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 ABSTRACT 

Numerical models are used to solve the two-dimensional transient natural convection heat 

transfer problem in an inclined shallow porous cavity. A constant heat flux is applied for heating and 

cooling all opposing walls. Solutions for laminar case are obtained within Rayleigh number varied from 

20 to 500 and aspect ratio for porous cavity varied from 2 to 4. A finite difference method is used to 

obtain numerical solutions of full governing equations. Both vorticity and energy equation are solved 

using alternating direct implicit (ADI) method and stream function equation by successive over 

relaxation (SOR) method. The results are presented for the flow filed, temperature distributions, and 

average Nusselt number in terms of the Rayleigh number, aspect ratio, and the inclination angle of cavity. 

the convection becomes more and more vigorous as thr orientation angle of the cavity is increased and 

for high Rayligh number no steady unicellular flow could be maintained in side the cavity. The effect of 

inclination angle on Nasselt number is more pronounced as the Rayleigh number is increased. When the 

inclination angle increased the Nusselt number increased and sudden transition appears and flow 

becomes unicellular and Nusselt number increased clearly. The value of mean Nusselt number strong 

function with the value of Rayleigh number, aspect ratio and the orientation of porous cavity.      

 

 

 الخلاصة

ٍ خلال ذجىٌ ً الاتعاد تانذًم انذر نهذانح غٍر انًسرقرج ي ً يائمانطرق انعذدٌح اسرخذيد نذم يسانح اَرقال انذرارج ثُائ ً سطذ . ف يساي

ً ضًٍ رقى رانً ٌرراوح يٍ . ذى ذسهٍظ فٍض دراري ثاتد نرسخٍٍ وذثرٌذ انجذراٌ انًرقاتهح ٌ ضًٍ دانح انجرٌاٌ انطثاق انذم انعذدي كا

ٍ  تاعٍحوَسثح  02انى  42 كم يٍ  .ذى اسرخذاو طرٌقح انفروقاخ انًذذدج نهذصىل عهى انذم انعذدي نهًعادلاخ انذاكًح. 8انى  4ذرراوح ي

فىق  يعادنح انذوايٍح وانطاقح ذى دهها تاسرخذاو طرٌقح الاذجاِ انضًًُ  انًرُاوب و يعادنح دانح الاَسٍاب ذى دهها تاسرخذاو طرٌقح انرراخً

اٌ .فوزاوٌح يٍلاٌ انرجىٌ ثاعحذى ذًثٍم َرُائج انجرٌاٌ وذىزٌع درجاخ انذرارج ويعذلاخ رقى َسهد تذلانح رقى رانً وَسثح ان. انرعاقة

عُذ قٍى  رقى رانً انعانٍح لاًٌكٍ انذفاظ عهى جرٌاٌ .ٌصثخ كثٍر واكثر فعانٍح عُذ زٌادج زاوٌح انًٍلاٌ نهرجىٌف  اَرقال انذرارج تانذًم

 اٌ زٌادج زاوٌح انًٍلاٌ. اٌ ذاثٍر زاوٌح انًٍلاٌ عهى رقى َسهد ٌرضخ اكثر عُذ زٌادج رقى رانً. يسرقر وادادي انخهٍح داخم انرجىٌف 

اٌ قٍى رقى يعذل رقى َسهد . ٌسداد تىضىحا وانجرٌاٌ ٌصثخ ادادي انخهٍح ورقى َسهد ٌؤدي انى زٌادج رقى َسهد وٌضهر ذذىل يفاج

  .ذعرًذ تشكم كثٍر عهى رقى رانً وَسثح انثاعح وزاوٌح يٍلاٌ انرجىٌف انًسايً
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INTRODUCTION 

 

     Over the past years, natural convection heat transfer in cavities filled with a fluid-saturated, 

porous medium has several important geophysical and engineering applications. These include 

regenerative heat exchangers containing porous materials, high performance insulation for building and 

cold storage, solar power collection, underground spread of pollutants, and convection in the earth’s curt 

Buchberg et al. (1976), Seki et al. (1978). Another important area of application is heat transfer from the 

storage of agriculture products which generate heat transfer as a result of metabolism. Natural convection 

effects on heat transfer in a differentially heated rectangular porous cavity, with top and bottom walls 

insulated, is of fundamental interest in each of these areas. Several investigators [Seki et al.(1978), Chan 

et al. (1970) , Burns et al. (1976), Walker and Homsy (1978) , Bejan (1979) , Simpkins and Blythe (1980) 

and Prasad and Kulacki, (1984) have presented analytical and experimental results for the case when 

both the vertical walls are at constant temperature. Analytical work includes numerical solutions, 

boundary layer solutions, integral analyses, and series solutions. Based on the past studies, various 

correlations, covering a wide range of Rayleigh number and cavity height- to-width (aspect) ratios, have 

been presented for heat transfer coefficients Seki et al. (1978), Chan et al. (1970), Walker and. Homsy 

(1978), Weber(1975) and  Bories and  Combarnous (1973). 

