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ABSTRACT 

A constitutive law can be defined as a mathematical functional relation between physical quantities 

such as stress and strain and may take other factors like time ,temperature and additional material 

properties into account. 

     In this paper , the endochronic model is used to predict the stress-strain relations of two Iraqi 

clays. This model is a viscoplastic one but without introducing a yield surface. It encompasses 

material behaviour such that the current stress state is a function of strain history through a time 

scale called “intrinsic time” which is not the absolute time but a material property. 

     The simulation showed that the model overestimates the strains for all cases studied. This may 

be attributed to the material parameters which require a parametric study to determine their actual 

values for Iraqi clays. 
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 الانفعال لبعض الأطيان العراقية باستعمال نموذج الزمن الضمني –التمثيل النظري لعلاقات الإجهاد 
 

 

 الخلاصة
يمكننتعريفينناعيننالعيتعل يليننيتعل ركايعينناع رعاننيعتالطعفيي ننياعرننف اع ننيتعكميننيتعويايياينناعمقننطعلذ اننيتعاعل ع يننيطعاعيننتعرر نن ع المننطع

ع.ئصعأ فىع لميتةع عظفعل  ر يف تيتةعأ فىعمقطعل امتعاعل حفلفةعاع صي
إتعهن لعل عمنا جعهناع.عل ع ينيطع رنف ريتعايعيرنيتع نفلييريت-أسريمطععويعهن لعل  حنثعععمنا جعل نامتعل  نمعيع لرع ناع يلينيتعلذ انيت

اعاعيي ننفع ننتعسننلادعل مننيتةع حيننثعأتعحي نناعلذ اننيتعل حي ينناعركنناتعتل نن.عل لنناجعاع كعننيع عينناتع ننطعسننا ع  ننالع–مننتعل عننالعل لننتتع
ل ن  عي رلناع نتعل نامتعل مالنحعمنتعحينثعأعنيع يصنياعمنتع نالصع"عل امتعل  معي" ريفيخعل ع ييطعمتع لطعمقييسعامعيعيت ىع

اعيينناىعهنن لعإ ننىعميننيملتع.ع قننتع ننيتعل رمقيننطعأتعهنن لعل عمننا جعيياننيعييمننيع ي ينناع لع يننيطع كننطعل حنني تعل رننيعرمننتعتفلسننراي.عل مننيتة
ع.ل ريعرحريجعإ ىعتفلساعمييملتع رحتيتعييمايعل حقيقياع ي عس اع لرفبعل ايعياعل يفلييال ميتةعل ريعير معايعل عما جعاع

 

INTRODUCTION 

Endochronic theory was first introduced by Valanis in 1971. He coined this Greek name 

“Endochronic” that consists of two roots, endos (meaning inner ) and chronos (meaning time). This 
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theory encompasses material behaviour such that the current stress state is a function of the strain 

history through a time scale called “ intrinsic time” which is not the absolute time measured by a 

clock as in viscoplasticity but a material property. Hence, the endochronic theory is a “viscoplastic” 

one but without introducing a yield surface. Therefore, all the complexities and difficulties that 

develop in introducing a suitable yield criteria are avoided, (Valanis,1971). 

     Bazant in 1974 and later with his coworkers extended Valanis theory to predict the behaviour 

of different engineering materials such as concrete , and soils. 

 

 

GENERALIZED CONSTITUTIVE RELATIONS: 

To generalize the uniaxial concept of the endochronic theory into three dimensions, first, the 

definition of the intrinsic time increment, dz, which is used in stead of real time increment, dt, is 

introduced. The intrinsic time for time-dependent behaviour is function of strain increments, d ij   

and time, dt. The dependence of dz upon d ij  is assumed to be gradual to exclude ideal plastic 

reponse. The function of dz will be continuous, smooth, and monotonically increasing. Thus, 

function (dz)
S
 with an appropriate exponent ”s” , can be expanded in a tensorial power series in 

d ij  and dt , i.e., (Bazant and Bhat,1976): 

     
.......

