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ABSTRACT

In this investigation, steady two-dimensional natural convective heat transfer in g rectangular
porous cavily, (hcated from below) with horizontal walls heated o uniform but different
emperatures and adiabatic sides has been studied numerically, The numerical results of heat
transfer rates are presented for porous Rayleigh numbers {Ra’), based on width of cavity, in the
range (Ra =500}, with layer aspect ratios (4r), (height'width) ranging between (0.5 Ar <5). Plats
of streamlines and isotherms w show the bebavior of the flow and temperature distribution are
presented. The current study shows that the Nusselt number is a strong function of the porous
Rayleigh number, and the geometry of the cavity is represented by aspecl ratios. Porous Rayleigh
number has a large effect on the flow field, whereas any increase in (Ra') results in changing the
flow parttern from unicellular to multicellular flow. Correlation equation has been chtained to show
the dependence of Nusselt number on the porous Rayleigh number, and aspect ratio (A7), as this
corrclativit will be beneficial in design of systems of thermal insulators in the energy storage
enginesring applications,
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INTRODUCTION

Matural convection heat transfer in enclosures involves different aspects of problems, Ths
varicty of problems comes from possibly geometry characteristic of enclosures, type of fluid, nature
of Muid Tow, crientation of the enclosure ele. The most siodies of natural convection in enclosures,
based on low-dimensional or three- dimensional parallelogram enclosure investigation, annuli and
cvlinders with diffrrent aspect rario or diamcters, or caliber. It's very interesting because of
sensibility of natural convection phenomena from geometry. Important thing like aspect ratios of
enclosures according to acceleration gravity vector, produce variety of physical situation. Also the
type of fuid with influence on natural convection phenomena. If new phenomena are added like
radiation. change of fluid phase, porous media, and chemical reaction and so on. have very difTicult
physical mislels often unsolvable, (Miomir, 2001).

In geners] naturgl convection is one of the important modes of heat transfer. This
phenomenon has been observed in numerous environmental circumstances. i occurs frequently as a
reault of density inversion caused by either the thermal expansion of a fluid, or the concentration
gradients within a fluid systom. Matural convection can also happen in & porous medium saturated
with a fluid. Generally, the porous medium is a solid with voids in it These voids arc
interconizzcted with cach other so that it is possible for a fluid to penetrate the medium. There am
many fields of application of flow through porous media ranging from industrial - processes in
lactories 1o the movement of oil or gos in an oil feld (Bouwer, 1978), and (Raudhkivi, and
Callauder, 1976). Natural convection heat transfer in porous enclosures commonly takes place in
nature, and engineering and technological applications. This phenomenon plays an important role in
diverse  applications inciwding thermal insulstors, storsge of solar energy in underground
containers, underground cable systems, heat exchangers, food industry. biomedical applications
and heat transfer from nuclear fuel rod bundles in nuclear reactors, (El Kady, 1999), Over
the past years. more emphasis is pul on nalural conveclion in porous media due to its growing
importance in engineering and geophysical areas. The analysis of the fluid flow and heat transfer
for natural convection is difficult. Only a few problems have been solved analytically, many more
have been solved numerically, (Dawood, 1991). In particular, when air is trapped in the void space
of fibrous porous media, the overall thermal conductivity of the medium is very low, consequently
these emphasis is put on nawral convection in porous media due w its growing importance-in
engineering and peophysical arcas.

The present work involves 2 numerical study of the effect of porous Rayleigh
number on laminar natural convection heat transfer’ in a rectanpular coclosurc filled with
a porous medium heated from below, Also, the objcct of this investigation is to study the
mfluence of geometry of enclosure represented by aspect ratios (4r) on the behavior of
fluid flow und heat transfer by frec convection through a porous medium.

MATHEMATICAL FORMULATION

The problem under investigation, consists of a two-dimensional porous cavity has opposite
isothermal hot and cold walls, at temperaturcs (7). & T5..). respectively, and adiabatic vertical
walls. Physical model of the enclosure is represented on Fig. (1). The cavity is fully filled with a
porous media saturated with fluid, and all the surfaces are impermeable.

