 

deformations, the formulations are based on assuming that the elastomer is linear elastic isotropic 

incompressible solid. While for the large deformation, the formulation is based on decomposing the 

1
st
 Piola-Kirchhoff stresses into linear and nonlinear parts. Thereafter, the final derived equations 

are composed of both boundary integral and non-linear domain integrals.  The non-linear analyses 

were performed using an incremental procedure with an iterative algorithm.  

Solving some numerical examples and comparing the results with that obtained from some 

available results and ANSYS 10.0 showed that the boundary elements method is a good numerical 

technique for solving incompressible elastomeric materials. And the formulation used for the 

boundary elements derivations for large strain analysis gave satisfactory results as compared with 

that of ANSYS ver. 10.0. 

 الخلاصــة
تم استخدام ىذة الطريقة لحل مسائل الدواد . العددية اعتمدت على استخدام طريقة العناصر الحدودية التحقيقات

اعتمد الاشتقاق الرياضي في التشوىات الصغيرة لذذا النوع من الدواد . الدطاطية عند التشوىات الصغيرة والتشوىات الكبيرة
بينما اعتمد الاشتقاق . ت خواص متسقة الاتجاىات، خطية، مرنة، ولاانضغاطيةبافتراض ان ىذه الدواد ىي مواد ذا

كرشوف الاولى الى جزء خطي -الرياضي تحت التشوىات الكبيرة على اساس فصل الاجهادات الكلية او اجهادات بايلا
تم الحصول على . نيةبناءا عليو، فان الدعادلات النهائية احتوت على تكاملات محيطية وتكاملات ميدا. وجزء لاخطي

اثبتت ، الحلول في الجزء اللاخطي بالاعتماد على اسلوب عددي يحوي على اجراءات تزايدية للحمل مع خوارزمية تكرارية
الدقارنات عند حل بعض الدسائل العددية ان طريقة العناصر الحدودية اكثر ملائمة من الطرق الاخرى لحل الدسائل 

كذلك اثبت ان الاشتاق الخاص بالتشوىات الكبيرة للعناصر الحدودية صحيح واعطى . الخاصة بالدواد اللاانضغاطية
 .ANSYSنتائج مرضية عند مقارنتو مع طرائق العناصر المحددة مثل  الـ 
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INTRODUCTION  

Successful analysis of elastomers (rubber or rubber-like materials) requires robust numerical 

methods and representative material models applicable to small/large strains and multiple 

deformation modes. Although the mathematical foundation of strain energy density function has 

been studied by many researchers, the application to engineering problems is not straightforward.  

Two major challenges are encountered in the numerical analysis of rubber materials. The first is 

due to the material incompressibility of rubber. The material incompressibility leads to a locking 

difficulty when using the conventional finite element method. The finite element prediction is often 

much stiffer (locking) than analytical solution or experimental data resulting from the imposition of 

"constant volume constraint" in the numerical formulation. Locking usually accompanies with 

pressure oscillation that completely corrupts the numerical stress solution, Herrmann 1985. The 

second difficulty is the mesh distortion caused by the large deformation nature in many elastomeric 

applications. Therefore it is necessary to search for other numerical techniques that may help in 

getting improved numerical analysis. In this work the boundary elements method has been chosen 

as numerical technique for solving elastomeric problems.  

The boundary elements method is relatively a new technique and successfully applied to many 

engineering problems. The most remarkable feature of these methods are that instead of attempting 

to find an approximate solution for the governing differential equations throughout the relevant 

solution domain, as in the domain methods, the equations are converted into an integral form, often 

involving only integrals over the boundary of the domain, consequently, only the boundary has to 

be discretised in order to carry out the integration. Although these methods successfully applied to 

many engineering problems have had limited application with elastomers, Polyzos 1998. 

The lack of inaccurate results of the conventional finite element method is due to Poisson‟s ratio 

values in elastomers, which ranges between 0.499 and 0.5. The elements used in FEA need to be 

reformulated to accommodate this high value of Poisson's ratio. This is usually accomplished by 

utilizing an approach developed by Herrmann 1985, by introducing a new variational principle that 

includes another degree of freedom called the “mean pressure function.” When using the boundary 

elements method there is no such restriction and the method can handle elastomeric materials or 

generally incompressible materials accurately.  

