
Journal of Engineering Volume 16 June  2010       Number   2 
 

 

 5170 

 

 

 

 

 

 

 

A STUDY OF FREE VIBRATION AND FATIGUE  

FOR CROSS-PLY CLOSED CYLINDRICAL SHELLS 

USING GENERAL THIRD SHELL THEORY (GTT) 
 

Dr. Muhsen J. Jweeg                                                    Dr.  Wedad I. Alazzawy 

Nahrain University                                                            Baghdad University 

Mech. Eng. Dep.                                                               Mech. Eng. Dep. 

 

 
ABSTRACT: 

           Free vibration solution will be developed for laminated simply supported closed 

cylindrical shells. This solution is obtained using General Third Shell Theory (G.T.T.). Also 

the critical in-plane fatigue load is studied and the required equilibrium equations are 

developed, the effects of tension or compression in-plane load on the natural frequencies are 

discussed also. The natural frequencies and in-plane fatigue load results are very close to 

those obtained by other researchers.  

 

:لخلاصةا  

. الاهتشاس انحز نقشزٌاث طباقٍت يسُذة بصىرة بسٍطت تى تطىٌز حم نه باستخذاو َظزٌت انقشزٌاث انعايت انزتبت انثانثت

كذنك تى يُاقشت تاثٍز حًم , كذنك تى دراست حًم انكلال انحزج فً انًستىي كًا تى تطىٌز يعادلاث انتىاسٌ انضزورٌت

فً انًستىي قزٌبت خذا نتهك َتائح انتزدد انطبٍعً وحًم انكلال . ى انتزدد انطبٍعًالاَضغاط او انتًذد فً انًستىي عه

.انًحصم عهٍها يٍ قبم باحثٍٍ اخزٌٍ    
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INTRODUCTION: 
           The last decay is marked by a transition in use of composites has expanded from 

aerospace and defense applications into a wider commercial arena. Today composites are 

used in the power generation industry, the automotive industry, biomedical engineering and 

various consumer goods. In service similarly to other materials, advanced composites age, 

suffer physical or chemical degradation and accumulate micro mechanical damage. As cured 

laminated composites cool to room temperature, stresses develop at the laminae and fiber-

matrix interfaces due to the different consistent expansion characteristics. Hence, initially 

stable composites could become unstable in an actual space application. In all above 

applications, it is important to achieve low weight, high strength, stiffness and safety which 

can be achieved by good fatigue performance. Most of structural theories used till now to 

characterize the behavior of composite laminates fall into the category of equivalent single 
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layer (ESL) theories. In these theories the material properties of constituent layers are 

“smeared “to form a hypothetical single layer whose properties are equivalent to through-the-

thickness integrated sum of its constituents. This category of theories have been found to be 

adequate in predicting global response characteristics of laminates, like maximum deflection, 

maximum stresses, fundamental frequencies, forced response, or critical buckling load. 

Continuum based theories give an analytical (3-D) elasticity solutions for beam, plate and 

shells but it cumbersome. High order shell theories are those in which the transverse strains 

are accounted. The (in-plane) fatigue loading (presented as buckling load in present work) of 

shell of revolution such as cylinder or conical has been studied by many researchers. 

                          (Altan Kayran & Vinson 1990) presented an analysis for the free vibration 

characteristics of isotropic and laminated composite truncated circular shells including 

transverse shear deformation. All components of translatory and rotatory inertia are included. 

The applicability of linear shell theory due to Reissner is assumed, and governing equations 

are solved for the natural frequencies and mode shapes by using a combination of modal 

iteration and transfer matrix approach for different boundary conditions. 

           (Narita et al 1992) developed a theoretical method for solving the free vibration 

angle-ply laminated cylindrical shells. The angle-ply laminated shell is macroscopically 

modeled as a thin shell of General anisotropy by using the classical lamination theory. Shell 

theory is minimized by following the Ritz procedure, and arbitrary combinations of boundary 

conditions at both ends are accommodated by introducing newly developed admissible 

functions. 

          (Liyong Tong 1993) used a particularly convenient coordinate system, a simple and 

exact solution is obtained directly for the Donnell-type governing equations of the free 

vibration of composite laminated conical shells, with orthotropic stretching-bending 

coupling. The solution is in the form of a power series, and its convergence condition is 

investigated.                          