In the porous medium, Darcy’s law is assumed to hold, and the fluid is assumed to be a
normal Boussinesg Quid, The viscous drag and incrtia term$ in the goveming equations are
neglected, which are valid assumptions [or low Darcy and particle Revnolds numbers, With these

1667




Number 3 Yolume 13 September2006 Journal of Engineering

assumptions, the continuity, momentum and energy equations for steady, two-dimensional flow in
an isotropic and homogeneous porous medium are

. ok Pk (1)
ox dy
H:i'ﬁw (2)
Mo\ 0x )
~E(ar
v=—f0——p,gJ (3)
g\ Oy

';j W

In the above equations, (u, v, g P, T ) are the [luid velocity components Fig. (1), the
viscosity, the pressure and the temperature. The two momentum equations (2), and (3) reflect the
Darcy flow model, where (X ) stands for the permeability of the porous material. It is assumed that
the fluid and the porous sclid matrix are in local thermal equilibrium, at temperature T (x,y). The
thermal diffusivity (e.)is defined as (e, =&, /p,cp, ) where, (k) is the effective thermal

conductivity of fluid-saturated porous matrix composite and (2, ¢p, ) is the thermal capacity of
the fluid alone.

The governing equations (1)-(4) reflect also the Boussinesq approximation, where by the
fluid density (pg is regarded as a constant except in the body force term of the vertical
momentum [Eq. (3) where it is replaced by

p,pl-pr-1.)] )

Using this approximation, and eliminating the pressure terms between eqs. (2), and (3), yields a
unigue momentum conservation statement, .

ou _ov__ p.gbkal

oy dx M Ox ©

The above equations are subjected to the following boundary conditions:

u=0 at x=0,L,
Impermeable v-alls (7)
v= at  y=0H,

=Ty at =0,
[sothermal horizontal walls (%)
T=T., at  y=H,
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T
adiabatic vertical walls i— =0 a x=01L (9)
(1Y
NUMERICAL PROCEDURE

The mathematical problem formulated above was first placed in dimensionless from by

defining the new dimensionless variables

¥

o=, Y=

L
10
A, T F-T.,
wl I'fr : :rhl _I.w
. " g Ay Ly i :
where, () is strcam function (u = &J.- v=-—— yand (AT =T, =T ) The dimensicdless
dr
forms of the momentum and energy equations arce then
&’ a'y Jae ]
L SR TR Ty Bl iy
cix oy, &x, |

= - 2 ~
Erﬂi ':_I'Ff ﬂi!p, {J_F_Tﬂ_lff:'_+ EE (12)
Ei_l}}i E':q &rp a_}rq -:'-".'r.' ﬁy.}

Where, {#a) is porous Rayliegh number, based on width of the enclousee, and defined as:-

. Kgdl AT
R =Das Bo sl {[3)
WY

i

The corresponding dimensionless from of boundary conditions {7) - (9) is:-

Bml, g a0 al p.=0 for O<x. 51

f=0, p,=0 ar w.=Ar for 0=x =1

i
gx—=[.'l,w.=i} ar X, =0 amd | ,for 05y, < dr

The physical quantity of interest in this problem is the average Nussell number along the hot
wall, defined by
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I'he ratio of the convective to conductive heat transfer rates and (0} indicates  porous Rayleigh
number (Ra = 0.0). The convective heat transfer is calculated from:-

L =r
Do ==k, | i dlx (15)
TR 5—']“-*'1-4 o M

Where as the conductive heat transfier is calculated from:

AT :
s =K, L F (16}
Thus, eq.( 14} becomes
Mooty ff .":"’E] = (17)
ah @ )

Numerical methoed is used to compute the stream function and temperature distribution for
the porous cavity. A finite-difference technique is applicd to solve the governing equations. The
upwind differences method is used for the transport terms in the cnergy equation. All other terms in
the energy and momentum equations are discretized by ceniral differencing. The successive
substitution formulas derived in this way satisfy the convergence criterion nnd are guite stable for
many ciwumstances, (Najdat, 1987). The choice of an already-used numerical scheme was
intentional, in order to be able to check the validity of the present resulls against published results
for the no-obstruction case (I7.=0); this test is presented later in this section, The finite difference
approximation of the governing equations was based on dividing the (0 = x+ < 1) interval into (#1)
cqual segments separated by (w1 1) nodes, Likewise, the (=) imterval was divided inte (#} scgments.
The numerical worl starts with postulating a certain distribution of flow and temperaturd in the
{xe= - ] space . In the present solution of distributions were taken as {¥-=0 ) and (& = 3= ). i.c.00
flow and pure conduction. Based on these old ficlds, the momentum equation (12) is used to
determine point-by-point the new (¥ field, while the energy equation (13) is used to determine
the mew (# ) field. The iteration process is terminated under the following condition

i |gZ <107 (18)
where,(7) stands for either (. or &) () denotes the iteration step,