The most previous theoretical publications deal with vertical Burns et al.(1976) and  Weber (1975) 

or horizontal Eldr (1974) case. For situations involving inclined layers, available studies are relatively 

limited. The problem of a sloped porous layer, heated isothermal from below has been considered 

theoretically and experimentally by Bories and Combarnous (1973). Depending on the value of slope of 

the layer and Rayleigh number, different shapes of free convection movements have been observed. 

Holst and Aziz (1972) considered temperature-dependent physical properties, investigated the 

heated transfer of a tilted square of porous material. More recently, the existence of multiple solutions, in 

a slightly inclined porous cavity heated from the below, has been studied numerically by Moya et al. 

(1981) and analytically by Caltagirone and Bories (1985) who determined their stability. It was 

demonstrated that for small angles of inclinations, three different real solutions may exist for a given 

Rayleigh number and aspect ratio. Vasseur et al. (1986), studied the effect of natural convection in an 

inclined, rectangular, porous layer when a constant heat flux is applied on two opposing walls, while the 

other two walls are maintained adiabatic. 

 Double–diffusion occurs in a wide range of scientific fields, such as oceanography, astrophysics, 

geology, biology and chemical processes; so, the author’s interest more and more for the heat and mass 

transfer developed in enclosures or cavities. About these case of fluid flows generated by combined 

temperature and concentration gradients, the studies of double-diffusive natural convection have 

centered chiefly their analyses on the limit cases of dominating thermal buoyancy force or concentration 

buoyancy force. The considered spaces are enclosures comprising a fluid completely occupied by porous 

medium Alavyoon (1993), Chamkha and Al-Naser (2001) and Bennacer et al (2001).  

  The problem of double-diffusive flow inside an inclined square cavity which is divided by a 

porous medium was studied numerically by Rahli and Bouhadef(2004).The numerical finite volume 

method was employed to resolve the governing equations which describe the problem. Graphical results 

for various parametric conditions were presented and discussed. It was found that the heat and mass 

transfer mechanisms and the flow evolution inside the enclosure depend strongly on the dimensionless 

characteristic parameters (Lewis number Le, Darcy number Da, enclosure inclination angle  and 
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buoyancy ration). 

Thus, the most above studies have considered cavities with isothermal walls, natural convection in 

porous enclosures, focused on the case of rectangular cavities heated and cooled only through two 

opposing sides while the other two sides are kept adiabatic, however in practice, all the faces of the 

enclosure may be thermally active. Despite the fact that in many engineering applications the 

temperature of a wall is not uniform but, rather, is a result of imposition of a constant heat flux Vasseur et 

al. (1986). Results available for situations where a constant heat flux is applied on one Prasad et al. (1984) 

or two Bejan (1983) walls have been reported only for the case of a vertical cavity. 

The objectives of the present work is to analyze the behavior of natural convection flows in a 

shallow inclined porous layer, when all four faces of the rectangle enclosure are exposed to constant heat 

fluxes, opposite boundaries being heated and cooled, respectively, which are new to the author’s 

knowledge. 

When the porous layer is slightly inclined with respect to the horizontal line, several types of flow 

configurations appear Caltagirone and Bories (1985). During the last years, several authors have been 

studied the criterion for transition between the different configurations of such flows. Weber (1975) 

demonstrated that a three-dimensional perturbation is steadier than a two-dimensional one if the 

inclination angle is close to zero. The existence of different flow configurations and the transition 

between them was also investigated by means of two- and three-dimensional numerical simulations by 

Chan et al. (1970).  

On the basis of the parallel flow approximation, a closed-form solution is obtained for the 

temperature and velocity distribution in the limit of a shallow enclosure (A>>1). In the following section, 

the differential equations, which described the physical model considered here, are formulated in a 

standard manner assuming the validity of Darcy’s law and the Boussinesq approximation. The full 

governing equations are solved numerically, using finite difference procedure. Effects of various 

parameter such as Ra, the Rayleigh number, , angle of inclination, and A, aspect ratio, are analyzed. 