          (Tong 1996) obtained an analytical solution in the form of a power series for the three 

governing equations of free vibrations of axially loaded orthotropic conical shells. Numerical 

results are presented for the frequency parameters and associated circumferential wave 

numbers of axially loaded shells with different geometric and material parameters and under 

two types of boundary conditions. 

          (Korjakin  et al (1998) investigated the damping of free vibrations of laminated 

composite conical shells. Finite element analysis of conical shells is performed by using first-

order shear deformation theory (FOSDT). Based on proposals of other researchers a damping 

model is developed in connection with energy method (EM) and applied in order to calculate 

the modal loss factors of laminated composite conical shells.             

           (Xi et al 1999) investigated the effects of shear non-linearity on free vibration of 

laminated composite shell of revolution using a semi-analytical method based on Reissner-

Mindlin shell theory. The coupling between symmetric and anti-symmetric vibration modes 

of the shell is considered in the shear deformable shell element.    

           (Pinto Correia et al 2001) presented a numerical method for the structural analysis of 

laminated conical shell panels using a quadrilateral isoperimetric finite element based on the 

higher order shear deformation theory. 

           (Werner Hufenbach et al 2002) developed analytical solution for lightweight design 

using dynamically loaded fiber-reinforced composite shells. The analytic results were fully 

corroborated by accompanying FE calculations for special lay-ups. 

            (Lee et al 2002) used the finite element method based on Hellinger-Reissner principle 

with independent strain to analyze the vibration problem of cantilevered twisted plates, 

cylindrical and conical laminated shells. 
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            ( Kabir et al 2003) presented a hitherto unavailable analytical solution to the 

boundary value problem of the free vibration response of shear flexible antisymmetric cross-

ply laminated cylindrical shell, using (FSDT) theory.                                   

           (Young-Shin Lee et al 2003)  investigated the free vibration analysis of a laminated 

composite cylindrical shell with an interior rectangular plate by analytical and experimental 

methods. The frequency equations of vibration of the shell including the plate are formulated 

by using the reacceptance method. 

           (Darvizeh et al 2005) presented a calculation of overall dynamic response of thin 

orthotropic cylindrical shells. Due to the obvious importance of the effects of transverse shear 

deformation and rotary inertia, these terms are included in the analysis. The exact method is 

modified to predict the dynamic behavior of an orthotropic circular cylindrical shell. 

           The (in-plane) fatigue loading of shell of revolution such as cylinder or conical has 

been studied by many researchers. (George J. Simitses & John S. Anastasiadis 1992) 

developed a higher order theory, which includes initial geometric imperfections and 

transverse shear effects for a laminated cylindrical configuration under the actions of lateral 

pressure, axial compression, and eccentrically applied torsion. 

           (Seishi Yamada & Croll 1993) used nonlinear Ritz analysis to investigate the elastic 

(in-plane) loading behavior of pressure loaded cylinders. Careful analysis of the energy 

changes during the loading process allows definition of a reduced stiffness theoretical model. 

           (NG et al 1998) studied the dynamic stability of then, laminated cylindrical shells 

under combined static and periodic axial forces using Love’s classical theory of thin shells. A 

normal-mode expansion of the equations of motion yields a system of Mathien-Hill 

equations. Bolton’s method is then employed to obtain the dynamic instability regions. The 

present study examines the dynamic stability of antisymmetric cross-ply circular, cylindrical 

shells of different lamination schemes. The effect of the magnitude of the axial load on the 

instability regions is also examined.  

           ( NG et al 1998) investigated the parametric resonance of rotating cylindrical shells 

periodic axial loading. The formulation is based on the dynamic version of Connell’s 

equations for thin rotating cylindrical shells. A modified assumed-mode method is used to 

reduce the partial differential equation of motion to a system of coupled second order 

differential equations with periodic collisions of the Mathieu Hill type. The instability regions 

are determined based on the principle of Bolton’s method. Or special interests here are the 

effects of the centrifugal and Carioles forces on the instability regions which were examined 

in detail. 