When managing elastomeric components using the boundary elements method, or any 

numerical technique, two major decisions will present themselves: 

 Is a nonlinear analysis required, or will a linear analysis suffice? 

 What material properties will be used? 

These two decisions are interrelated, and the answer depends on what application the elastomeric 

components are designed for. 

Keeping this in mind, therefore, one has to adopt either linear or non-linear analyses. As a 

result, in the present work, the boundary elements method is applied to elastomers by considering 

both small and large deformations. For small deformation the formulation is considered by 

assuming that the elastomers are linear elastic isotropic axisymmetric solids. The derivations lead to 
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Boundary Element 

3-Node Element 

Radial Plane 

a fact that only the boundary of the region being investigated has to be discretised. In large, or 

finite, deformation elastomers are considered to be hyperelastic solids, and nonlinear boundary 

elements method has been used. The derivations of the boundary integral equations were done by 

splitting the first Piola-Kirchoff stresses or total stresses into linear and non-linear components. 

Thereafter, the final derived equations are composed of both boundary integral and non-linear 

domain integration terms, consequently, both the boundary and the domain of the problem are 

discretised.   

SMALL DEFORMATION BEM 

In this section rubber components are considered under small deformations or small strains. A good 

approximation for the corresponding stresses is given by conventional elastic analysis, assuming 

simple linear stress-strain relationships, because, like all solids, rudder behaves as a linearly elastic 

substance at relatively small strains, Gent 2001. When applying the boundary elements technique to 

an axisymmetric elastomeric solid under axisymmetric loading and by taking the advantage of 

symmetry, the original three-dimensional problem will be reduced to a two-dimensional one. 

Therefore, it is only required to discretise the boundary of the radial plane, as shown in Fig. 1.  

The boundary integral equation, BIE, can be obtained using weighted residual technique. Now, 

consider that one desire to minimize the error involved in the numerical approximation of the 

governing equations of axisymmetric solid; 
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Figure 1: Discretisation of axisymmetric solid using BEM; 

(a) original 3D problem, (b) radial plane BEM mesh 

Minimizing the above equations by displacement type functions u* and v* using weighted 

residual technique as; 

                          (a)                                             (b) 
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where dzdrrd    2 , carrying out the integration by parts for each term separately leads to 
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Define  

  *****  , , , rzzr  ε     and    rzzr    , , ,σ  (4) 
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For linear elastic solids, εDεσε  = ** TT , and since D is a symmetric matrix, therefore D=D
T

, 

subsequently 
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The first domain integral of the above equation can further be simplified by integrating  by parts 

getting the following equation: 
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Eq. (7)   represents   the   inverse  wieghted  residual  expression, which can be used to obtain 

the boundary integral equation. Considering now a ring source load  j

i

j e  applied at a point 

),( ii zri  in an infinte domain, in the direction of the unit vector je , where j=r , z, i.e.  

 

0

0

***

****
























z

irzzrz

r

irrzr

rzr

rzr

e

e



 

  (8) 

where i refer to the point at which the load is applied, 
i  is the Dirac delta function, which is define 

as, Kyuichiro Washizo 1975;  
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Figure 2: Domain of axisymmetric solid. 

Consider each direction independently, the displacement at any point in the infinite domain is;   
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e er z,  is the components  of  the  ring  loads at  point  p  in r and z direction, respectively, as shown 

in Fig. 2. zrrzrr UUU  , ,  and zzU   are displacement  kernel functions. The first subscript refers to 

the direction of the displacement at the boundary point Q (feild point), while the second refers to 

the direction of the ring load at point p (source point) causing the displacement at Q. 
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zzzrrzz

zzrrrrr

TTt

TTt

ee

ee





*

*

  (13) 

where zrrzrr TTT  , ,  and zzT   are the traction kernels.  

