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ABSTRACT

The hydrodynamic and thermal boundary layers have great effect on the fluid flow and heat
transfer between rotating turbine blade. In the present work, the flow and heat transfer is analyzed
numerically by solving two dimensional incompressible boundary layer equations. A ( k — ¢ )
turbulence modeling is used to obtain the eddy viscosity. The finite volume method is introduced to
carryout all computational solution with staggered grid arrangement. Due to complex physical domain
the original coordinate system is transferred to non orthogonal coordinate system. The calculation of
present work done for rotating two dimensional turbine cascade with different rotating speeds (1500
rad/s, 1800 rad/s, 1900 rad/s), and for different Reynolds number (5000, 10000, 100000), in subsonic
flow (M<1). The two dimension fluid flow is described by presenting plots of vector and contour
mapping for the velocity; pressure and heat transfer fields as well as Nusselt number variation. The
results were verified through a comparison with published duct results, good agreement was obtained.
The final results were then compared with published results for turbine blades and good agreement was
also obtained, the overall comparison show good agreement.
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INTRODUCTION

The axial flow turbine has two main elements; the stationary vane called nozzle and a turbine
rotor. One of the most important aspects of the turbine property is to choose the suitable blade profile.
In the three dimensional flow inlets boundary layer separates and forms a horseshoe (or leading edge)
vortex, with one leg of the vortex in one aerofoil passage and the other leg in the adjacent passage.
Thus in a cascade flow, the part of the secondary flow that is called the passage vortex.

The main objective of present work is to investigate the fluid flow and heat transfer between two
rotating turbine blades. This w ill be done by solving the governing continuity, momentum, and energy
equations together with the (k — €) turbulence model, numerically by the finite volume method. An
orthogonal curvilinear coordinate system that is rotating with the blade will be used. The development
of both hydrodynamic and thermal boundary layers over the blade surface will also be considered.
Many investigations have provide data for the flow between turbine blades. However, rather literature
is available for flow analysis. Koya and Kotake studied numerically fully developed flow through
aturbine stage. Dorfman applied Naveier Stocke equation for gas turbine, to gather with heat
conduction. Gogzeh developed finite volume method and code for solving elliptic three dimensional
fluid flows. Thomkens study the quazi three dimensional finite difference boundary layer analysis for
rotating blade row

MODELING

The blade profile is analyzed in frame work of an orthogonal curvilinear coordinate system
rotating with blade.

The geometry under consideration is an impulse turbine blade as represented in figure (1),
although it represents a three dimensional flow problem, a suitable simplification by assuming the flow
throw a cascade construction will reduce it to a two dimensional problem. The blade dimensions are:-
Axial chord, by =11.08 in (0.2813m)

Chord / axial chord = 1.2242

Pitch / axial chord = 0.9555

Aspect ratio (span / axial chord) = 0.9888
B1=43.99°

Br=22.98°

In this problem the mean flow is considered to be steady, and the following assumptions were used

1. The corioles acceleration creates a pressure gradient normal to the blade surface vu) even though
it's larger than in usual boundary layer calculation.
2. Assumption of zero pressure gradients across the boundary layer is adopted.

3. It will know assumed that the gradients of all flow property in the x, direction are zero i =0

OX,
This reduce the x, momentum equation with the other equations.
Incompressible subsonic fluid flow.
Pure impulse turbine blade is adopted with zero degree of reaction.
The boundary layer assume to be turbulent from the leading edge of the blade

SRS o
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According to the above assumptions and the flow forces the governing equations will be; (Tompkins,
1982);

Continuity:
0 0 0
8_)(1(pulh2)+£(pu2hl)+6_)(3(pu3h1h2)20 (1)

X; Momentum Eq. :

LU, ou, +,ou2 ou, N u3%+ u, u, oh, u, oh,
h, ox, h, ox, OX,4 h.h, ox, h,h, ox;

)
_ _pa)2 oR 1 0p 0 ou, .
2p @ U, h, Raxl h 6x1+ax3 {#6x3 pulua}
Xz Momentum Egq. :
pu, ou, L PY; ou, +pu, ou, +pU u, oh, u oh
h, ox, h, 0X, OX4 h,h, ox, hh, ox, 3)
2
+2pw, ul—&Ré—R __ Lo + 0 ,u6u2 —puj uj
h, 0x, h, 0x, OX;|  0OX,
X3 Momentum Eq.:
Py (4)
OXq
Energy Eq.
ol ol ol 0 oH 1
PYy PU, 5 — |:£ _|_lu(1__)x
h, ox, h, ox, OX; OX3| P, OX, P,
ou, ou, : (5)
u—+u,—= |- pHU,
0Xg OX4
Where

I=H-1/2 (w?R? is the rothalpy
H = stagnation enthalpy
@ = blade row rotation speed
R = perpendicular distance from the axis of rotation
+2pw(v,v) = Represent the corioles force component.

po’ R = Represent the centrifugal force component
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With the velocity component normal to the surface neglected. It is convenient at this point to express
the Reynolds stress and turbulent energy transport.