 

STATEMENT OF THE PROBLEM 

 Consider the natural convection motion of a fluid filling a homogenous, isotropic, porous 

medium on all sides by an impermeable rectangular box. The enclosure, shown in Fig.1, is of height H, 

width L and is tilted at an angle , with respect to horizontal plane. A constant heat flux (q) is applied 

along the top and bottom the y-axis boundaries which heat and cool respectively at the same rate. A 

constant heat flux (aq), where (a) is a constant, is also applied in the x-axis on the two boundaries, where 

(a) assume equal unity in the present study to ensure uniform heat flux for all sides of porous layer. 

 Assuming the validity of Darcy’s law and Boussinesq approximation, the equations describing 

conservation of mass, momentum and energy in the medium are as follows Vasseur et al. (1986) and 

Torrance (1985). 
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  where u, v, p, g, K, , and  stand for the velocity  components in x and y directions, pressure, 

gravitational acceleration, medium permeability, viscosity and thermal diffusivity, respectively. Here, it 

has been assumed that the fluid properties are constant, except for the density variation in producing the 

bouncy force. Viscous drag and inertia terms are neglected because their magnitudes are small order 

compared to other terms. Also, heat transfer by radiation is assumed to be small compared to conduction 

and convection and hence is neglected in the formulation of the problem Vasseur et al. (1986)  and Prasad 

and Kulacki (1984). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 The physical model and coordinate system 

 

As usual, the governing equations are simplified if u and v is replaced by approaching define a stream 

function    which is satisfies the continuity eq.(1) identically 
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Further, the pressure terms appearing in eq.(2) are eliminated through cross-differential. The 

momentum and energy equations become: 
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 where - is the kinematics viscosity /. 

 

Finally, eqs.(5,6) are put in non-dimensional form by defining a new set of variables  
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where  

  To, is the temperature at the geometric center of the cavity and T =(qL)/k, a characteristic temperature 

difference. 

    The resulting equation for the stream function  and temperature  are : 
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where  

   Ra, is a Rayleigh number based on the constant heat flux (q) and the permeability K of the medium  
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The boundary conditions on  and  are: 
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    on     A,X 0                                                                      (11a) 
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    on     10,Y                                                                        (11b) 

where 

 A=H/L,  is the cavity aspect ratio. 

 a,      is  a constant controlling the fraction of the heat flux imposed  

                        on the y-axis walls with respect to that imposed on the x-axis  

                        walls, assume equal unity in the present study. 

  

The overall heat transfer cross the enclosure is expressed by average Nusselt number, defined  by 

Vasseur et al. (1986). 
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),/A(),/A( 0212  
, is the side to side temperature difference at the  

 center of the cavity. 

T , is the actual wall-to-wall temperature difference. 

 The parameters governing the present problem are the thermal Rayleigh number, Ra, the cavity aspect 

ratio, A, and the angle of inclination . 

 The problem is to find the functions  and  which satisfy the governing eqs. (8) and (9) and boundary 

conditions (11a) and (11b) for the case of long shallow cavity, i.e. for the condition A>>1 with fixed 

values of Ra. 

NUMERICAL SOLUTION 

To obtain the numerical solutions of the complete governing eqs. (8) and (9), finite difference 

were used. The solution consists of stream function and temperature fields as well as the velocity 

distribution in x and y directions. 

 The energy equation was solved using the alternating direction implicit (ADI) method AZIZ and 

Hallums (1967). The stream function field was obtained from eq.(8) using successive over-relaxation 

method (SOR) and a known temperature distribution. Forward time and central space differences were 

used and the advective term in the energy equation was written in conservative form to preserve the 

transportive property.  

 To test the present method of formulation and the finite difference scheme, various combinations 

of mesh sizes were used to select one which give better accuracy and requires less computational time. 

The number of grid points in the x and y directions were varied, depending upon the aspect ratio, A, of 

the cavity. As expected it was found that the necessary number of grid lines depends on the Rayleigh 

number, Ra, and the aspect ratio, A, of the cavity. The following are the grid fields used for the several 

aspect ratios considered in the present work; 

 

A Grid field 

2 41x31 

3 41x31 

4 51x41 

 

 In order to gain confidence in our results, we tried to compare ours with available previous 

published results. Thus, we compare our numerical solution but exposed to the same conditions by 

Vasseur et al. (1986). After obtaining confidence in our results, see Table.1, we processed to compute 

the transient mean Nusselt number. 

