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ABSTRACT:

Free vibration solution will be developed for laminated simply supported closed
cylindrical shells. This solution is obtained using General Third Shell Theory (G.T.T.). Also
the critical in-plane fatigue load is studied and the required equilibrium equations are
developed, the effects of tension or compression in-plane load on the natural frequencies are
discussed also. The natural frequencies and in-plane fatigue load results are very close to
those obtained by other researchers.
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INTRODUCTION.

The last decay is marked by a transition in use of composites has expanded from
aerospace and defense applications into a wider commercial arena. Today composites are
used in the power generation industry, the automotive industry, biomedical engineering and
various consumer goods. In service similarly to other materials, advanced composites age,
suffer physical or chemical degradation and accumulate micro mechanical damage. As cured
laminated composites cool to room temperature, stresses develop at the laminae and fiber-
matrix interfaces due to the different consistent expansion characteristics. Hence, initially
stable composites could become unstable in an actual space application. In all above
applications, it is important to achieve low weight, high strength, stiffness and safety which
can be achieved by good fatigue performance. Most of structural theories used till now to
characterize the behavior of composite laminates fall into the category of equivalent single
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layer (ESL) theories. In these theories the material properties of constituent layers are
“smeared “to form a hypothetical single layer whose properties are equivalent to through-the-
thickness integrated sum of its constituents. This category of theories have been found to be
adequate in predicting global response characteristics of laminates, like maximum deflection,
maximum stresses, fundamental frequencies, forced response, or critical buckling load.
Continuum based theories give an analytical (3-D) elasticity solutions for beam, plate and
shells but it cumbersome. High order shell theories are those in which the transverse strains
are accounted. The (in-plane) fatigue loading (presented as buckling load in present work) of
shell of revolution such as cylinder or conical has been studied by many researchers.

(Altan Kayran & Vinson 1990) presented an analysis for the free vibration
characteristics of isotropic and laminated composite truncated circular shells including
transverse shear deformation. All components of translatory and rotatory inertia are included.
The applicability of linear shell theory due to Reissner is assumed, and governing equations
are solved for the natural frequencies and mode shapes by using a combination of modal
iteration and transfer matrix approach for different boundary conditions.

(Narita et al 1992) developed a theoretical method for solving the free vibration
angle-ply laminated cylindrical shells. The angle-ply laminated shell is macroscopically
modeled as a thin shell of General anisotropy by using the classical lamination theory. Shell
theory is minimized by following the Ritz procedure, and arbitrary combinations of boundary
conditions at both ends are accommodated by introducing newly developed admissible
functions.

(Liyong Tong 1993) used a particularly convenient coordinate system, a simple and
exact solution is obtained directly for the Donnell-type governing equations of the free
vibration of composite laminated conical shells, with orthotropic stretching-bending
coupling. The solution is in the form of a power series, and its convergence condition is
investigated.

(Tong 1996) obtained an analytical solution in the form of a power series for the three
governing equations of free vibrations of axially loaded orthotropic conical shells. Numerical
results are presented for the frequency parameters and associated circumferential wave
numbers of axially loaded shells with different geometric and material parameters and under
two types of boundary conditions.

(Korjakin et al (1998) investigated the damping of free vibrations of laminated
composite conical shells. Finite element analysis of conical shells is performed by using first-
order shear deformation theory (FOSDT). Based on proposals of other researchers a damping
model is developed in connection with energy method (EM) and applied in order to calculate
the modal loss factors of laminated composite conical shells.

(Xi et al 1999) investigated the effects of shear non-linearity on free vibration of
laminated composite shell of revolution using a semi-analytical method based on Reissner-
Mindlin shell theory. The coupling between symmetric and anti-symmetric vibration modes
of the shell is considered in the shear deformable shell element.

(Pinto Correia et al 2001) presented a numerical method for the structural analysis of
laminated conical shell panels using a quadrilateral isoperimetric finite element based on the
higher order shear deformation theory.

(Werner Hufenbach et al 2002) developed analytical solution for lightweight design
using dynamically loaded fiber-reinforced composite shells. The analytic results were fully
corroborated by accompanying FE calculations for special lay-ups.

(Lee et al 2002) used the finite element method based on Hellinger-Reissner principle
with independent strain to analyze the vibration problem of cantilevered twisted plates,
cylindrical and conical laminated shells.
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( Kabir et al 2003) presented a hitherto unavailable analytical solution to the
boundary value problem of the free vibration response of shear flexible antisymmetric cross-
ply laminated cylindrical shell, using (FSDT) theory.