For the steady state there are four types of boundaries in the physical flow domain, inlet, outlet,
solid surfaces and periodic boundary. At the inlet of the blade duct the velocity components and
turbulent Kinetic energy are specified. Turbulence quantities, such as (k) and (g) are normally not known,
but they must be estimated. Usually (k) is set to :-

k=(2/3)(Tu.Ux)?, (6)
Where (T,) is the turbulence intensity and its value (0.01 < T, <0.1), Davidson (2003).
2 k%
The dissipation is setto: - ¢, =C3 — (7

Where I.is a characteristic length and is taken as (0.015S), where S is the cascade Pitch. Pressure is
assumed to be unchanging in the flow direction at the inlet At the exit plane the values of the dependent
variables are unknown. Therefore the outlet boundary should be placed far down from the region of
interest

NUMERICAL SOLUTION

In the present study we will work on the sequence of two— dimension grids in successive cross
— section planes. The equations are formulated in two — dimension rectangular compensation domain

(§.m) and are solved numerically over uniform, rectangular grid in that domain. The method of

Thompson Thames and Mastin (TTM) is utilized. The method employs the following in- homogeneous
Laplace eq. as the generation system and its solving results represented in figures (2), (3) and (4)

& +§yy =pc (€,M)
Ec T Eyy = Q(EM)

General conservative form

(8)

@G]¢)é+(pG2¢)n :(FJal¢ é)é+(FJa2¢ n)n+ Stotal )

The table (1) clarifies equation (9) in general curvilinear coordinate

Equations ¢ | T Stotal
Continuity |1 |0 0
X .. R
momentum U | pe=pitin PU UK —2 oW U, — oW R@—Xl

o, e e R0 #&HﬁJ% N

28 oX;  OXg M) OX,
y- v , R
momentum Le=p it pu K, +2w,u, _ pw R&
oR 0 pe. | ou
+p U K, —2p, WU, + p,WR— — ——|g 1+ =™ | —214+S
Pl PeWale + 0, 8X2 6X3 /U( p Jax3 .
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Energy T I |
b ﬁ[1+&ﬁ]ﬁ+
R ool R R R| [P P H )OX
PV RU —+U, —+U;— |- —— +Se
X, X, Xy | 0%, 1 ou '
M 1=—u,—*+
L pr aXS
k-equation k A [Gk - p e]+S¢y
O
g —equation €
a w e [E(c 216Gk - C &2 p )]+S¢,
O-S

The Nusselt Number

For forced convection of a single-phase fluid
R 1T P O TR (12)

where h is called the heat transfer coefficient, with units of W/m? , heat flux would be entirely

due to fluid conduction through the layer:

NuL = Jw

Qu=KTw Tl e, (13)
We define the Nusselt number as the ratio of these two:

(convection)

L /K, e .18

g, (conduction)

Sequence of solution steps

1)
2)
3)
4)
5)
6)
7)
8)

The overall solution procedures can be listed as follows:
An initial guess is given for all variables in the field of interest.
The proper boundary conditions are specified for all dependent variables.
The discretised momentum equation is solved to obtain the covariant velocity components.
Then the pressure correction equation is solved to obtain pressure correction field.
The pressure correction is then used to correct pressure fields using equation
Then the velocity and density fields are corrected using equation
The other dependent variables such as turbulence and energy equations are solved.
The density is calculated using the new temperature and pressure fields.

The whole procedure is repeated from step three until a convergent solution is obtained

RESULTS and Discussion

In the beginning of running the computer program we solve the governing equation for simple

rectangular duct as represented in figure (5) and (6) , the turbulent modeling was also adopted for the
duct flow and we can see the turbulent kinetic energy in duct flow in Fig (7) and (8) The velocity
contours of the present work were made for three different values of Reynolds number.
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The firs Reynaldos number was 5000 and its (U) velocity contours is presented in fig (9), in this figure
we can see the uniform velocity at the entrance of the domain, this uniform flow is because the flow
coming from uniform source this source is the stationary blade which work as a nozzle to increase the
velocity and give the flow more stability. The flow velocity increases uniformly inside the domain and
reaches a value over the entrance velocity in the region at the mid chord of the blade and also we see
the same in Figures (10) and (11).