                                      

 

                             Table 1. Mean Nusselt Number for Ra=250,  =90
o
, and A=4 

 

Grid field      Nu [Vasseur et al. (1986)]  Grid field         Nu [Present Study] 

51x51           4.587   51x41                      4.327 

81x81           4.546   81x81                      4.411 
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The iterative procedure for the stream function was reported until the following condition was 

satisfied : 
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where the superscripts  (n) and (n+1) indicate the value of the (n)th and (n+1)th iterations respectively 

and i and j indices denote  grid location in the (x,y) plane. Further decrease of the convergence criteria 

(10
-4

) did not cause any significant change in the final results. 

 

The steady state was defined based on the following criteria: 

 

        

4

1

10






n

nn

Nu

NuNu

                                                                                                 (14) 

 

   where Nu  is the average Nusselt number. The iterative procedure was carried out until above criteria 

was satisfied. 

 

RESULTS AND DISCUSSION 

 Computations were conducted for a range of Rayleigh number Ra, 20,100, and 500 with aspect 

ratio varied from 2, 3, and 4. The inclination angle of enclosure from horizontal plane also varied from 0
o 

to 180
o
. Flow patterns and temperature fields for some typical values of Rayleigh number and aspect 

ratio are presented in Figs 2-5. Compared to the case of the constant temperature at both vertical walls 

Prasad and Kulacki (1984) and constant heat flux from two side and other is insulated Vasseur et al. 

(1986), constant heat flux on one vertical wall Prasad and Kulacki (1984), temperature fields in the 

present case are some different. 

When an inclined porous layer saturated by a fluid satisfying the Boussinesq approximation is 

differentially heated, a wide range of two-three dimensional, stationary or non-stationary flow 

configuration appear Caltagirone and Bories (1985). These configuration depends on the geometric 

dimensions of the porous media (aspect ratio), angle of inclination, and the Rayleigh number Ra. 

The basic flow which develops in differentially heated inclined porous layer is of an unicellular 

two-dimensional type. Thus, when the porous layer slightly inclined with respect to the horizontal line, 

the flow which takes place spontaneously is of unicellular type. At lower value of Rayleigh number, the 

flow is setting up of longitudinal rolls and remains steady for wide range of inclination angle Caltagirone 

and Bories (1985). 

Here isotherms for any size of cavity start either from the heated wall. Similar isotherms patterns 

have been reported for free convection in non porous vertical cavity by Said and Trupp (1982) and 

Balvanz  and Kuehn (1983), though no adverse temperature gradients or “S” –shaped isotherms Said and 

Trupp (1982) are observed for the present case. 

The thermal boundary thickness increases on the heated wall, for the velocity boundary layer 

thickness, the growth is different and is largely due to the change in bouncy effect. We can note that the 

convection becomes more and more vigorous as the orientation angle of the cavity is increased. 

In the numerical results, the flow inside the cavity was steady and unicellular flow in the case of 
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tilted porous rectangular cavity. When the angle of inclination angle approaching to the horizontal 

position, the flow might be multicelullar pattern, see Figs. 5 and 6. In fact, when the angle of inclination 

angle is approaching 180
o
, the flow might not be two-dimensional as assumed in the theoretical and 

numerical solutions Vasseur et al. (1986). Experimental observations and three-dimensional numerical 

simulations have show that, in the case of tilted, porous, rectangular cavity, the flow remains 

two-dimensional for 0
o
< <173

o 
but  for  >173

o
, oblique rolls were obtained Bories and Combarnous 

(1973). Also, its should be denoted that for very high values of the Rayleigh number, no steady 

unicellular flow could be maintained inside the cavity. 

Streamlines close to the heated surfaces are observed to run parallel to the wall over significantly 

large portion of its extent. This behavior becomes more prominent as the aspect ratio is increased and 

increasing in the inclination angle . As excepted, the temperature field are strong function of Rayleigh 

number and aspect ratio. As Ra is increased (Figs.2 - 4), isotherms shifts toward the constant flux wall 

and corners. This result in an asymmetric core region flow. As increase in aspect ratio further pushes the 

isotherms towards the corner of heated surface indicating high velocity. 

The value of Nusselt number is important for design proposed because its directly gives the value 

of a  range temperature , for any applied heat flux which , in turn gives the order of the temperatures to 

be encountered any particular values of Rayleigh number and aspect ratio. The orientation angle  is seen 

to have a dominate effect on the Nusselt number for a given Rayleigh number. As the angle of inclination 

 approach to the horizontal position, the Nusselt number at low Rayleigh number tends towards unity, 

indicating that the heat transfer is mainly due to conduction. Most of the change in heat transfer occurs in 

the range 0
o
< <90

o
 and 90

o
< <180

o
. Also, it’s noticed that the Nusselt number is strong function of 

Rayleigh number. 