)(





mnklijijklmn

ijijklijijklij

s

dddp

dtpdtdpddpdtpdppdz
2

444
                             (1)                                                       

 

where: 

         P= coefficient matrices, the subscripts refer to the components in the Cartesian coordinates xi, 

i = 1, 2, 3, and number (4) refers to the time axis. 

     Since, dz must vanish as d 0ij  and 0dt  , thus P=0. Setting s=1, and neglecting all 

quadratic terms, then dz = P4. dt  which is of no interest, thus P4 = 0 . Setting s=2, and satisfying the 

conditions of isotropy, the quadratic form of Equation (1) can be written in terms of the first two 

invariants of d ij , as follows, (Bazant and Bhat,1976): 
 

2

3

2

2112

2
)()()( dtPdtPIPJPdz o                                                                                             (2)         

 

where:   

       Po, P1 , P2, P3 = non-negative coefficients. 

       J2 = second deviatoric strain increment invariant, and 

       I1 = first strain increment invariant. 

Then, dz must vainish for both instantaneous time, dt =0, and pure volumetric deformation, J2=0, 

hence P1= 0. Thus, the remaining terms in Equation (2) can be rewritten in the following form: 

    
2

1

2

1

2
)()()(



 dt

Z

d
dz                                                                                                     (3)  

where: 

 dfd  ),(1                                                                               (4.a) 

ijij dedeJd 
2

1
2                                                                                (4.b) 

deij = deviatoric strain increment tensor 

      =  dd ijij 
3

1
 

ij = Kronecker delta. 

d = Volumetric strain increment = kkd   
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1,1z  = Constants. 

     d  is scalar called “damage measure” that depends on strain increments and stresses to predict 

hardening and softening. d  is called “deformation measure” that depends on strain increments 

only. From Equations (3) and (4), d  and  dz represent geometrically the length of path traced by 

material states in a six-dimensional strain space for d , or in a strain-time space for dz., (Ansal et 

al., 1979). 

           Secondly, generalizing of equations to three dimensions using dz instead of dt, and splitting 

the strain components into deviatoric and volumetric components to satisfy isotropy conditions, the 

following differential constitutive equations are deduced: 

     dz
G

S

G

dS
de

ijij

ij 
22

                                      (5.a) 

     omm dd
k

dt

k

d
d 


 





133
                                                                          (5.b) 

where: 

        ddde ijijij 
3

1
 

       332211  dddd  

       d = inelastic dilatancy, 
 

       Sij = deviatoric stress tensor, 
     

            = mijij    

       m = mean stress = kk
3

1
 

       G, K = shear and bulk elastic moduli, and 

       od  = stress-independent inelastic strains (e.g. thermal strains). 

 

     Both of the first terms of Equations (5.a) and (5.b) represent the elastic strain increments, while 

the remaining terms represent the inelastic strain increments. For instance, the term 

)/( 13  Kdtm  represents the time-dependent inelastic volumetric strain, i. e. creep, while d  

represents the time-independent volumetric strain. 

      To develop a quasi-linear elastic incremental constitutive law for simplicity, the plastic stress 

increment tensor 
p
ijd can be obtained from Equations (5) by multiplying Equation (5.a) by 2G, and 

Equation (5.b) by 3K, hence: 

 

    )(
p

ij

p

ij

p

ij dKdeGd  32   

       )/(
o

mijij dKdKdtdZS  331                                                                                        (6) 

The stress increments ijd  are related to the elastic strain increments e
ijd   by the following 

equations: 

 

)dK3(deG2d e
ij

e
ijij                                                 (7) 

Hence, the summation of Equations (7) and (8) yields: 

klijkl

p

ijij dDdd                                                                                        (8) 

where: 

     ijklD  = elastic coefficient matrix  
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THE NUMERICAL PROCEDURE: 

The basic constitutive law, Equation (5), is of a differential form, and the variables that govern 

inelastic deformations are (dz) and ( d ). Bazant and Bhat (1976) used the step-by-step integration 

or step-iterative algorithm  in which for each loading step, a number of iterations are performed till 

satisfaction of equilibrium of stresses and strains occurs. This is assured when the change in values 

of (dz) and ( d ) for the same loading step becomes very small. 