Substitute eq. (12) and eq. (13) into eq. (11), gives 

   

 











0  )()(   

  )(+ )(  )( +)( z

dzdrrUUUUdvdu

drvTTuTTdrUUtUUt

zzzrrzzzzrrrrrz

i

r

i

zzzrrzzzrrrrzzzrrzzzrrrrr

eeeeee

eeeeeeee


 (14) 

Since re  and ze  are independent on each other, then eq. (14) can be split as: 
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When the source point is at an interior point „p’ then equations (15) and (16) lead to 

Somiglianna‟s identity, Rizzo and Shippy 1986, defined as: 
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The above equations give the displacement components at an interior point p. To find the final 

boundary integral equation, each term in equations (17) and (18) is taken to the limits as the interior 

point p approach the boundary point P, i.e. p P. Therefore, these integral equations have now a 

singularity and the integral on  is defined only in the sense of the Cauchy principal value, Rizzo 

and Shippy 1986, and Brebbia 1989, resulting the following:   
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where zrrzrr CCC  , ,  and zzC  can be determined from the nature of the boundary geometry at “P”, 

and the value of Cij (i,j=r, z) equal unity at interior point and 2/ijijC  , ( ij  is the Krönecker 

delta), when the boundary at P is smooth, i.e. have unique tangent at P, but can be expressed 

generally using rigid body motion, Nouri and Husain 2000.   
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 LARGE DEFORMATION BEM  

The large deformation BEM derivation, also, will starts from minimizing the error involved in the 

numerical approximation of the governing differential equations of axisymmetric solid; 
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wherer and z are the radial and axial body forces, the stresses in eq. (22) is the first Piola-

Kirchoff stresses or total stresses and can be split into linear and non-linear components as follows: 
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where the superscript nl refers to non-linear component and the superscript l refer to the linear one. 

Therefore, equations (22) can now be rewritten as follows:  
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Minimizing equations. (24) by displacement type functions u* and v* as: 
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
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
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





    (25) 

Using integration by parts and rearranging gives:  
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   (26) 

writing  
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where: 

r

u
r

 

 *
*




  ;  

r

u

 

 *
*  ;  

z

v
z

 

 *
*




  ;  

r

v

z

u
rz

 

 

 

 **
*








   

Substitute the above expressions, into equation (26) gives; 

 

 



 







0   )(   )(
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z
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dzdrrdrvtut
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z
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r

rzrzzrr

l

z

l

r



 

  (27) 

Neglecting the body forces, i.e. 0 zr  , eq. (27) can be writtin in vectorial form as: 

     


 0  )(     + ***** dzdrrvfufdzdrrdrvtut nl

z

nl

r

lTl

z

l

r σε   (28) 

For the linear l
σ : 

lTlTT
εσεDεσε

***    

where   ******  , , , ε Dσ
l

rzzr     

Therefore, eq. (28) can be written as: 

   


 0   )(   )+(   + ****

z

**** dzdrrvfufdzdrrdrvtut nl

z
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rrzrzzrr

l

z

l

r     (29)    

 

The first domain integral of the above equation can further simplified by integrating  by parts, and 

equation (29) will be as follows:   

   
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
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
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
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l

z
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r









 

  (30) 

Eq. (30)   represents   the   inverse  wieghted  residual  expression. Considering a ring source 

load  m

i

m e  applied at a point ),( ii zri  in an infinte domain, in the direction of the unit vector 

me , where m=r, z, i.e.  

 
0

 

 

 

 

0
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****








z

irzzrz

r

irrzr

rzr

rzr

e

e



















 

  (31) 

where i refers to the point at which the load is applied, i  is the Dirac delta function. 