(Young-Shin Lee et al 2003) investigated the free vibration analysis of a laminated
composite cylindrical shell with an interior rectangular plate by analytical and experimental
methods. The frequency equations of vibration of the shell including the plate are formulated
by using the reacceptance method.

(Darvizeh et al 2005) presented a calculation of overall dynamic response of thin
orthotropic cylindrical shells. Due to the obvious importance of the effects of transverse shear
deformation and rotary inertia, these terms are included in the analysis. The exact method is
modified to predict the dynamic behavior of an orthotropic circular cylindrical shell.

The (in-plane) fatigue loading of shell of revolution such as cylinder or conical has
been studied by many researchers. (George J. Simitses & John S. Anastasiadis 1992)
developed a higher order theory, which includes initial geometric imperfections and
transverse shear effects for a laminated cylindrical configuration under the actions of lateral
pressure, axial compression, and eccentrically applied torsion.

(Seishi Yamada & Croll 1993) used nonlinear Ritz analysis to investigate the elastic
(in-plane) loading behavior of pressure loaded cylinders. Careful analysis of the energy
changes during the loading process allows definition of a reduced stiffness theoretical model.

(NG et al 1998) studied the dynamic stability of then, laminated cylindrical shells
under combined static and periodic axial forces using Love’s classical theory of thin shells. A
normal-mode expansion of the equations of motion yields a system of Mathien-Hill
equations. Bolton’s method is then employed to obtain the dynamic instability regions. The
present study examines the dynamic stability of antisymmetric cross-ply circular, cylindrical
shells of different lamination schemes. The effect of the magnitude of the axial load on the
instability regions is also examined.

( NG et al 1998) investigated the parametric resonance of rotating cylindrical shells
periodic axial loading. The formulation is based on the dynamic version of Connell’s
equations for thin rotating cylindrical shells. A modified assumed-mode method is used to
reduce the partial differential equation of motion to a system of coupled second order
differential equations with periodic collisions of the Mathieu Hill type. The instability regions
are determined based on the principle of Bolton’s method. Or special interests here are the
effects of the centrifugal and Carioles forces on the instability regions which were examined
in detail.

(Romil Tanov et al 1999) presented the results obtained while investigating the
behavior of cylindrical laminated shells under suddenly applied lateral pressure. The
investigations were based on a finite-element approach using an explicit time integration
scheme. The Budiansk- Roth and phase- plane criteria were used to assess (in-plane) loading.

(Meyers & Hyer 1999) used results from semi analytical predictions and experiments
to study the response of composite cylinders with elliptical cross sections loaded axially to a
significant percentage of their (in-plane) loading load. The semi analytical approach is based
on the methods of Marguerre, Rayleigh-Ritz, and Kantorovich.

(Youngjin Chung (2001) aimed in this study, is to improve the strength of conical
shells and reduce the weight of the structure. Buckling of composite conical shells subjected
to combine axial loading, external pressure, and bending is investigated using energy and
finite element methods.

(Andrea Spagnoli 2001) studied the local shell and stringer buckling modes and
global buckling mode in conical shells under axial compression through a linear eigenvalue
finite element analysis. In order to examine buckling modes in isolation as well as competing
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modes together, use is made of different finite element model, including discrete and smeared
models.

( Geier et al 2002) studied the (in-plane) loading load of laminated cylinders which
strongly depend on the position of the differently oriented layers, his work deals with two
different laminated orthotropic cylinders with opposite stacking sequence of the laminate
layers. Analytical and semi analytical method have been used to predict the (in-plane) loading
loads, the results are compared with those tested.

(Hunt et al 2003) presented a hypothesis for prediction of the circumferential wave
number of (in-plane) loading of thin axially-compressed cylindrical shell, based on the
addition of a length effect to classical (Koiter circle) critical load result.

(Sofiyev 2005) provided an analytical solution for stability behavior of cylindrical
shell made of compositionally graded ceramic-metal materials under axial compressive loads
varying as a power function of time. The material properties of compositionally graded shells
are assumed to vary continuously through the thickness of the shell according to arbitrary
distribution of the volume fraction of the constituents. The fundamental equations for thin
shells of compositionally graded ceramic-metal material are obtained Loves shell theory.

(Azam Tafreshi 2005) carried out a series of finite element analyses on the
delaminated composite cylindrical shell subjected to combined axial compression and
pressure by which the delamination thickness and length, material properties and stacking
sequence are varied. The characteristics of (in-plane) loading and post (in-plane) loading
behavior of delaminated composite cylindrical shell are investigated.

In present work, a unified third order theory (G.T.T.) to evaluate the performance of
some displacement based (ESL) theories in natural frequencies and fatigue characteristics in
laminated composite cylindrical shell.