           (Romil Tanov et al 1999) presented the results obtained while investigating the 

behavior of cylindrical laminated shells under suddenly applied lateral pressure. The 

investigations were based on a finite-element approach using an explicit time integration 

scheme. The Budiansk- Roth and phase- plane criteria were used to assess (in-plane) loading.  

           (Meyers &  Hyer 1999) used results from semi analytical predictions and experiments 

to study the response of composite cylinders with elliptical cross sections loaded axially to a 

significant percentage of their (in-plane) loading load. The semi analytical approach is based 

on the methods of Marguerre, Rayleigh-Ritz, and Kantorovich. 

            (Youngjin Chung (2001) aimed in this study, is to improve the strength of conical 

shells and reduce the weight of the structure. Buckling of composite conical shells subjected 

to combine axial loading, external pressure, and bending is investigated using energy and 

finite element methods. 

             (Andrea Spagnoli 2001) studied the local shell and stringer buckling modes and 

global buckling mode in conical shells under axial compression through a linear eigenvalue 

finite element analysis. In order to examine buckling modes in isolation as well as competing 
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modes together, use is made of different finite element model, including discrete and smeared 

models. 

 

           ( Geier et al 2002) studied the (in-plane) loading load of laminated cylinders which 

strongly depend on the position of the differently oriented layers, his work deals with two 

different laminated orthotropic cylinders with opposite stacking sequence of the laminate 

layers. Analytical and semi analytical method have been used to predict the (in-plane) loading 

loads, the results are compared with those tested. 

          (Hunt et al 2003) presented a hypothesis for prediction of the circumferential wave 

number of (in-plane) loading of thin axially-compressed cylindrical shell, based on the 

addition of a length effect to classical (Koiter circle) critical load result.  

           (Sofiyev 2005) provided an analytical solution for stability behavior of cylindrical 

shell made of compositionally graded ceramic-metal materials under axial compressive loads 

varying as a power function of time. The material properties of compositionally graded shells 

are assumed to vary continuously through the thickness of the shell according to arbitrary 

distribution of the volume fraction of the constituents. The fundamental equations for thin 

shells of compositionally graded ceramic-metal material are obtained Loves shell theory. 

           (Azam Tafreshi 2005) carried out a series of finite element analyses on the 

delaminated composite cylindrical shell subjected to combined axial compression and 

pressure by which the delamination thickness and length, material properties and stacking 

sequence are varied. The characteristics of (in-plane) loading and post (in-plane) loading 

behavior of delaminated composite cylindrical shell are investigated. 

           In present work, a unified third order theory (G.T.T.) to evaluate the performance of 

some displacement based (ESL) theories in natural frequencies and fatigue characteristics in 

laminated composite cylindrical shell.   

 

 EQUATIONS OF MOTION: 

 
                         In present study high-order theory displacement field is: 
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                      Figure (1): Coordinate system and structure of 

                                                             laminated cylinder.  
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          Assuming vanishing transverse shear stress at top and bottom of laminated composite 

layers, and hence transverse strain also vanishes, so: 
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According to Hamilton’s׳ Principles: 
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The resultants forces-displacement components relations are: 

 

   dzQQQQdzN 61631321211111                                    ………………………….. (13) 

From the constitutive relations of the kth lamina: 
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And: 
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Substituting the resultants forces in motion-equations and then the assumed displacement 

components according to Navier׳s Solution (Reddy J.N 2004) (for simply supported 

boundary conditions). 
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Where α= 








L

m
, β=n 

                          

                   Developing mass matrix and stiffness matrix from solution of homogeneous 

equations, eignvalue equation is derived and the natural frequencies of vibration for simply 

supported cylindrical shell are obtained when solving the later equation: 

     02  AMC  ………………………………………………………………………. (17) 

 

                     The failure of laminates cylindrical shell under in-plane fatigue load is studied 

in this work using G.T.T. theory to calculate the critical (in-plane) fatigue load which cause 

the failure of fiber or matrix of laminate or both of them, and study the effect of this load on 

the natural frequencies of the shell. Using the same Navier׳s solution (putting right side =0) 

for equations ((6)-(12)) and rearranging the obtained matrices we get: 
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                          Following the condensation of variables procedure to eliminate the 

displacement components (U,V,φ
1
,φ

2
,ψ

3
,θ

3
), the critical value of (Nx) is obtained. 
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VALIDITY OF THE DEVELOPED EQUATIONS: 

 
            General Third Order Theory (G.T.T.) is employed to investigate its capability level 

for dynamic analysis of the symmetric and non-symmetric cross-ply laminated cylindrical 

shells, and compared with other theories used by other researchers such as HSDT, FSDT, 

CST. 