Therefore eq. (30) will be  
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   
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
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  (32) 

From the property of Dirac delta function, eq. (10), eq. (32) gives the nonlinear boundary 

integral equations of axisymmetric elastomeric solids sustaining large or hyperelastic deformation: 

    

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z
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l

rzrriirii   )(   +    + ******
ee   (33) 

The domain integral of equation (33) represnts the non-linear part of this equation. This domain 

integral is defined as:  
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Integrating by parts and rearranging  
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 (34) 

Subsititute eq. (34) into eq. (33) gives: 
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Noting that: 
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Then, eq. (35) gives: 
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Similarly, as performed in the small deformation derivations,  
*u and 

*v , considering each 

direction independently, may be written as:  

zzzrrzzzrrrr UUvUUu eeee  **     and   , .  

similarly, the traction vector components at the field point Q can be expressed as;    

.   and   , **

zzzrrzzzzrrrrr TTtTTt eeee   

 Substitute the above equations into eq. (36), and simplified the final boundary integral equation 

will be given in a matrix form as; 
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   (37) 

Equation (37) represents the final boundary integral equation for the large strain elastomeric 

materials. The boundary integral terms can be evaluated numerically by descretising the boundary 

of the problem. Whereas, the domain integral terms required the domain to be descretised in similar 

manner as usually used in the finite element techniques. 

BOUNDARY  ELEMENT  FORMULATION 

Small Deformation BE Formulation  

In small deformation analysis, the problem is considered to be for linear elastic axisymmetric 

solids. Therefore as stated previously only the boundary of the radial plane has to be discretised. In 

order to solve the integral equations numerically the boundary, , of the domain, eq. (21) will be 

discretized into a number of boundary elements over which the displacements and traction are 

written in terms of nodal points, and the numerical integration performed over each elements and 

added together.  
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Figure 3: Discretisation of the boundary of linear axisymmetric solid into MB quadratic 

element. 

After discretising the boundary into MB elements, eq. (21) may be rewritten, in the absence of 

body forces, as: 

 jQ
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In a matrix form 

  
  


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j

M

j

jQjQ

ii rr
1 1

dd
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or in terms of the shape functions as:  
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And F is the shape function matrix. 

3-node Boundary 

Element  

 
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LARGE DEFORMATION BE FORMULATION  

In this section elastomeric problem with large deformation is considered. It is noted that eq. (37) 

contains both boundary integral terms and domain integral terms. The boundary integral terms 

require the discretisation of the boundary in order to evaluate it. Thus, the boundary of the problem 

is discretised into boundary elements. The domain terms require the domain to be subdivided into 

cells or elements to evaluate the integrals. In this work the domain of the problem is discretised 

using 8-nodes isoparametric elements.  

 

Figure 4: Discretisation of the boundary into MB quadratic element, and the domain into MD  8-

node element. 

To evaluate eq. (37) numerically, it is required that the boundary „‟ of the domain, and the 

domain of the problem to be discretised into boundary elements and domain cells, repectively. The 

boundary and the domain discretisation are shown in Fig. 4.  

After discretising the boundary into MB elements and the domain into MD elements, equation 

(37) can be rewritten in a discretised form as: 

  
   


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or in terms of the shape function matrices as; 
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3-node Boundary 

Element  

8-node Domain 

Element  
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Solution Algorithm 

Eq. (42) may be written as  

 



DBB M

j

ij

M

j

jij

M

j

jij

i
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i
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ˆ DtGuHuC  (43) 

Define 

    
                     ˆ

                             ˆ












jiif

jiif
i

ij

ij

ij
CH

H
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Therefore, eq. (43) will be written as: 

 



DBB M

j

ij

M

j

jij

M

j

jij

111

DtGuH  (44) 

And the global system of equations is written as, 

 D tGuH    (45) 

Applying the boundary condition and rearranging the columns in H and G matrix, eq. 45 can be 

rewritten as: 

 DYXA =  (46) 

It can be seen that the boundary integral equations involves a non-linear term, which is a function of 

the displacement derivatives and the hydrostatic pressure. With the above equations it is possible to 

formulate the iterative solution procedure for non-linear boundary element analysis as follows. 

From eq. (45) it can be seen that non-linear terms are involved which are a function of the 

displacement derivatives and hydrostatic pressure. The dependence of this term on the hydrostatic 

pressure and the displacement derivatives stems from the term's involvement of the first Piola-

Kirchhoff stress (total stress) in its derivative. These non-linear terms can be seen to augment the 

force/traction vector Y in eq. (46), the reduced system of equations after prescribed boundary 

conditions have been applied. Thus a solution to eq. (46) must involve an iterative solution 

procedure. 

