
Journal of Engineering Volume 16 June  2010       Number   2 
 

 

 4795 

 

 

 

 

 

 

 

BENDING MOMENT INFLUENCE SURFACES FOR 

RECTANGULAR CONCRETE PLATES SIMPLY SUPPORTED AT 

THREE EDGES AND BUILT-IN AT THE FOURTH EDGE 

 
Sabah S. Razouki Zena R. Al-Ani 

Prof. of Civil EngineeringCollege of Engineering, Nahrain 

University, Baghdad-Iraq. 

Assistant Lecturer in Civil Engineering, College of 

Engineering, Nahrain University, Baghdad-Iraq. 

 
 
ABSTRACT 

                   Presented in this paper is a series of bending moment influence surfaces for concrete 

rectangular plates simply supported at three edges and built-in at the fourth edge. The solutions are 

obtained analytically on the basis of thin plate's theory with small deflection using double Fourier 

series. The influence surfaces are presented for two observation points namely the center of the 

plate as well as the midpoint of the built-in edge. A computer program was written in FORTRAN 

language to generate the influence surfaces making use of the developed analytical solutions of this 

work. The validity of the computer solution was confirmed by comparing its results with published 

results for zero Poisson's ratio and excellent agreement was obtained. An application of the 

influence surfaces for the case of a line load as well as a strip load is also presented.   

The paper reveals that the bending moment influence surfaces depend on the actual value of 

Poisson's ratio, aspect ratio of the plate, and position of the observation point.   

 
 الخلاصة

ٌقدو هرا انبحث حهىلا             
 "

ححهٍهٍت نسطىح انخأثٍس نعصوو الاَحُاء لأنىاح كىَكسٌخٍت يسخطٍهت بسٍطت الاسُاد فً ثلاثت حافاث 

و يبٍُت فً حافخها انسابعت اعخًادا
 "

                                                                        .                                            عهى َظسٌت الأنىاح انُحٍفت ذاث الأود انقهٍم

الاونى فً : عصوو الاَحُاء فً َقطخٍٍ يٍ َقاط انًلاحظت  قد خصصج لأٌجاد, أٌ سطىح انخأثٍس انخً حى حطىٌسها فً هرا انبحث 

 .يسكص انهىح و انثاٍَت فً َقطت انىسط نهحافت انًبٍُت 

نغسض أٌجاد سطىح الاَحُاء و ذنك بالاعخًاد عهى انحهىل انخحهٍهٍت انخً حى  الفورترانيج عهى انحاسبت بهغت نقد حى كخابت بسَا

 .    حطىٌسها فً هرا انبحث

أظهسث يقازَت انُخائج نهحهىل انخحهٍهٍت انخً طىزث فً هرا انعًم حىافقا
"

يًخاشا 
 "

يع َخائج حهىل يخىفسة نُسبت بىسىٌ حساوي 

 .صفس
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و يىقع َقاط ( انعسض/انطىل)ٌبٍٍ بأٌ سطىح انخأثٍس نعصوو الاَحُاء حعخًد عهى َسبت بىسىٌ وانُسبت بٍٍ أبعاد انهىح اٌ انبحث 

 .انًلاحظت

 

KEYWORDS: aspect ratio, bending moment, influence surfaces, plates, Poisson's ratio.   
 

INTRODUCTION 

 

For bridge decks, the types of construction are divided into beam, grid, slab, beam and slab, and 

cellular. A slab deck behaves like a flat plate which is structurally continuous for the transfer of 

moments and torsions in all directions within the plane of the plate (Hambly, 1976). 

In bridge design, the most important and most difficult task faced by the structural designer is the 

accurate estimation of the loads, which may be applied to a structure during its life. After loads are 

estimated the next problem is to decide the worst possible combinations of these loads which might 

occur at one time (McCormac, 1989). The concept of considering an actual bridge deck as an 

equivalent plate for the purpose of determining the distribution of stresses is well established 

(Cusens and Pama, 1975).  