       In this algorithm, the values of (dz) and ( d ) computed from the previous loading step provide 

an initial estimate for the next loading step. 

 

Endochronic Hardining Functions and Parameters: 

The function f1 in Equation (4) that accounts for hardening or softening, should decrease as the 

inelastic strains accumulate, because d is adopted as a measure of the accumulated inelastic strain, 

hence: 





 dFd

f

d
d  ),(;

)(
                                              (9) 

where: 

)(f     = Strain-hardening function. 

),(F  = Strain-softening function. 

Thus, the function )(f  has a significant effect on the non-linearity of the stress-strain relations, 

while the function ),(F   allows for a gradual decrease of these relations on approach to peak 

stress. Both functions depend mainly on material type. 

 

Hardening Functions and Dilatancy for Normally Consolidated Clays: 

The function F in Equation (9) is determined semi-empirically from experimental data. The function 

F is governed by the effective confining stress 

1I , the volume change, 

1I , and the second 

deviatoric strain invariant, 

2J . Bazant et al. (1979) introduced the following formulation for 

function F: 

 

              
)/(01.0

)1(/1
),(

12

2311

PaIa

JaIa
aF











                                              (10) 

where:   a’s = material constants. 

              Pa = atmospheric pressure = 101.3 kN/m
2 

 

     The division of  

1I  in Equation (10) by Pa is to make the relation dimensionless. Constant “a” 

must be positive to ensure irreversible strain increment for the critical case of no hardening or 

softening, (Bazant et al., 1979). 

     The function f () represents the limiting critical case of no hardening or softening. Thus, for 

large values of , this function, f (), must converge to one. The function f () takes the following 

form: 

             





2

1

1
1


)(f                                                                                (11) 

where: 1 and 2 = constants. 

     The dilatancy or densification function d of clays depends on shear and volumetric stresses and 

strains. Hence, the function d depends on 

2J , 

1I  and 

1I . Moreover, d depends on   itself 

because the volumetric strain increment should decrease monotonically till zero as a limit in the 

case of failure. Hence d  is equal to (Bazant et al., 1979): 
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
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dICC
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o
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
           (12) 

 

where:     co, c1, c2, c3, c4 = material constants. 

 

d is determined empirically from tests and it depends on the clay type, stress path and stress 

history. 

     The tensile strengths of soils are very small and hence neglected. 

      The elastic moduli G and K of the soil element change during loading, and thus the accumulated 

densification-dilatancy measure   and the effective normal stress also change. Thus, the effect of 

void ratio is: 

        
ne

e

e

e

e

de

o

o

o

ov

o

 3)1(3)1(






                                                                                         (13) 

where:  eo = initial void ratio 

             v = volumetric strain = kk 

             n = porosity. 

while the effect of normal stress is the ratio oo III

111 /)(  , where oI



1 is the initial first stress 

invariant. Hence, the elastic moduli will be equal to: 

       )
3

1( 2

1

11
1

n
b

I

II
bGG

o

o

o









                                                                                             (14) 

where: b1 and b2 = constants, 

    and  )21/()1(
3

2
  GK                                                                                                      (15) 

 

Model Parameters of Clays: 

All material parameters in the previous equations are based on best fit of experimental results. 

         Constant “a” in Equation (10) affects the value of the peak stress. Constant a3 which is called 

“distortion coefficient” is determined by the following correlation proposed by Ansal et al. (1979). 

Based on general pattern of results: 

 

    623481533 .)/(.  PoPaea o                                                                                         (16) 

where: 

       Po = consolidation pressure. 