As with most iterative solution procedures the first step is to solve the equivalent linear problem 

to obtain an initial estimate of the solution. This involves solving eq. (46) but ignoring the domain 

term with the non-linear stresses i.e. 0D . The solution vector to this equation can then be used to 

evaluate the displacement derivatives and hydrostatic pressures to use in the full non-linear 

boundary integral equations including the non-linear term. 

Evidently this first solution vector, and subsequent solution vectors before convergence, will not 

fully satisfy the full non-linear set of boundary integral equations and a residual or error value will 

result if the solution vector is substituted back into eq. (46). This residual can be reduced if a new 
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set of hydrostatic pressures and stresses are calculated based on the previous iteration results. These 

values can then be used to compute new non-linear domain terms to augment the standard linear 

BIE force vector. The solution to this set of equations will result in an improved vector of total 

nodal displacements and tractions. The difference between the new solution vector and the old one 

gives the iterative improvement in the solution vector. This process is repeated until the ratio of the 

square of the solution vector increment over the square of the total solution vector results in a value 

less than a given permissible, as depicted in Fig. 5a. 

Incremental Modification to the Solution Algorithm 

In the preceding section the basic iterative solution procedure was explained. It is the case that for 

non-linear problems the only way to achieve convergence of the iterative process for most load 

cases is to break the applied load down into load increments. This is certainly the only way to 

achieve convergence for the type of non-linear hyperelastic stress, Bayliss 2004. Therefore it is 

essential to develop an incremental version of the basic iterative solution algorithm. This can be 

achieved with the following algorithm shown in Fig. 5b.  

As is usual for most non-linear numerical algorithms the first iteration of the first increment is 

the solution of the equivalent linear problem. The next part of the algorithm is as discussed in the 

preceding section where by the previous solution vector (tractions and displacements) is used to 

evaluate the displacement derivatives, and therefore, to enable the non-linear stresses to be found so 

as to compute the nonlinear domain terms in the system of boundary integral equations.  

The significant difference however with the incremental algorithm is that for each iteration the 

'old' and 'new' values of the solution vector and the non-linear stresses (at each domain Gauss point 

and at each source point) are stored. Therefore the total solution vector is formed from the total 

cumulative sum of the change in displacements and tractions at each iteration of each increment. 

The change in non-linear stress, or the difference between the current and previous iteration values, 

is used in the non-linear domain term. This means that for each increment the non-linear domain 

term reduces for each iteration until convergence occurs. Therefore this algorithm is pseudo 

incremental because at each iteration of every increment the system of boundary integral equations 

are still solved for the total displacements and tractions, Bayliss 2004 and  Burn et. al. 2003. 

Because the geometry is always changing as the displacements become large due increments of 

larger loads, therefore some additional steps are required. Because the boundary integral derivations 

are based on 1
st
 Piola-Kirchhoff stress values the prescribed tractions (surface stresses) need to be 

converted to 1
st
 Piola-Kirchhoff  values, which will start to differ from nominal values as the strain 

increases. 
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NoStore Xn

Compute n and n using un, D n, and n-1

Increment 

Loop

 

(a) (b) 

 

Figure 5: (a) Iterative solution procedure for non-linear boundary integral equations;  

 (b) Incremental modification to iterative solution procedure. 

SMALL DEFORMATION OF INCOMPRESSIBLE MATERIALS 

Compression of Bonded Rubber Block  

In this example the deformation due to compression of bonded thin rubber block, which is widely 

used as spring, is studied. The rubber block, as shown in Fig. 6, is bonded on its major surfaces to 

rigid plates. Gent and Lindley, 1959, assumed that the deformation takes place in two stages: a pure 

homogeneous compression of amount e, requiring a uniform compressive stress =3Ge, i.e. =0.5, 

and a shear deformation restoring points in the planes of the bonded surfaces to their original 

positions in these planes.  