EQUATIONS OF MOTION.

In present study high-order theory displacement field is:

u(x,8,z,t) = Uy (x,0,t) + zx ¢, (x,0,t) + 2% xyr, (x,0,t) + 2° x 6, (X, 0,t)
V(X,0,2,8) = Vo (X, 0,8) + Zx , (X, 0,1) + 22 xr, (X, 0,8) + 22 x G, (x, 0,8) ~~ 77T e
W(X,60,2,t) = W, (X,0,t) + 21, (X, 0,t) + 2° x 6,(x, 6,1)

(1)

Figure (1): Coordinate system and structure of
laminated cylinder.
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Assuming vanishing transverse shear stress at top and bottom of laminated composite

layers, and hence transverse strain also vanishes, so:
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And:

{;} - E:gj x {;} ............................................................. (15)

Substituting the resultants forces in motion-equations and then the assumed displacement
components according to Navier's Solution (Reddy J.N 2004) (for simply supported
boundary conditions).

o(x,6,2,1) ZZAm cos axsin foe™™
m=1 n=1

xeztzz B,,, sin axcos Soe"™

m: ,
o (%,6,2,t)= zz . sinaxsin poe’™
m=1 n=1

©

,(x,0,2,t)=>">" D, cosaxsin foe'™
m=1 n=1

,(x,0,2,t)= Z E,, sinaxcos poe™
m=1 n=1

(x,0,2,1) :iiF sin axsin goe'™

m=1 n=1

S (16)

‘Jmn smaxsmﬁ&e'”” ..........................................................................

M8

0,(x,0,2,t)=

=1

Where o= (m_l_ﬂj , p=n

3
?

Developing mass matrix and stiffness matrix from solution of homogeneous
equations, eignvalue equation is derived and the natural frequencies of vibration for simply
supported cylindrical shell are obtained when solving the later equation:

[Cl- @’ [MIA =0 o (17)

The failure of laminates cylindrical shell under in-plane fatigue load is studied
in this work using G.T.T. theory to calculate the critical (in-plane) fatigue load which cause
the failure of fiber or matrix of laminate or both of them, and study the effect of this load on
the natural frequencies of the shell. Using the same Navier’'s solution (putting right side =0)
for equations ((6)-(12)) and rearranging the obtained matrices we get:

_Css_asz Cy Gy Ci Cy Cy C31_ VY
Co  Cu Cis Cu Co Ca Cull | ) (18)
Css Cou G G Cip Gy Gy qu
Ces Ces Css Ce¢ Cs Cop Coiljw =0
Cis Cu Ci Ci Cpy Cpp Cy g
Ca Cu Gy Cy Cy Cp Cyuflv
Ci, C, Cs Cy Cy; Cp C11_ U

Following the condensation of variables procedure to eliminate the
displacement components (U,V,¢",0%y?,0%), the critical value of (Ny) is obtained.
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VALIDITY OF THE DEVELOPED EQUATIONS:

General Third Order Theory (G.T.T.) is employed to investigate its capability level
for dynamic analysis of the symmetric and non-symmetric cross-ply laminated cylindrical
shells, and compared with other theories used by other researchers such as HSDT, FSDT,
CST.

The fundamental natural frequency of laminated closed cylindrical shell are listed for
each (L/mR) ratio (for thin shell R/H=100) in Table (1) and compared with those obtained by
using CST (but without neglecting (z/R)) in (Mohammad S. Qatu 2004), the results obtained
by present work give excellent agreement with them, where maximum percentage error is
(.127%) (error percentage is taken with relative to the reference results).

Table (2) lists the natural frequencies for [0-90] graphite/epoxy closed cylindrical
shell with two different thickness ratio (R/H=20 & R/H=500). As can be seen from this table,
thicker shells have lower frequency parameter than thinner shells for shorter shells (L/mR=1
and 2). It is interesting to note that the thickness ratio has minimal effects on natural
frequencies when n=0 and 1. For n>1, the thickness ratio has a much greater effect. It is also
observed that the fundamental frequency occurs at lower value for higher thickness ratios.
In all calculation the material properties are as follows:

E,=20E6 E,=E;=1.3E6 G1,=G13=1.03E6 G23=.9e6 Vi, =Vig = 3 Vo = 49 ,

2
Frequency parameter=Q = ok’ 12 :
100H )\ E,

While in Table (3), minimum frequency parameter of laminated cylindrical shell for
different lamination type are obtained and compared with other shell theories published in
(Reddy and Liu 1985), a good agreement between results of theory GTT and HSDT,
maximum relative percentage error is (3.7%), while with FSDT and CST are (3.7%, 17.2%)
respectively, as presented in the table, also the frequency parameter is increased when
number of layers is increased. For this results material properties are as follows: E;=40 Gpa

E,=Es=1Gpa G1,=G15=.6Gpa  Gz=.5Gpa v, =v,, =.3 v,,=.49 (L/R) =2 (R/H)
a)sz P

_— ercentage % in all tables
100H NE, @ P ge ()

:| presentworkresults — refrenceresult / refrenceresults| *100.