Influence lines can be used for two very important purposes (Merritt, 1999); the first purpose is, to 

determine what position of live loads will lead to a maximum value of the particular function for 

which an influence line has been constructed. The second purpose is the value of that function with 

the load so placed or, in fact, for any loading condition. 

The influence surface represents a two-dimensional analogue of the one-dimensional influence lines. 

They are independent of the mode of loading and can be evaluated easily for each load case, for 

plane structures which are indispensable for the analysis of bridge structures (Pucher, 1973).  

Pucher (1973) obtained influence surfaces for the internal forces of various plates but they are 

restricted to Poisson's ratio equal to zero with length to width ratio equal to 0.8, 1.0, and 1.2. 

Timoshenko and Woinowsky –Krieger (1989) presented analytical results for the bending 

moments of rectangular plates with various edge conditions and a Poisson's ratio of 0.3. 

Razouki and Al-Lami (2005) studied the effect of Poisson's ratio on the bending moment influence 

surfaces for simply supported rectangular plates. Also Razouki and AL-Ani (2006) studied the 

effect of Poisson's ratio on the bending moment influence surfaces for rectangular plates simply 

supported at two parallel edges and fixity at the other opposite edges.  

It is worth mentioning that the software LARSA can deal with influence surfaces of plate-deck 

models using standard and new two-dimensional vehicle definitions that model both the length and 

width of the vehicle and tire contact area.  
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Finally, it is useful to note that Boyd et.al (1999) and Wang et.al (2000) made use of the influence 

surface theory of thin plate for representing mathematically the human knee joint surfaces. 

 

POISSON'S RATIO: 

 

The Poisson's ratio of concrete is a basic function in analyzing and designing prestressed and 

ordinary reinforced concrete plates and shells (Klink, 1985). 

Francis  et.al. (1991) stated that Poisson's ratio was found to be insensitive to the age and the 

richness of concrete mix and may be taken as approximately 0.19 for concrete. According to ACI 

Committee 363 (1984), the value for Poisson's ratio of light weight aggregate high strength 

concrete is equal to 0.2 and for normal weight high strength concretes, Poisson's ratio varies 

between 0.2 and 0.28. 

According to Kupfer and Gerstle (1973), Poisson's ratio for concrete shows some dependency on 

the stress ratios. They obtained a value of 0.2 for biaxial compression, 0.18 for biaxial tension and a 

range of 0.18 to 0.2 for tension compression state of stress. Neville and Brooks (1987) pointed out 

that Poisson's ratio for concrete has been observed to remain approximately constant up to a stress 

level of 80% of the concrete strength. Beyond this level, Poisson's ratio increases rapidly and values 

in excess of 1.0 have been measured by Darwing and Pecknold (1977) .Mirza et.al (1979) 

reported that Poisson's ratio under uniaxial tension is somewhat lower than in uniaxial compression. 

For the purpose of analysis in this work, the value of Poisson's ratio to be considered for concrete is 

0.2. However, the analysis remains valid for any other material having a Poisson’s ratio close to that 

for concrete.   

 

KIRCHHOFF-LOVE THEORY OF THIN PLATES : 

 

Timoshenko and Woinowsky –Krieger (1989) differentiate between thin plate theory with small 

deflection and that for large deflection. 

However, Zehender et.al (1998) reported that the crack tip stress field in a plate described in terms 

of  the small deflection Kirchhoff plate theory is still valid for large deflections. 

Thus , the use of thin plate with small deflection is quite justified. 

 

According to Szilard (1974), the small deflection plate theory which is attributed to Kirchhoff and 

Love, is governed by the following differential equation describing the behavior of isotropic plate 

which was obtained by Lagrange in 1811 (Timoshenko and Woinowsky –Krieger , 1989)  
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where 

 w =lateral displacement of the plate.  

q(x, y)= intensity of lateral load. 

D= flexural rigidity of the plate. 

)1(12 2

3


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Eh
D

                                                                                                                                        (2) 

E=modulus of elasticity of the plate material. 

h=plate thickness. 