 

     Similarly, the plasticity coefficient Z1 in Equation (3) that accounts for rigidity and deformibility 

of clays, is determined from the following correlation: 

 

     0396001770002940 2

1 .)/(.)/(.  aooaoo PPePPeZ                                        (17) 

   Ansal et al. (1979) determined an approximate correlation for densification coefficient Co in 

Equation (12), softening coefficient 2  in Equation (11), and the elastic modulus E, as shown in 

Figure (1). This correlation depends on the consolidation pressure Po, and the liquidity index of the 

clay IL, where (Mitchel, 1993): 

 

     
P

pnat

L
I

ww
I


                                                                                                      (18) 

where: 
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    want = natural water content. 

    wp = plastic limit 

    Ip = plasticity index = wL -wP 

    wL = liquid limit. 

      

     Choice of appropriate ratio of the liquidity index to the consolidation stress is tempered by 

judgement in the absence of test results. 

     All other constants are determined experimentally. The values of the parameters as proposed by 

Bazant et al. (1979) are shown in Table (1): 

 
 

Table (1) – Material parameters of endonchronic model for normally consolidated clays. 

Parameter Value 

ao 4 

a1 500 

a2 0.75 

1  5n   (n = porosity) 

C1 2500 

C2 0.25 

C3 1000 

C4 9000 

b1 0.1 

b2 0.1 

 

Computer Program: 

The computer program Endoch, coded in Fortran laguage, was written by the authors. The 

algorithm used in the endochronoc model  incorporates an iterative procedure. The program 

computes stresses, strains, all functions like F, f (), and variables like , , at mid-step loading. 

Iterations are then performed till the tolerance of the values of dz and d becomes less than 0.05 %. 

The values of strain increments, d, intrinsic time, dz, and inelastic dilatancy, d, or the previous 

step are taken as an estimate for the current step. 

 

APPLICATIONS: 

This model have been applied for simulating stress-strain relationships of  two Iraqi soils: 

i) First application  

    Al- Mufty (1990) carried out a series of tests on al-Fao soft clay. Block samples were obtained 

from an area close to the river Shatt-Al-Arab. 

    The top layer of Fao soil was found to be stiff to very stiff brownish gray silty clay with a 

desiccated crust. This layer is followed by a soft to very soft gray silty clay. 

    According to the unified classification system, the soil from both layers may be classified as CL-

CH, inorganic clays of medium to high plasticity. According to, AASHTO M145-73, the soil is 

classified as A-7-6 (16). 
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Fig. (1) – Approximate correlation for:  

                                                                 a) Densification coefficient, Co. 

                                                                 b) Softening coefficient, 2. 

                                                                 c) Elastic modulus, E. 
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The average properties of the soil at sampling depths 1.25 m and 3 m respectively are listed in 

Table (2).  

 
 

 

Table (2) - Average properties of the soft clay from Al-Fao, (from Al-Mufty, 1990). 

 
 

 

Property 
 

1.25 m depth 
 

3 m depth 

Total unit weight t , kN/m
3
 17.9 17.7 

Water content w % 30 45 

Liquid limit wL % 54 50 

plasticity index Ip % 27 24 

Liquidity index IL 0.11 0.79 

Specific gravity G 2.7 2.72 

Sand size fraction % 9 12 

Silt size fraction % 58 60 

Clay size fraction % 33 28 

Activity A 0.82 0.86 

 

 Among the tests carried out by Al-Mufty (1990) unconsolidated undrained triaxial compression 

tests on samples compacted by the standard compaction test to the maximum dry density and 

optimum moisture content. These results are compared with those predicted by the endochronic 

model in Figures (2) to Figure (6). 

     Figures (2) and  (3) represent the samples that are taken from the top layer, and the figures from 

(4) to (6) represent the samples that are taken from the layer below the top layer. 



 

 

 

Journal of Engineering Volume 16 June  2010       Number   2  
 

 
0555 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2) - A comparison between the stress-strain relationships predicted by the endochronic model 

with laboratory tests of Al – Mufty (1990), 3 =300 kPa. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3) - A comparison between the stress-strain relationships predicted by the endochronic model 

with laboratory tests of Al – Mufty (1990), 3 =300 kPa. 
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Fig. (4) - A comparison between the stress-strain relationships predicted by the endochronic model 

with laboratory tests of Al – Mufty (1990), 3 =100 kPa.   
 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. (5) - A comparison between the stress-strain relationships predicted by the endochronic model 

with laboratory tests of Al – Mufty (1990), 3 =200 kPa. 
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Fig. (6)- 0000000000000A comparison between the stress-strain relationships predicted by the 

endochronic model   

              with laboratory tests of Al – Mufty (1990), 3 =300 kPa. 
 