The V — velocity contour for the three Reynolds number are plotted in figures (12) to (14), which
indicates a uniform velocity at the entrance and it decreases towards the exit

The second important variable in the present work is the pressure distribution in the space between
the rotating blades. Figures (18), to (20) show the predicted static pressure distribution at different plane
for Reynolds number equal (5000, 10000, 100000) respectively, we can see higher pressure distribution
near the pressure surface than that close to suction surface this is due to the positive inclination (angle
of attack) of the blades

The figures (21) to (23) show the dimensionless turbulent kinetic energy for Reynolds number
(5000, 10000, 100000) respectively we observe the minimum value of turbulent kinetic energy near
wall and increases toward the center. The turbulent kinetic energy be minimum near wall where the
flow velocity is minimum.

Depending on the velocity value appear during solving the governing equation we can get the
velocity profile. These profiles shown in Figures (25) to (28) and for Reynolds Number (100000 and
10000 ) for different locations in the core line for the blades. We fix the points where the velocity
reach the max flow velocity we get the boundary layer form as show the Fig (29)

After predicting the boundary layer profile we fix the point of velocity equal to 0.99 maximum
velocity at the suction surface these points provide us with the boundary layer, this process done for
1500 rad/s rotating speed. This procedure repeated for another rotating speed (1800 rad/s, 1900 rad/s)
to see how dose the rotating speed affects the boundary layer behavior, the new boundary layer form
presented in fig(30). we see in this figure that increases in rotating speed have bad effect on the
boundary layer form specially at (x/c > 0.9)

The figures (31 to 34 ) show the temperature distribution developing. For the case of constant
upper blade temperature and thermal insulated lower blade for Reynolds (Re = 50,000), we observe
that the temperature increases in the direction of the flow and the temperature decreases in the vertical
direction. In the middle of the geometry we observe the decrease is greater then decreases slightly
toward the lower wall.

CONCLUSION REMREKS
The present work solves the fluid flow and heat transfer between rotating impulse turbine

blades. The following conclusions are drawn from the obtained results; the flow velocity increases
uniformly inside the calculation domain and reaches a value over the uniform entrance velocity in the
region at the mid chord of blade. the velocity vectors are more uniform at the middle section than at the
entrance and they become unstable at the trailing edge section. the boundary layers are more uniform at
the pressure side than at the section side.

High pressure is observed near the pressure side than thus close to suction side, and denser pressure

contours near the leading edge of the pressure side is also observed. A minimum value of turbulent

kinetic energy is observed near the wall and it increases towards the center. Increase in rotational

speed causes a deformation and increase in boundary layer thickness. A normal temperature

distribution is obtained, and the large velocities on the suction side cause streamwise vortex that
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continuously heat transfer. The Nusselt number is maximum at the entrance section and decreases
with the flow direction until it reach approximately constant value. An acceptable agreement was
obtained with previous published numerical and experimental results,
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Table 2 definition of symbols used in present work

Chord of the blade

Constant in turbulence model

Constant in turbulence model

Constant in turbulence model

Axial chord of the blade

Contravariant velocity in £ direction

Contravariant velocity in i direction

Contravariant velocity in Z direction

Jacobian transformation

Kinetic energy of turbulence

Turbulent Viscosity
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Pressure

Perpendicular distance

Reynolds number (Re = p,,U..Cx / L)

Cascade pith

Source term of ¢

Source term due to nonorthogonalit y

Total source terms

Time

Temperature

Turbulence intensity

Velocity component in x direction

Velocity component in y direction

Velocity component in z direction

Axial coordinate in the physical domain

Spanwise coordinate in the computational domain

Rotating speed
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Figure(32): Contour (flood) of temperature distribution for Re=50,000 and constant wall temperature
T,=100 °C
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Figure(34): Contour (flood) of temperature distribution for Re=50,000 and constant wall temperature T,,=1000 °C
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Fig.36: Boundary Layer Form comparison for duct flow
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Figure(35): Distribution of Local Nuselt
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Fig. 37: Comparison Velocity Vector Re
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