           The fundamental natural frequency of laminated closed cylindrical shell are listed for 

each (L/mR) ratio (for thin shell R/H=100) in Table (1) and compared with those obtained by 

using CST (but without neglecting (z/R)) in (Mohammad S. Qatu 2004), the results obtained 

by present work give excellent agreement with them, where maximum percentage error is 

(.127%) (error percentage is taken with relative to the reference results).  

            Table (2) lists the natural frequencies for [0-90] graphite/epoxy closed cylindrical 

shell with two different thickness ratio (R/H=20 & R/H=500). As can be seen from this table, 

thicker shells have lower frequency parameter than thinner shells for shorter shells (L/mR=1 

and 2). It is interesting to note that the thickness ratio has minimal effects on natural 

frequencies when n=0 and 1. For n>1, the thickness ratio has a much greater effect. It is also 

observed that the fundamental frequency occurs at lower value for higher thickness ratios.                        

In all calculation the material properties are as follows: 

E1=20E6       E2=E3=1.3E6        G12=G13=1.03E6    G23=.9e6 3.1312        49.23   , 

Frequency parameter=
2

2

100 EH

L 








 . 

           While in Table (3), minimum frequency parameter of laminated cylindrical shell for 

different lamination type are obtained and compared with other shell theories published in 

(Reddy and Liu 1985), a good agreement between results of theory GTT and HSDT, 

maximum relative percentage error is (3.7%), while with FSDT and CST are (3.7%, 17.2%) 

respectively, as presented in the table, also the frequency parameter is increased when 

number of layers is increased. For this results material properties are as follows:   E1=40 Gpa   

E2=E3=1Gpa     G12=G13=.6Gpa     G23=.5Gpa 3.1312        49.23              (L/R) =2   (R/H) 

=5, frequency parameter=
2

2

100 EH

L 








 , percentage (%) in all tables 

= 100*/ sultsrefrenceresultrefrencerekresultspresentwor  . 

           It is interesting to note that for thin shells the relative percentage error between GTT 

and FSDT or CST, is smaller then that for moderately thick shells, as shown in Table (1) (for 

thin shell) and Table (3) (for moderately thick shell), but fortunately GTT made fair with 

most accurate one of HSDT for both thin and moderately thick cylindrical shells. Also, each 

pairs of (m x n) values relates with seven successive bending frequencies by using GTT, and 

the increasing orders of these frequencies, for different combinations of (m, n) values, show 

no systematic trend, as being the case in rectangular plates where the fundamental frequency 

is always associated with the mode indices (1, 1) as being noted in Table (3) where minimum 

frequency parameter is found at indices (m=1, n=2). 

           In-plane load results are compared with that published in (Reddy J. N. and Liu C. F. 

1985) as shown in Table(4), also GTT agree well with HSDT.  Also the effect of (Nx) on the 

natural frequencies of cylinder, when it is compressive load it decreases natural frequency for 

cylindrical shell but when it tension load it increases it as shown in Table (5). 

 
 



Journal of Engineering Volume 16 June  2010       Number   2 
 

 

 5178 

 

Table (1): Frequency parameters for [0-90] graphite/epoxy closed cylindrical 

                    shells, (R/H) =100. 

 
(L/mR) Reference 

Frequency parameter=
2

2

100 EH

L 








  

n 

0 1 2 3 4 5 

2 

 

 

Present 

 

 (Mohamma

d S. Qatu 

2004) 

 

Discrepancy 

(%) 

.35629 

 

.35629 

 

 

 

0 

.239718 

 

.23975 

 

 

 

.013 

.145541 

 

.14556 

 

 

 

.013 

.09647 

 

.09650 

 

 

 

.031 

.070251 

 

.07025 

 

 

 

.001 

.059134 

 

.05915 

 

 

 

.027 

1 Present 

 

(Mohamma

d S. Qatu 

2004) 

 