The material is completely incompressible with a Poisson‟s ratio of 0.5 exactly. The numerical 

values are chosen to be: e=10%h, (a/h)=4.5, =0.5, and E=23 N/mm
2
. The problem is solved by 

boundary element method of the present work and compared with the finite element  software 

ANSYS Release 10.0. The boundary of the problem is discretised with 22 quadratic 3-node 

boundary elements with total number of nodes of 45. The Poisson‟s ratio is chosen of 0.5 exactly. 

While for the ANSYS the Poisson‟s ratio has to be approximated as close as 0.5. Firstly, the value 

is chosen as 0.49 and, secondly as 0.49999 with element type 183 of 8-node, the problem is solved 

as axisymmetric solid with mixed u/p (displacement/pressure). In ANSYS the Poisson‟s ratio has to 

be approximated as 0.49+, exact value of 0.5 is not allowed.   
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Figure 6: Compression of bonded rubber block 

The results from the boundary element methods of the present work are compared with that of 

the analytical solution of Gent and Lindley 1959, as shown in Fig. 7. On the same graph the finite 

element results from ANSYS are plotted with Poisson‟s ratio of 0.49 and 0.49999. From this graph 

it is shown that the boundary element results are in good agreement with that of analytical solution. 

While for ANSYS the results are very sensitive to the chosen value of Poisson‟s ratio. For ANSYS 

selecting Poisson‟s ratio value close to 0.5 gives us better results.  
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Figure 7: Axial stress for bonded rubber block 

AXISYMMETRIC PRESSURE VESSEL  

In this example an epoxy flat-headed pressure vessel subjected to internal pressure of 2.61 psi of a 

dimension shown in Fig. 8, is considered. Floyd, 1984,  analyzed this vessel using experimental and 

theoretical analysis. The experimental Floyd‟s pressure vessel was made of epoxy resin, which is an 

almost incompressible material (=0.5), the experimental analysis was performed using photo-

elastic model and all the stresses are computed along the line BE, as shown in Fig. 8. 

The problem is solved numerically using boundary elements method of the present work, and 

compared with finite element solution using ANSYS 10.0. The boundary elements mesh used is of 

38 of 3-node quadratic elements. The boundary conditions are as follows: The material originally 

on the axis of rotation was constrained to remain on the center line (i.e. u=0) and the material of 

vessel along CD is constrained to move only in horizontal direction (i.e. v=0). These boundary 

conditions properly reflect the symmetry of the problem. 

The stress results from boundary elements solution of the present work are compared with 

corresponding values obtained from and ANSYS 10.0, and these results are compared with Floyd‟s 
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experimental (photo-elastic) results obtained by at the inner and outer surface of a line of interest 

(BE), as shown in the following table. 

 
Figure 8: Axisymmetric pressure vessel geometry. (a) Schematic drawing. (b) Dimensions  

Principal Stresses 
Floyd 1984 

Experimental 

BEM 

Present Work 

ANSYS 10.0 

=0.49 

ANSYS 10.0 

=0.49999 

3 
Inner surface 2130 2101 2344 2398 

Outer surface -1000 -990 -1022 -1029 

2 
Inner surface -138 -203 299 291 

Outer surface -1517 -1476 -1356 -1348 

1 
Inner surface 5310 5320 5308 5291 

Outer surface 0 0 -15 -13 

The analysis using ANSYS required refined mesh near the fillet to produce results of sufficient 

accuracy. While for the boundary elements method it is only requires very simple data input with 

small number of elements to attain accurate results. It is seen from the above table that the results 

from the boundary elements method of the present work gives accurate results compared with the 

experimental analysis. And these results are better than ANSYS results with comparatively very 

little total number of nodes.  The Poisson‟s ratio used in the boundary element data input is 0.5 

exactly, while in the finite element, i.e. ANSYS, it has to be approximated as 0.49+, in the same 

table the results is given for the finite element with 0.49 as a first case and 0.49999 as a second 

case. It is seen from these results that the chosen value of the approximated Poisson‟s ratio affect 

the results significantly and the results are not converged as increasing the value from 0.49 to as 

close value as near 0.5, and the question arises if there is a specific value of approximated Poisson‟s 

ratio that gives better results?  
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LARGE DEFORMATION ANALYSIS 

Large Deformation of Rubber Cylinder 

In this example a rubber thick cylinder of a finite length subjected to internal pressure is studied, the 

cylinder is considered as an axisymmetric hyperelastic solid and solved via finite and boundary 

element methods.  