    

It can be observed in these figures that the model overestimates the strains for all the cases studied 

under high stress increments. 
 

In addition, there is no definite yield point can be obtained. Thus it is approximately suitable for 

normally consolidated clays where ductile behaviour of the stress-strain is expected. 
 

ii) Second application  

      Al- Saady (1989) carried out laboratory tests on an A-6 soil during construction of a road 

embankment. A representative area located at Al – Zafarania (south of Baghdad), was chosen for 

the research. The site covers an area of soil composed of silty clay with varying thickness. This 

stratum behaves as normally or slightly overconsolidated soil, have an upper desiccated crust 0.5-

0.75 m thick. 

The distribution of the particle sizes indicated: 

     Clay fraction = 45 %, silt fraction = 37 %, sand fraction = 18 %. 

It is classed as “CL” in a Casagramde classification chart.  

Among the tests carried out by Al- Saady (1989) consolidated undrained triaxial test which was 

designated as series D as shown in Table (3). 

 In addition, unconsolidated undrained triaxial test which was designatd as series G as shown in 

Table (4).  

     Consolidated undrained triaxial test results are compared with those predicted by the 

endochronic model in Figures (7) to (12) which show a comparison between the stress-strain 

relationships predicted by the endochronic model with laboratory tests of Al – Saady, (series, D).  

Consolidated drained triaxial test results are compared with those predicted by the endochronic 

model in Figures (13) to (18). Figures (19) to (24) show a comparison between the volumetric 

strain–axial strain relationships predicted by the endochronic model with laboratory tests of          

Al-Saady, (series, G).  
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Table (3) - The results of series (D), (from Al-Saady, 1989). 
 

Test No. 

 

c   kN/m
2
 

 

eo 
 

wc % 
 

 
f31   kN/m

2
 

 
f










3

1


  kN/m

2
 

 

fu  kN/m
2
 

1 79 0.76 26.0 123.24 3.50 30.81 

2 100 0.70 24.3 123.00 3.55 52.22 

3 150 0.74 25.6 189.21 3.30 72.45 

4 200 0.69 24.6 219.60 3.25 104.45 

5 300 0.75 25.4 279.00 3.25 176.68 

6 376 0.73 26.0 348.01 3.30 224.07 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7) - A comparison between the stress-strain relationship predicted by the endochronic model 

with laboratory tests of Al – Saady, Test 1, Series D. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8) - A comparison between the stress-strain relationship predicted by the endochronic model 

with laboratory tests of Al – Saady, Test 2, Series D. 
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Fig. (9) - A comparison between the stress-strain relationship predicted by the endochronic model 

with laboratory tests of Al – Saady, Test 3, Series D. 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

Fig. (10) - A comparison between the stress-strain relationship predicted by the endochronic model 

with laboratory tests of Al – Saady, Test 4, Series D. 
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Fig. (11) - A comparison between the stress-strain relationship predicted by the endochronic model  

                with laboratory tests of Al – Saady, Test 5, Series D. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (12) - A comparison between the stress-strain relationship predicted by the endochronic model  

               with laboratory tests of Al – Saady, Test 6, Series D. 

0

50

100

150

200

250

300

350

400

0 0.1 0.2 0.3 0.4 0.5

The endochronic model

Al-Saady laboratory test 6

D
ev

ia
to

r 
st

re
ss

, 
k

N
 /

m
2
 

Axial strain  

Laboratory test 6 

0

50

100

150

200

250

300

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

The endochronic model 

Al-Saady laboratory test  5

D
ev

ia
to

r 
st

re
ss

, 
k

N
 

/m
2
 

Axial strain  

Laboratory test 5 



 

 

 

Journal of Engineering Volume 16 June  2010       Number   2  
 

 
0555 

Table (4) - The results of series (G), (from Al-Saady, 1989). 
 