Discrepancy 

(%) 

.71258 

 

.71259 

 

 

 

.001 

.442059 

 

.44205 

 

 

 

.002 

.291537 

 

.29163 

 

 

 

.031 

.208603 

 

.20869 

 

 

 

.041 

.159365 

 

.15935 

 

 

 

.009 

.129270 

 

.12928 

 

 

 

.007 

.5 Present 

 

(Mohamma

d S. Qatu 

2004) 

 

Discrepancy 

(%) 

.7347119 

 

.73565 

 

 

 

.127 

.637573 

 

.63822 

 

 

 

.101 

.49575 

 

.49616 

 

 

 

.082 

.389404 

 

.38973 

 

 

 

.083 

.316127 

 

.31622 

 

 

 

.029 

.265658 

 

.26575 

 

 

 

.034 
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Table (2): Frequency parameters for [0-90] graphite/epoxy closed cylindrical  

                   shells. 

 
(L/mR) 

Frequency parameter=
2

2

100 EH

L 








  

n 

Reference 0 1 2 3 4 5 

(R/H)=20 

2 

 

 

 

Present 

(Mohammad S. Qatu 

2004) 

 Discrepancy (%) 

 

.35647 

.35629 

 

.05 

.23789 

.24015 

 

.94 

.14591 

.14590 

 

.0068 

.09626 

.09623 

 

.03 

 

.06763 

.06761 

 

.02 

.04991 

.04991 

 

0 

1 Present 

(Mohammad S. Qatu 

2004) 

 Discrepancy (%) 

.71294 

.71258 

 

.05 

.44170 

.44245 

 

.16 

.29620 

.29191 

 

1.4 

.20845 

.20838 

 

.03 

.14758 

.15753 

 

6.3 

 

.12397 

.12393 

 

.03 

.5 Present 

(Mohammad S. Qatu 

2004) 

Discrepancy (%) 

.73177 

.73190 

 

.01 

.63517 

.63517 

 

0 

.49319 

.49310 

 

.01 

.38572 

.38561 

 

.02 

.31010 

.31000 

 

.03 

.25606 

.25597 

 

.03 

(R/H)=500 

2 Present 

(Mohammad S. Qatu 

2004) 

Discrepancy (%) 

.35647 

.35633 

 

.03 

.24025 

.23799 

 

.94 

.14595 

.14609 

 

.09 

.11073 

.11114 

 

.36 

.12298 

.12399 

 

.81 

.16966 

.17190 

 

1.3 

1 Present 

(Mohammad S. Qatu 

2004) 

Discrepancy (%) 

.71294 

.71266 

 

.03 

.44258 

.44283 

 

.05 

.29202 

.29705 

 

1.6 

.22644 

.22751 

 

.47 

.20670 

.20855 

 

.88 

.22753 

.23095 

1.4 

.5 Present 

(Mohammad S. Qatu 

2004) 

Discrepancy (%) 

.77913 

.78908 

 

1.2 

.68365 

.69140 

 

1.1 

.55557 

.56195 

 

1.1 

.47426 

.48080 

 

1.3 

.43687 

.44477 

 

1.7 

.43493 

.44535 

 

2.3 
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Table (3): The effect of lamination type on minimum frequency parameters 

                   (m=1, n=2) of (graphite/epoxy) closed cylindrical shells. 

 
Lamination Theory Frequency 

parameter=
2

2

100 EH

L 








  

Discrepancy 

(%) 

 

(0/90) 

 

Present theory(G.T.T.) .156047 - 

HSDT (Reddy J. N. 

and Liu C. F. 1985) 

 .1566 .35 

FSDT (Reddy J. N. 

and Liu C. F. 1985) 

.1552 .54 

CST (Reddy J. N. and 

Liu C. F. 1985)  

.1630 4.2 

 

(0/90/0) 

Present theory(G.T.T.) .171515 

 

- 

HSDT (Reddy J. N. 

and Liu C. F. 1985)  

.1777 3.4 

FSDT (Reddy J. N. 

and Liu C. F. 1985) 

.1779 3.5 

CST (Reddy J. N. and 

Liu C. F. 1985)  