  =Poisson's ratio of the plate material.  

The bending and twisting moments can be obtained in terms of deflection surface as follows 

(Timoshenko and Woinowsky –Krieger,1989): 

 

 

 

 

 

 

 

where 

Mx =bending moment per unit length acting on the sections parallel to the y- axis. 

     =bending moment per unit length acting on the sections parallel to the x- axis. 

              = Twisting moment per unit length of sections perpendicular to the x and y  

                 axes respectively.              

According to Timoshenko and Woinowsky-Krieger (1989), the analytical solution for rectangular 

plates simply supported at three edges and built-in at the fourth edge as shown in Fig.1 can be 

determined by superposition approach .This approach makes use of Navier solution and Levy 

solution for simply supported plate at all four edges as discussed below. 
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BBEENNDDIINNGG  MMOOMMEENNTTSS  FFOORR  RREECCTTAANNGGUULLAARR  LLOOAADDEEDD  AARREEAA  OONN  TTHHEE  PPLLAATTEESS::  

    

VVaarriioouuss  mmeetthhooddss  ooff  ssoolluuttiioonn  ooff  tthhee  ppllaattee  eeqquuaattiioonn  aarree  aavvaaiillaabbllee  ((GGiirrkkmmaannnn  11996633;;  SSzziillaarrdd  11997744  

aanndd  TTaayylloorr  aanndd  GGoovviinnddggeeee  22000022))..  HHoowweevveerr,,  tthhee  double Fourier series is adopted in this work as it 

ensures convergence.  

FFoorr  aa  ssiimmppllyy  ssuuppppoorrtteedd  rreeccttaanngguullaarr  ppllaattee  aatt  ffoouurr  eeddggeess  ssuubbjjeecctteedd  ttoo  rreeccttaanngguullaarr  llooaaddeedd  aarreeaa  aass  

sshhoowwnn  iinn  FFiigg..22,,  TTiimmoosshheennkkoo  aanndd  WWooiinnoowwsskkyy--KKrriieeggeerr  ((11998899))  ssttaatteedd  tthhaatt  tthhee  ddeefflleecctteedd  ssuurrffaaccee  

ww11((xx,,  yy))  iiss  

                                                                                                      

     

  (4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a= the length of built-in edge. 

b= the dimension of the plate perpendicular to built-in edge.  

TThhee  ddeefflleecctteedd  ssuurrffaaccee  ffoorr  aa  ssiimmppllyy  ssuuppppoorrtteedd  rreeccttaanngguullaarr  ppllaattee  ssuubbjjeecctteedd  ttoo  ddiissttrriibbuutteedd  mmoommeenntt  aatt  

tthhee  eeddggee  yy22==bb//22  aass  sshhoowwnn  iinn  FFiigg..33  bbeeccoommeess  ((TTiimmoosshheennkkoo  aanndd  WWooiinnoowwsskkyy--KKrriieeggeerr,,  11998899))::  
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Fig.2 simply supported rectangular plate with uniform loading on a rectangular area                                                   
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where                                                                                   

        = y-b/2 

 

                                                                               (6) 

                         

        =coefficients of a single sine series of distributed moment at the                                 

           edge   y2=b/2   

The parameter Em  can be determined by using the condition at built-in edge which indicates that the 

two slopes are equal in magnitude and of opposite signs.   

This means 

                                                                                    

 (7) 

         

 The slope           produced by rectangular loaded area can be determined from Eq.(4) as follows : 
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The distributed moment My at the side y2=b/2 shown in Fig.2 produces the following slope from 

Eq.(5): 

 

                                                                                           

                                                                                                  

 

where   see Eq.(6) 

 

 

The substitution into above equation yields 

 

 (8) 

 

 

Then, Em can be obtained from the condition of Eq.(7) as follows:  
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or 
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Thus, the bending moments can be obtained as follows:  see Eq.(3)  
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To have a good ckeck on the resultes obtained , use can be made of the case of full uniform loading 

over the whole plate treated by Timoshenko and Woinowsky –Krieger (1989)  ffoorr  wwhhiicchh  tthheeyy  
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Arly Eq.(10) becomes  