Shi Shouxia and Yang Jialing 1999 studied an infinite rubber cylinder subjected to internal 

pressure, the analyses type used was by considering two dimensional plane strain finite 

deformation. They solved the problem using Yeoh‟s hyperelastic constitutive model.  

The dimensions and geometry of the rubber cylinder, shown in Fig. 9, are chosen to coincide 

with that of Shi Shouxia and Yang Jialing 1999. Therefore, the inner radius, Ri, is 70 mm; and 

Ro=186 mm and, contrarily, the length is chosen to be of finite length, viz. L=500 mm. The cylinder 

is subjected to internal pressure P.  

 
Figure 9: Dimensions and geometry of rubber cylinder 

The problem was solved by using both the boundary elements method of the present work, 

which based on Mooney-Rivlin hyperelastic constitutive model. And using finite element methods 

via ANSYS 10.0. The material properties are assumed to be of Treloar, 1975, experimental data, 

and the stretch ratio is limited to 3. The material coefficients are calculated as: c10=1.37890 and 

c01=0.324855.  

The results of the radial displacement is plotted agianst radial distance, as shown in Fig. 10, for 

both boundary elements and finite element using ANSYS.  It is seen from the figure that the 

boundary element results is in good agreement with that of ANSYS especially when the pressure 

value is low, and as the value of the pressure increases the difference between the results of the 

boundary and finite element is slightly increases. And for internal pressure value of 3 MPa, the 

radial displacement is near 125 mm which gives a stretch ratio of approximately 2 in hoop, 

therefore the results of the constructed boundary elements program gives satisfactory values for 

both small and large deformations as compared with ANSYS.  
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Figure 10: Radial displacement vs radial distance for rubber cylinder subjected to different values 

of internal pressure. 

Figure 11 shows the results of the radial and hoop stresses along the radial distance for different 

values of internal pressure for both boundary elements and finite element using ANSYS.  It is seen 

from the figure that results are in good agreement for both boundary and finite elements.  

         
Figure 11: Radial and Hoop stresses versus radial distance for rubber cylinder subjected to 

different values of internal pressure. 

Generally, for both FEM and BEM numerical results, it can be seen that good agreement of the 

results is obtained and that the expected shape of displacement and stress distribution is correct. 

Specifically, the radial stress is equal and opposite to the internal pressure on the internal radius and 

zero radial stress on the outer radius.  And the absolute value of hoop stress at all radial position is 

greater than the absolute values of the radial stresses. 
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CONCLUSIONS  

The following conclusions have been made regarding the use of the boundary elements method for 

solving elastomeric problems: 

 The boundary element method is shown to be good and useful numerical technique for 

solving problems of incompressible elastomeric materials. The numerical results are 

improved by handling singularities using some sort of transformation or redistribution 

techniques for the Gauss integration points. 

 In using this method there is no need to approximate the Poisson‟s ratio as required in 

the finite element techniques. 

 The formulation for the large strain analysis is based on decomposing the 1
st
 Piola-

Kirchhoff stress into linear and nonlinear parts. For the non-linear analysis the 

incremental procedure is used with an iterative algorithm.  

 Comparing the results with the available ones or with ANSYS 10.0 shows that this 

technique is satisfactory approximation and gives good results. 
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NOMENCLATURE 

Cij Cauchy principal value  

E  Modulus of elasticity N/m
2
 

F Shape function matrix 

G  Shear modulus  N/m
2
 

nr , nz  Direction cosines of the outward normal n̂  

t  Traction components  N/m
2
  

ijT   Traction kernel functions 

u  Displacements components m  

ijU   Displacement kernel functions 

r ,   , z   Strains in r, , z direction 

r ,   , z   Stresses in r, , z direction  N/m2 

r  Radial components of the body force 

z  Axial components of the body force 

ij   Krönecker delta 

i  Interpolation (shape) function 

   Boundary of the problem  

 Poisson's ratio  