It is interesting to note that for thin shells the relative percentage error between GTT
and FSDT or CST, is smaller then that for moderately thick shells, as shown in Table (1) (for
thin shell) and Table (3) (for moderately thick shell), but fortunately GTT made fair with
most accurate one of HSDT for both thin and moderately thick cylindrical shells. Also, each
pairs of (m x n) values relates with seven successive bending frequencies by using GTT, and
the increasing orders of these frequencies, for different combinations of (m, n) values, show
no systematic trend, as being the case in rectangular plates where the fundamental frequency
is always associated with the mode indices (1, 1) as being noted in Table (3) where minimum
frequency parameter is found at indices (m=1, n=2).

In-plane load results are compared with that published in (Reddy J. N. and Liu C. F.
1985) as shown in Table(4), also GTT agree well with HSDT. Also the effect of (Ny) on the
natural frequencies of cylinder, when it is compressive load it decreases natural frequency for
cylindrical shell but when it tension load it increases it as shown in Table (5).

=5, frequency parameter=Q = (
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Table (1): Frequency parameters for [0-90] graphite/epoxy closed cylindrical
shells, (R/H) =100.

(L/'mR) Reference | 2
Frequency parameter=0) = @ £
100H )\ E,
n
0 1 2 3 4 5

2 Present .35629 239718 | .145541 .09647 070251 | .059134
(Mohamma .35629 23975 .14556 .09650 .07025 .05915
dS. Qatu
2004)

Discrepancy 0 .013 .013 031 .001 .027
(%)

1 Present 71258 442059 | .291537 | .208603 | .159365 | .129270
(Mohamma 71259 44205 29163 .20869 .15935 12928
dS. Qatu

2004)
Discrepancy .001 .002 031 041 .009 .007
(%)

5 Present 7347119 | .637573 49575 389404 | .316127 | .265658
(Mohamma .73565 .63822 49616 .38973 .31622 .26575
dS. Qatu

2004)
127 101 .082 .083 .029 .034

(%)

Discrepancy
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Table (2): Frequency parameters for [0-90] graphite/epoxy closed cylindrical

shells.
L/mR 2
( : Frequency parameter=Q = ( ol J\/z
100H )\ E,
n
Reference | o | 1 | 2 | 3 | 4 | 5
(RIH)=20
2 Present .35647 .23789 14591 .09626 .06763 .04991
(Mohammad S. Qatu .35629 .24015 14590 .09623 06761 .04991
2004)
Discrepancy (%) .05 .94 .0068 .03 .02 0
1 Present 11294 44170 29620 .20845 14758 12397
(Mohammad S. Qatu .71258 44245 29191 .20838 15753 12393
2004)
Discrepancy (%) .05 .16 14 .03 6.3 .03
5 Present 3177 .63517 49319 38572 .31010 .25606
(Mohammad S. Qatu .73190 .63517 49310 .38561 .31000 .25597
2004)
Discrepancy (%) .01 0 .01 .02 .03 .03
(R/H)=500
2 Present .35647 .24025 14595 11073 12298 .16966
(Mohammad S. Qatu .35633 .23799 .14609 11114 12399 17190
2004)
Discrepancy (%) .03 .94 .09 .36 81 13
1 Present 11294 44258 29202 22644 .20670 22753
(Mohammad S. Qatu .711266 44283 29705 22751 .20855 .23095
2004) 1.4
Discrepancy (%) .03 .05 1.6 A7 .88
5 Present 77913 .68365 .55557 47426 43687 43493
(Mohammad S. Qatu .78908 .69140 56195 48080 44477 44535
2004)
Discrepancy (%) 1.2 11 11 1.3 1.7 2.3
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Table (3): The effect of lamination type on minimum frequency parameters
(m=1, n=2) of (graphite/epoxy) closed cylindrical shells.