  

                                                                                              

 

                                      (15) 

 

BENDING MOMENTS FOR POINT LOAD ON THE PLATE: 

For the case of a point load as shown in Fig.1 which is of interest for the generation of the influence 

surfaces, the coordinates ζ and η refer to the position of the point load, while those x and y refer to 

the position of the observation point and the  value of  Em from Eq.(10) becomes : 

 

 

 

 

   

 

Noting that                                         and by letting P=1, the above equation ggiivveess  tthhee  ddiimmeennssiioonnlleessss  

vvaalluuee  ooff    EEmm  

                                                                    

(16) 

                                                                                       

 

Thus , the dimensionless bending moments mx and my become: 
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GENERATION OF INFLUENCE SURFACES: 

       All influence surfaces were generated by applying the unit load to numerous points of the plate 

and evaluating the particular effect of moment produced at the observation point. The development 

of the influence surfaces is achieved by using a computer program written in this work in 

FORTRAN language and a program (Surfer) for plotting the contour-lines. 

To show the validity of the developed solution and the written computer program, a comparison 

with available solutions is made. The case of a square plate (a/b=1.0) having a Poisson’s ratio equal 

to zero with the observation point at the center of the plate, has been chosen as the corresponding 

influence surface is available by Pucher (1973). 

Figure 4 shows that the contour lines obtained from the computer program are in excellent 

agreement with Pucher’s solution. 

To check the validity of the computer program dealing with the bending moment evaluation, the 

cases of rectangular plates with a/b= 0.5, 1.0,1.1, 1.2, 1.3, 1.4, 1.5 and 2.0 subjected to uniform load 

over the whole plate and having a Poisson’s ratio of 0.3 have been chosen. This is due to the fact 

that data for the bending moment at the center of built-in edge are available by Timoshenko and 

Woinowsky-Krieger (1989). Figure 5 shows that the results of the bending moment my at the 

center of the built-in edge are in excellent agreement with those obtained by Timoshenko and 

Woinowsky-Krieger (1989). 
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Fig.4 Comparison between the influence surface for mx obtained from 

computer program with Pucher’s (1973) solution for the center of a square 

plate having zero Poisson’s ratio. 
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Figures 7 to 13 present  influence surfaces for rectangular plates simply supported at three edges 

and built-in at the four edge with aspect ratio a/b equal to 0.6, 1.0 , 1.4 and 2.0 respectively. 
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Fig.7 influence surface for mx and my at the center of a rectangular 

plate (a/b=0.6) for Poisson’s ratio of 0.2. 
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Fig.8 influence surface for my at the center of built-in edge of a rectangular 

plate (a/b=0.6 and a/b=1.0) for Poisson’s ratio of 0.2. 
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Fig.9 influence surface for mx and my at the center of a rectangular 

plate (a/b=1.0) for Poisson’s ratio of 0.2. 
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Fig.12 influence surface for my at the center of built-in edge of a 

rectangular plate (a/b=1.4 and 2.0) for Poisson’s ratio of 0.2. 
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Fig.13 influence surface for mx and my at the center of a 

rectangular plate (a/b=2.0) for Poisson’s ratio of 0.2. 
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It is observed from figure 9 that for the case of square plates the influence surfaces for both mx and 

my are represented by positive contour lines only. The influence surfaces for mx at the center of the 

rectangular plates for aspect ratio of 1.4 and 2.0, are represented by negative and Positive contour 

lines while those for my are represented by positive contour lines as shown in figures 11 to 12. 

For rectangular plates with aspect ratio smaller than 1.0, such as 0.6, the influence surfaces for both 

the mx and my at the center of the plate are represented by positive contour lines as shown in figure 

7. All influence surfaces for bending moment my at the center of built-in edge for rectangular plates 

having aspect ratio ranging from 0.6 to 2.0, are represented by negative contour lines as shown in 

figures 7-10-13.  