Before starting the computational solution, the grid independence of the results must b
tested. Thus, rumerical experiments have been carried out 1o solve a two-dimensional convection
problem. The porous Rayleigh number in this test is set to be (3 00), while the grid size varies from
{10=10) to (70=70) for different valucs ol aspect ratio as shown Fig.(2). It is found that the change
in the heat flow rate for grid size of (#0400}, and (50=50) is less than (0.45) percent for the
whole range of aspect ratio (0.5 < Ar < 5). Therefore , the number of grid that is adopted in
the present study is(d0x40), The number of grid was selected as a compromise between accuracy
and speed of computation.
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RESULTS AND DISCUSSION

Effect of porous Ravliegh number on the temperature distribution and flow fields can be
clearly seen in Figs. (3) to (6). For (fa —0) the case, heating from below at constant surface
temperature, the encrgy is transported from hot wall to cold wall by pure conduction {i.e, Nu— 1.0)
for ssturated porous media at {Ra")y less than its critical value. In the conduction regime, the
isotherms are almost parallel to isothermal walls. The conduction mode of heat transfer continues
undil a eritical value of Rayleigh number is reached.

For the case of (4r=1), the value of (Ra.’) has been found to be equal to (39.5), This isina
good agreement with the value predicted from the linear theory (Ra. 4n° ). At this value the
onsel of convection begins because of the buoyancy effects, Thus, the Now Neld comprises a
primary cell circulating around the entire enclosure with clockwise (this s an arbitrary direction). It
may be counterclockwise, Fig. (3) and has a maximum value [or the stream function {Weme= 1.95).
The small value of {peye) characterizes a very weak convestive flow. The isotherms deviate only
slightly trom those of the pure conduction state. The extremum value of the stream funclion
becomes larger as (Ra ) increases, indicating 2 more cffective motion, a circulatory motion is
established because of the buoyancy influences. In addition, further increase in (Ko ) resulis in
changing the direction of the isotherms and change the flow pattern from unicetlular o multicellular
flow. Fig. (4) shows the streambines at (Ra =100}, {4r=1). This flow exhibits two counter- rotating
cells. each covering half of the cavity. It also indicates the low rising slightly in the middie, tuming
at the top of the cavily, moving adjacent the cold wall, tuming, and falling down the i!'IFuL!iEllEli wall.
The number of cells are increased to three at {(Ka 300) and then reduced 1o two at (Ra =500),
sec Figs. {5 ). and (6). The same phenomenon has been  noticed by (Prasad and Kulacki, 1985).

Effect ol aspect ratio on the flow pattern can be inferred with reference to Figs. (7) tw (10).
It is worthwhile to note that any  increasc in aspect ratio delays the appearance of convective
mode. The reasoning for this is as follows. As the aspect ratio increase, the isothormal walls
become smaller than the insulated walls. Thus, there is a small arca for convective cﬂplribuﬁﬂa,
compared to the path for flow. Also it is seen the flow change 1o maulticetlular fow at (Ra =100} for
(Ar=1), Mow, different values of aspect mtio will be taken 10 examine the appearance of the
multicetlular flow. The results of the numerical computations for streamlines and isotherms at
(H,;;"_ 104 with {Ar=0.5.1,1.5, and 2} arc plotted in Figs. (7) ta (10) which show  that the number
of cells depends strongly on the value of aspect ratio. As depicted in  this Figures, two cclls
appearcd at (4r = 1) while the number of cells redueced to one st (Ar—1.5). This is expected
because the dislance between isothermal wall at {Ar=1) is smaller than that of (Ar= 1.5}, Thus, the
resistance to flow is bower, Also, it is interesting to note that for (Ar>1) and (Re =100} the flow
is s0i pnicellular, Vohile, the onsel of convestion starls at {Ra‘—I‘i'.F:I for (A4r=1) It is worthwhile
to note that any increase in aspect ratio delays the appearance of convective mode. Fig{l1)
represents the relation between the maximum value of stream function (yreme ) and porous Rayleigh,
number compared for different values of aspeet ratio {4} At low porous Rayleigh number {Ra
= 50, (iwemm) 5cems to be invariable with aspect ratio this is due to dominance of conduction as
mentioned before. Al higher porous Rayleigh number or when convective becomes dominant.
fareman) increases with increasing (A7), since for a higher aspect ratio, the path along which Lhe
ascending flow is heated is longer, the velocity as well as the circulation (gema) becomes higher. It
is also show that the peak value of {sm.) depends on (Ka ).