Lamination Theory Frequency Discrepancy
2 %
parameter=C) :( ol J \/Z 0
100H )\ E,
Present theory(G.T.T.) .156047 -
(0/90) HSDT (Reddy J. N. 1566 35
and Liu C. F. 1985)
FSDT (Reddy J. N. 1552 54
and Liu C. F. 1985)
CST (Reddy J. N. and .1630 4.2
Liu C. F. 1985)
Present theory(G.T.T.) 171515 -
(0/90/0)
HSDT (Reddy J. N. 777 3.4
and Liu C. F. 1985)
FSDT (Reddy J. N. 1779 3.5
and Liu C. F. 1985)
CST (Reddy J. N. and 2073 17.2
Liu C. F. 1985)

Table (4): The dimensionless critical buckling loads of cross-ply circular
cylindrical shell as predicted by various theories. (m=1, n=3,

L/R=1, R/H=10, N=NL"2/100H"3E2)

Lamination Theory SS Discrepancy
(%)
HSDT (Reddy J. N. 1687 3.9
and Liu C. F. 1985)
[0-90] Present work .162065
GTT
FSDT (Reddy J. N. 1670 2.9
and Liu C. F. 1985)
CST. (Reddy J. N. 1817 10.8
and Liu C. F. 1985)
HSDT (Reddy J. N. 2794 1.7
and Liu C. F. 1985)
[0-90-0] Present work 274399
GTT
FSDT (Reddy J. N. 2813 2.4
and Liu C. F. 1985)
CST (Reddy J. N. and 4186 34.4
Liu C. F. 1985)
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Table (5): The effect of the in-plane load (N=NL"2/100H"3E2=.25) on the
dimensionless minimum frequencies of cross-ply closed circular

2
cylindrical shells. a):( ol J £
100H )\ E,
Lamination Theory Compressive in- Discrepancy Tension in-plane
plane load (%) load
Present work .071682 - 194108
(GTT)
[0-90] HSDT (Reddy J. .0786 8.8 -
N. and Liu C. F.
1985)
FSDT (Reddy J. .0761 5.8 -
N.and Liu C. F.
1985)
CST(Reddy J. N. .0932 23.08 -
and Liu C. F.
1985)
Present work .109846 - 221492
(GTT)
[0-90-0] HSDT (Reddy J. .1089 .86 -
N. and Liu C. F.
1985)
FSDT(Reddy J. 1095 315 -
N.and Liu C. F.
1985)
CST(Reddy J. N. 1533 28.3 -
and Liu C. F.
1985)
Present work 14733 - 228323
(GTT)
[0-90-0-90...... HSDT (Reddy J. 1533 38 -
10 layers N. and Liu C. F.
1985)
FSDT (Reddy J. 1531 3.7 -
N. and Liu C. F.
1985)
CST(Reddy J. N. .1607 8.3 -
and Liu C. F.
1985)
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CONCLUSIONS.

In this work General Third order shell Theory (GTT) is developed to derive the
governing equations for free vibration and obtaining in-plane critical load of simply
supported cylindrical shells, for first time, and these equations are solved using Navier's
solution. Good agreement between results obtained using GTT in present work with those
obtained by other researchers using HSDT, FST for analyzing dynamic behavior of laminated
cylindrical shells (maximum discrepancy with HSDT is 3.7%), however high order theory
does not require the use of correction factor. Also the effect of the type of this in-plane load
on the natural frequencies is studied, compressive axial load decrease natural frequencies,
while tension in-plane load increase them, as proved by many other papers.
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NOMENCLATURE.
a,b Dimensions of shell.
Amn By Crons Dinny Emny Frony Imn Avrbitrary constants
{A} Displacement vector
Cij stiffness matrix elements
Ei, Ez Es Elastic Modulus components (Gpa)
Gi2, Gis, Go3 Shear modulus components (Gpa)
H Thickness (mm)
K Kinetic energy
L Cylinder length (mm)
[M] Inertia matrix
m, n indices
N; M, P, Si, Qi, K (i=1,2,3,4,5,6) Resultant reactions (N/mm),(N.mm)
Ny Buckling load (N/mm)
Qij Elastic stiffness coefficients
R Cylinder radius (mm)
U Potential energy (N.m)
u, v, W, 01, 02, W1, Vo, Y3 01, 0, 03 Displacement components (mm)
z Distance from neutral axis (mm)
€ 123456 Strain components in principle axes direction.
V12, V13, V23 Poisons ratio components
p Density (Kg/m®)
® Frequency (rad/s)
Q Frequency parameter for cylindrical shell.
0123456 Stress components (Mpa), in principle axes
direction.
ABBRIVATIONS.
CST Classical shell theory
CLPT Classical plate theory
ESL Equivalent single layer
FSDT First order shear deformation theory High shear
HSDT deformation theory
GTT General third order theory
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