 

Test No. 

 

'

c  kN/m
2
 

 

eo 
 

wc % 
 

 
f31   kN/m

2
  

fOV
V 







  kN/m
2
 

1 79 0.66 23.5 198.87 2.300 

2 100 0.69 24.7 281.18 2.283 

3 150 0.75 26.0 348.03 3.026 

4 200 0.75 27.0 405.03 3.016 

5 300 0.69 25.2 752.55 3.590 

6 376 0.72 25.0 913.52 3.710 

 

 

 

 

 

 

 
 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (13) - A comparison between the stress-strain relationship predicted by the endochronic model 

with laboratory tests of Al – Saady, Test1, series G. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. (14) - A comparison between the stress-strain relationship predicted by the endochronic model 

with laboratory tests of Al – Saady, Test2, series G. 
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Fig. (15) - A comparison between the stress-strain relationship predicted by the endochronic model 

with laboratory tests of Al – Saady, Test3, series G. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (16) - A comparison between the stress-strain relationship predicted by the endochronic model 

with laboratory tests of Al – Saady, Test4, series G. 
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Fig. (17) - A comparison between the stress-strain relationship predicted by the endochronic model 

with laboratory tests of Al – Saady, Test5, series G. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Fig. (18) - A comparison between the volumetric strain – axial strain relationship predicted by the 

endochronic model with laboratory tests of Al – Saady, Test1, series G. 
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Fig. (19) - A comparison between the volumetric strain – axial strain relationship predicted by the 

endochronic model with laboratory tests of Al – Saady, Test2, series G. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. (20) - A comparison between the volumetric strain – axial strain relationship predicted by the 

endochronic model with laboratory tests of Al – Saady, Test3, series G. 
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Fig. (21) - comparisons between the volumetric strain – axial strain relationship predicted by the 

endochronic model with laboratory tests of Al – Saady, Test 4, series G. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. (22) - A comparison between the volumetric strain – axial strain relationship predicted by the 

endochronic model with laboratory tests of Al – Saady, Test 5, series G. 

The same behaviour is noticed in this clay. The predicted volumetric strains are closer to measured 

strains under small stress increments. At large stresses, the predicted strains became larger. 
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CONCLUSIONS: 

 The endochronic model overestimates the strains for all the cases simulated under high 

stress increments. 

 There is no definite yield point can be obtained when simulating the laboratory tests. This 

means that this model can be adopted for normally consolidated clays where ductile 

behaviour of the stress-strain is expected. 

  The error in simulation may be attributed to the model parameters, which need to be 

evaluated by carrying out parametric study for Iraqi clays. 
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NOTATION: 

d ij  Strain increments  

dt Time increments 

P Coefficient matrices 

J2 second deviatoric strain increment invariant 

I1 first strain increment invariant 

deij deviatoric strain increment tensor 

ij  Kronecker delta 

d  Volumetric strain increment 

1,1z   Constants 

d  damage measure 

d  deformation measure 

d  inelastic dilatancy 

Sij deviatoric stress tensor 

m  mean stress 

G shear elastic moduli 

K bulk elastic moduli 
od   stress-independent inelastic strains 

ijd  The stress increments 

ijklD  elastic coefficient matrix 



 

 

 

Journal of Engineering Volume 16 June  2010       Number   2  
 

 
0555 

e
ijd   elastic strain increments 

)(f   Strain-hardening function. 

),(F   Strain-softening function. 



1I  effective confining stress 



1I  the volume change 



2J  the second deviatoric strain invariant 

a’s material constants 

Pa atmospheric pressure 

1 constants 

c’s material constants 

2  softening coefficient 

eo initial void ratio 

v volumetric strain 

n porosity 

b’s constants 

Po consolidation pressure 

Co densification coefficient  

E elastic modulus 

IL the liquidity index of the clay 

want natural water content. 

wp plastic limit 

Ip plasticity index  

wL liquid limit. 
 

 

 

 
 

 

 