Figure (12) show the variation of Nusselt number versus porous Rayleigh number for aspect
ratio {A#=1}, Porous Rayleigh numbers take values in the range (Ra =50 to 500). bacause of the
stahility of problem and program into compater. It is clear that (Vu) equal to one in the conduction
regime (1.¢. at Ka < Ka. ). The reason is that the viscous force is greater than the buoyancy force
therefore the heat is transported by conduction as discussed previously. [n general form, the value
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of (Nu) increases with increase (Ka'). as shown in Fig. (12). Then, {Nu) inerease rapidly as {Ra )
increases expressing the  existence and increase of convective heat transfer.

The cffect of aspect ratio on the Nusselt number, and porous Ravleigh numbers in range
(Ra = 100,150, 300, and 500) is depicted in Fig. (13). It is noted that the aspect ratio has a preat
effect on the heat transfer results. For (Ra =150), it appears that the vaiue of {Nu) increases with
an increase in aspect ratio beyond (0.5). It reaches a maximum value of (M) at about {Ar=1.5).
Then, the value of (Mu) decreases with an increase in aspect ratio in the case {Ar =15} This can
be explained as follows. For large aspect ratie, the Muid encounters much more flow resistance in
the y-direction due to the increased path length. The location of the maximum Nussell number
change with changing porous Rayleigh number. The above Figure also indicated that the Nusselt
number is a strong function of porous Rayleigh number, For the range of {Ra") which is used in this
inviestigation, the maximum (V) is found to be fay between aspect ratio from (0.5 10 1.3). The
present result of the rate of heat is in good agreement with those reported by (Caltagirone, 1975),
for a porous layer heated from below and (Chan etal., 1970), for 2 porous layer heated from
side,

Finally, correlation equation has been predicted depending on variation of  porous Rayieigh
number, - nd aspect ratio, by using least square method.

Mu=021741Ra" 7" Lap e (19]

The sbove correlation is acceptable in the range of porous Rayleigh number (0 Lo S00)), and aspect
ratio (0.5 to 5).

1o ensure that this approximation correlation is usable, the correlation coefficient (7) had
been obtained for each equation. The minimum value of (R} was (0.96) , that means this
approximate equation are good for predicting the value of Nusselt number. Fig. (14) shows the
camparison between predicted and numerical results. Agreement between numerical and predicted
is close, although most the predicted points lie near the thearetical line.

The preblem is modeled in a rectangular domain subjected to different temperature on it 3
horizontal sides with the left and right sides are insulated. All the analytical and numerical
solutions, and experimental study show that the onset of natural convection in & porous faver starls
al (Ra' = 4 7 1. The numerical solution agrees with those solutions, this is shown Table {1}

Further, values of the average Nusselt number along the hot wall of the cavity at the steady-
state flo. - for (Ra = 50, 100, and 200), are given in Table (2). It is seen again that the present
values of (Nu) are in very good agresment. with that chiained by different aulthors, such as (Chan et
al, 1970} (Burns et al. 1974), have anal}:z_rd a similar problem for different values of aspect ratio.
The comparison with their results for (Ar=0.5, and 1} show agreements within (& 8 %) except the
case for {(Ar=1 and Ra =200} where the agreements is (+ 4 %h). (Chan et al, 1970), and experimental
inyestigation presen.ed by (Close, Symons, and White, 1985), presented their results in a graph and
some errors might have been introduced in reading the graph. Also, as shown in the table, there
are some difference between the present work and those of (Burns et al, 1974}, and (Bejan and
Tien, 1978). These difTerences are attributed to the finite difTerence approximation,