For partial loading, there is a possibility for negative bending moment mx at the center of the plate 

which increases as the aspect ratio increases. 

 

APPLICATIONS: 

To show how the influence surfaces can be used not only for concentrated loads but also for line 

and strip loads, the following applications are presented. 

EVALUATION OF THE BENDING MOMENT MX DUE TO A LINE LOAD: 

For the case of a rectangular plate simply supported at three edges and built-in at the fourth edge 

with aspect ratio a/b=1.4 and a Poisson’s ratio of 0.2 subjected to a line load extending in the x-

direction as shown in Figure 14, the evaluation of the bending moment Mx at the center of the plate 

can be achieved by using the corresponding influence surface as follows: 

 

 

 

Fig.14  influence surface for mx of a rectangular plate having an 

aspect ratio of 1.4 and a Poisson’s ratio of 0.2 subjected to a line 

load extending in the x-direction at η=0.7b. 
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According to Pucher(1973), the bending moment Mx produced at the observation point (x, y) due 

to a line load can be calculated from this formula 

                                                                                                                                                   (19)                

 

 where 

 x and y= coordinates of the observation point. 

 p(s) is the line load intensity. 

 Χ (x, y) are the influence values of the bending moment corresponding to applied  line load. 

The integration in Eq.(19) represents the area integral of the influence values over the loaded line 

which can be computed by using the Simpson’s rule (Saffand Snider, 2000) as follows 

                                                                                                

                                                                                                                                                   (20)                

 

where 

h=b-a/2n  is the distance between any two points of the partition. 

f(x0),f(x1),f(x2),…..f(x2n) are the functions of defined integral at the points x0, x1, x2, ………..x2n 

respectively. 

2n=the number of equal parts of divided interval (a, b). 

Because the influence surface for mx is symmetric about the y-direction through the center of the 

plate as shown in Figure (14), only one half of the corresponding influence values for mx are 

represented in Figure.(15). 

The ordinates of the influence surface for mx in Figure (14) are dimensionless, therefore the area in 

Figure.(15) is obtained as a dimensionless quantity by applying the Simpson’s rule on the influence 

values of mx . 

Note that in Figure.(15), the influence values corresponding to line load are obtained from the 

influence surface at the interval of Δ(x/a)=0.05. 

This area becomes F=0.152 and the dimensionless bending moment mx can be computed as follows: 

mx=2*F*multiplication factor=2*0.152*(1/8π)=0.012 

According to Eq.(11) the bending moment Mx at the plate center evaluated by using the influence 

surface becomes 

 

                                                                                                                                                   (21)                
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The bending moment Mx at the plate center was calculated also using the computer program (EBM) 

which gave 

 

                                                                                                                                                   (22)                

 

 

  

 

 

 

 

 

 

 

 

 

 

 

The small difference in the results is due to the interpolation of mx resulting from the influence 

surface at the chosen interval. 

EVALUATION OF THE BENDING MOMENT MY DUE TO A STRIP LOAD: 

For the case of a rectangular plate simply supported at three edges and built-in at the fourth edge 

with aspect ratio a/b=1.4 and a Poisson’s ratio of 0.2 subjected to a strip load extending in the y-

direction at a distance of ζ=0.8a in the x-direction as shown in Fig.(16) , the evaluation of the 

bending moment My at the center of the plate can be achieved by using the corresponding influence 

surface shown in Fig.(17) 

According to Pucher(1973), the bending moment My produced at the observation point (x, y) due 

to a distributed load can be calculated from this formula 

 

 

                                                                                                                                                   (23)                

Fig.(15) variation of the bending moment mx at the center of a rectangular plate 

with a/b=1.4 and a Poisson’s ratio of 0.2 corresponding to a line load extending in 

the x-direction at a distance η=0.7b in the y-direction. 
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Where 

  Χ (x, y;ξ ,η ) are the influence values of the bending moment corresponding to the applied 

distributed load. 

p(ζ, η) is the distributed load. 