For Ra>500, there is no numerical results are presented since they did not provide sufficient 

additional insight into the problem and also the computing time necessary to obtained an accurate  

steady-state solution become rapidly prohibitive. 

           Generally, the average Nusselt number show fairly large dependence on inclination angle . Also, 

we can note that, the effect of heating the cavity from  0
o
< <90

o 
on the Nusselt

 
number is seen to be large 

in comparison with that heating from 90
o
< <180

o
. It’s also noticed that the effect of inclination angle on 

Nusselt number is some more pronounced as the Rayleigh number is increased. A similar tends, rather 

fore, has been reported in the case of inclined fluid cavities contain two opposite of thermal surfaces 

maintained at different temperature Ozoe et al. (1977) and for case Vasseur et al. (1986). 

 The results of numerical calculations for mean transition Nusselt number vs. dimensionless time 

, are plotted in Fig.7. Generally, we can note that the dimensionless time increases with increasing 

aspect ratio and Rayleigh number. 

 Fig.8, presents the results of mean Nusselt number as a function of inclination angle , at 

Rayleigh number Ra of 20, 100, 500 respectively and an aspect ratio A=3. For small inclination angles 

from horizontal position, the calculations lead to a stationary state consisting of rotating cells. When the 

angle  increases, the Nusselt number increases and sudden transition appears and flow becomes 

unicellular and the Nusselt numbers increase clearly. If the angle  continuous increase, the flow remains 

unicellular and the Nusselt number decrease when close to the vertical position. So, the value of mean 

Nusselt number strong function with the value of Rayleigh number, aspect ratio, and the orientation of 

the porous cavity. 
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CONCLUSIONS 

The numerical results of shallow porous cavity show that when the porous layer slightly inclined 

with respect to the horizontal line, the flow which takes place spontaneously is of unicellular type. 

 The thermal boundary thickness increases on the heated wall, for the velocity boundary layer 

thickness, the growth is different and is largely due to the change in bouncy effect.  

The convection becomes more and more vigorous as the orientation angle of the cavity is 

increased. For very high values of the Rayleigh number, no steady unicellular flow could be maintained 

inside the cavity. 

Streamlines close to the heated surfaces are observed to run parallel to the wall over significantly 

large portion of its extent. This behavior becomes more prominent as the aspect ratio is increased and 

increasing in the inclination angle. 

As increase in aspect ratio further pushes the isotherms towards the corner of heated surface 

indicating high velocity. 

The Nusselt number at low Rayleigh number tends towards unity, indicating that the heat transfer 

is mainly due to conduction. 

When the angle  increases, the Nusselt number increases and sudden transition appears and flow 

becomes unicellular and the Nusselt numbers increase clearly. If the angle  continuous increase, the 

flow remains unicellular and the Nusselt number decrease when close to the vertical position. So, the 

value of mean Nusselt number strong function with the value of Rayleigh number, aspect ratio, and the 

orientation of the porous cavity. 
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NOMENCLATURE   

 

A       aspect ratio of the cavity, H/L       

c        specific heat of fluid, J/kg.K 

g       gravitational acceleration, m/s
2 

H      thickness of the porous  cavity, m 

k        thermal conductivity of fluid    

         saturated porous medium, W/m.K 

K      permeability of porous medium, m
2 

L      length of the porous cavity, m 

Nu    Nusselt number 

P      pressure, kPa 

q      constant heat flux, W/m
2 

Ra    Rayleigh number, gKL
2
q/k 

T      temperature, K 

To     reference temperature at x=y=0, K 

T    characteristic temperature differenc, qL/k 

   wall-to-wall temperature difference at   x=0, eq. (12) 

u      fluid velocity in x-direction 

v      fluid  velocity in y-direction 

U    dimensionless velocity in x-direction, uL/  

V    dimensionless velocity in y-direction, vL/  
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x, y      cartesian coordinate, m         

X         dimensionless distance on x-axis, x/L 

Y         dimensionless distance on y-axis, y/L 

 

Greek symbols 

 

      thermal diffusivity of porous medium, k/c 

       coefficient of thermal expansion, K
-1 

      dimensionless temperature 

        dimensionless time 

      dynamic viscosity of fluid, kg/m.s
 

       kinematic viscosity of fluid, m
2
/s 

       density of fluid, kg/m
3
 

      stream function 

  angle of inclination of the enclosure 

 

Superscript 

-        average 

n       iteration 

Subscript 

i, j     indices denote grid location 

o        reference temperature 

 