CONCLUSIONS

The problem of sieady laminar natural convection in a two-dimensional, pTOus cavity under
uniform temperature on two opposite walls while the other walls are insulated has been studicd
numerically. The main conclusions of the present study ane:
L. ¥or the porous enclousres that have been solved, it has been demonstrated that the Nusselt
number (V) is a strong function of porous Rayleigh number, the value of {Nw) increases with
increase (Ra ) for same aspect ratio.
2. The feal transfer is represented by Nussell number (Mu) as a function of the genmelry
represented by the aspect ratio {Ar). As the sspect ratio increase, the isothermal walls hecome
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smaller than the insulated walls. Then the value of (Ny) decrenses wilth an mcrease in aspect ratio
beyond (0.5) for the same porous Rayleigh number. Later, any increase in aspect ratio delays the
appearanice o convective mode should have been noted.

3. The effect of porous Rayleigh number has a lange effect on the flow field. AL low value of (Ha),

the flow field comprises o primary cell circulating around the entire enclosure. The extremum value
of the stream function becomes larger as (Rua') increases, indicating 8 more effective  motion, a
circulatory motion is established because of the buoyancy influences. Further, increase in (Ra')
results in changing the (low paltern from unicellular to multicellular Mlow. The number of cells are
increased 1o three at (Ra =300) and then reduced to two at (Ra =300},

4. Correlation equation {19), can be used to calculate the rate of heat transfer as a function of (Ra').

and {Ar), As this correlation will have heen benefiting in a design for systems of thermal insulators
so thal storage of energy in the engineering applications,
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NOMENCLATURE

List of Symbols

Ar = Aspect ratio = (HL)

Cr = Specilic heat at constant pressure, (ke K)

Lla = Darcy nu1:nhcr=|{ﬁ1’f."}

g = Acceleration due 10 gravity, {m's)

fI = Height of cavity, (m)

I Width of parous cavity, (m)

K = Permeability of porous medium, (m”)

ke = Effective thermal conductivity of fluid-saturated porous medium, (#7m. £ )
Nu = Average of Nusselt number

F Pressure, {Pa)

Chonme = Comvection heat transfor rate, {Iﬂ"}

o — Conduction heat transfer rate, (#)

Ra' = Porous Rayleigh number based or width of cavity
r Temperature, (K)

T = Temperature of cold horizontal wall, (K).

Twe = Temperature of hot horizontal wall, (K.

u = Fluid velocity in x-direction, {m/x)

v = Fluid velocity in y-direction, {m/s)

x, ¥ = Caresian coordinates

Greck Symbaols

@, = Thermal diffusivity of porous medium, (m'/%)

£ = Thermal cocfficient of volumetric expansion, (K}

AT = Temperature difference belween isothermal surfaces = (T =T b (K

Ta74
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# = Dimensionless temperature = (7-Too)/( Tho -Too)

g = Dynamic viscosity, (kg/m.s)

= Kinematic viscosity of fluid, (ni’/s)

p = Density, (ke/m’)

w = Stream function, (m’/s)

{ }» = Dimensionless variables

Table (1) Comparison of the Onset of Convection in two-dimensional porous layer.

| Dawood | Caltagirone i Present
1991 1975 work
Numerical Numerical | Numerical
| Ra 39 44 41 395

Table (2) Nusselt number comparison for the present work with

the past studies at the same boundary condition.

i T Nu
| “Numerical | Numerical | Analytical | Analytical | Experimental |  Present
. Study Suudy ' and Study Study Close, | work
Ar | Ra Y Stady Numerical | Bejanand | Symons, and | Numerical |
Raed 2003 | Chanl970 Study Tien 1978 | White 1985
| Burns1970.
05/50| — | 148 | 1430 | 1.770 | 1234 | 1.363
100 — 2.500 | 2.854 | 2.800 2.244 2.689
i_ 1 S
"1 100] 1.897 | 2.100 | 2200 | 2.120 — 2.289
1200 3.813 3.560 | 3.600 | 3.250 | — 3.413
- i = J o
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Fig.(12) Nusselt number vs. a porous Rayleigh

number for de=|
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Fig.{13) Variation ol Nusselt number

vs.aspect ratio for different values of (Re')
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Fig. (14) Predicted vs. numerical results of heat transfer rate.
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