To evaluate the double integral of this formula, a strip load is plotted into the influence surface for 

my and the area under this load is divided into five sections perpendicular to the x-direction of the 

plate as shown in Figure (17). 

The evaluation of the individual areas is made by plotting the shape of the different sections 

separately as shown in Figure (18). Note that a uniform interval Δ(y/b)=0.05 was used and the 

corresponding my - values were interpolated from the corresponding influence surface. 

 

Fig.(16)  rectangular plate with aspect ratio of 1.4 and 

having a Poisson’s ratio of 0.2 subjected to a strip load 

in the y-direction. 
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Thus, the individual areas are computed by using Simpson’s rule as discussed before and the 

following results are obtained 

FI=0.541, FII =0.431, FIII =0. 348, FIV =0.301, FV =0.22 

The spacing between the individual sections Δ(u/a)=0.05 and the multiplication factor is 1/8π. Thus, 

using Simpson’s one third rule again, the dimensionless bending moment my becomes 

my = 1/3*0.05*(1/8π)* FI + 4FII + 2FIII +4FIV +FV =0.003 

According to Eq.(12) the bending moment My at the plate center becomes 

 

                                                                                                                                                   (24)                

The bending moment Mx at the plate center was evaluated also using the computer program (EBM) 

which gave 

 

                                                                                                                                                   (25)                

 

 

 

 

 

Fig.(17) influence surface for my at the center of a rectangular 

plate (a/b=1.4) for Poisson’s ratio of 0.2 subjected to a strip load 

in the y-direction. 
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This result is in excellent agreement with that obtained using the influence chart. It can be 

concluded from these applications that for practical purposes, the use of influence surfaces to 

evaluate the bending moments due to various cases of loading provides very satisfactory results 

which are in excellent agreement with those obtained using the computer program (EBM).To 

achieve higher accuracy with saving in time , the computer program (EBM) written in this work is 

strongly recommended. 

 

CONCLUSIONS: 

 There is good agreement between the developed analytical solution with that presented by 

Timoshenko and Woinowsky-Krieger (1989) for the case of a rectangular plate with 

aspect ratio a/b=1.2 and Poisson’s ratio equal to 0.2 under the effect of  uniform strip load. 

 There is good agreement between the developed influence surface in this work with those 

presented by Pucher (1973) for the case of a square plate (a/b=1.0) having a Poisson’s ratio 

equal to zero with the observation point at the center of the plate.  

Fig.(18) the distribution of the bending moment my at the center of a 

rectangular plate with aspect ratio a/b=1.4 and a Poisson’s ratio of 0.2 

corresponding to a strip load extending in the y-direction and having ζ=0.8a 
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 The negative regions of influence surfaces for bending moment mx at the center of the plate 

increase as the aspect ratio increases while those for my decrease with increasing aspect ratio.  
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NOTATIONS 

 

Symbol Definition 

a Length of the built-in edge 

amn Coefficients of a double Fourier sine expansion of  any kind of loading q(x, y) 

b The dimension of the plate perpendicular to built-in edge 

D Flexural rigidity of the plate  

E Modulus of elasticity 

Em Coefficient of a single sine Fourier series of distributed moment My at the built-in 

edge 

h Plate thickness 

m and n  Integers 1,2,3,…….. of the double Fourier series 

Mx Bending moment per unit length acting on the edges parallel to the y-axis 

My Bending moment per unit length acting on the edges parallel to the x-axis 

Mxy , Myx Twisting moment per unit length of sections perpendicular to the x and y axes 

respectively 

mx  and my Dimensionless bending moments 

p Concentrated load 

q Lateral load (load per unit area) 

q0 Intensity of the uniformly distributed load 

u and v The sides of the rectangular loaded area parallel to the x and y- axes respectively 

w(x, y) Deflection surface 

x and y Cartesian coordinates of the observation point 

η y-coordinate of the centroid  of the load 

υ Poisson’s ratio 

ζ x-coordinate of the centroid  of the load 

 