.2073 17.2 

 
Table (4): The dimensionless critical buckling loads of cross-ply circular  

                    cylindrical shell as predicted by various theories. (m=1, n=3,  

                    L/R=1, R/H=10, N=NL^2/100H^3E2) 

 
Lamination Theory SS Discrepancy  

(%) 

 

 

[0-90] 

HSDT (Reddy J. N. 

and Liu C. F. 1985)  

.1687 3.9 

Present work 

GTT 

.162065  

FSDT  (Reddy J. N. 

and Liu C. F. 1985)  

.1670 2.9 

CST. (Reddy J. N. 

and Liu C. F. 1985)  

.1817 10.8 

 

 

[0-90-0] 

HSDT (Reddy J. N. 

and Liu C. F. 1985) 

.2794 1.7 

Present work 

GTT 

.274399  

FSDT (Reddy J. N. 

and Liu C. F. 1985) 

.2813 2.4 

CST (Reddy J. N. and 

Liu C. F. 1985) 

.4186 34.4 
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Table (5): The effect of the in-plane load (N=NL^2/100H^3E2=.25) on the  

                    dimensionless minimum frequencies of cross-ply closed circular 

                    cylindrical shells. 
2

2

100 EH

L 
 












 

  
Lamination Theory Compressive in-

plane load 

Discrepancy 

(%) 

Tension in-plane 

load 

 

 

[0-90] 

Present work 

(GTT) 

.071682 - .194108 

HSDT (Reddy J. 

N. and Liu C. F. 

1985)  

.0786 8.8 - 

FSDT (Reddy J. 

N. and Liu C. F. 

1985)  

.0761 5.8 - 

CST(Reddy J. N. 

and Liu C. F. 

1985) 

.0932 23.08 - 

 

 

[0-90-0] 

Present work 

(GTT) 

.109846 - .221492 

HSDT (Reddy J. 

N. and Liu C. F. 

1985)  

.1089 .86 - 

FSDT(Reddy J. 

N. and Liu C. F. 

1985) 

.1095 .315 - 

CST(Reddy J. N. 

and Liu C. F. 

1985) 

.1533 28.3 - 

 

 

[0-90-0-90……] 

10 layers 

Present work 

(GTT) 

.14733 - .228323 

HSDT (Reddy J. 

N. and Liu C. F. 

1985)   

.1533 3.8 - 

FSDT (Reddy J. 

N. and Liu C. F. 

1985) 

.1531 3.7 - 

CST(Reddy J. N. 

and Liu C. F. 

1985)  

.1607 8.3 - 
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CONCLUSIONS: 
           In this work General Third order shell Theory (GTT) is developed to derive the 

governing equations for free vibration and obtaining in-plane critical load of simply 

supported cylindrical shells, for first time, and these equations are solved using Navier׳s 

solution. Good agreement between results obtained using GTT in present work with those 

obtained by other researchers using HSDT, FST for analyzing dynamic behavior of laminated 

cylindrical shells (maximum discrepancy with HSDT is 3.7%), however high order theory 

does not require the use of correction factor. Also the effect of the type of this in-plane load 

on the natural frequencies is studied, compressive axial load decrease natural frequencies, 

while tension in-plane load increase them, as proved by many other papers.  
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NOMENCLATURE: 

 
a, b Dimensions of shell. 

Amn, Bmn, Cmn, Dmn, Emn, Fmn, Jmn Arbitrary constants 

{A} Displacement vector 

Cij stiffness matrix elements 

E1, E2, E3 Elastic Modulus components (Gpa) 

G12, G13, G23 Shear modulus components (Gpa) 

H Thickness (mm) 

K Kinetic energy 

L Cylinder length (mm) 

[M] Inertia matrix 

m, n indices 

Ni ,Mi, Pi, Si, Qi, Ki (i=1,2,3,4,5,6) Resultant reactions (N/mm),(N.mm) 

Nx Buckling load (N/mm) 

Qij Elastic stiffness coefficients 

R Cylinder radius (mm) 

U Potential energy (N.m) 

u, v, w, φ1, φ2, ψ1, ψ2, ψ3, θ1, θ2, θ3 Displacement components (mm) 

z Distance from neutral axis (mm) 

ε 1,2,3,4,5,6 Strain components in principle axes direction. 

υ12, υ13, υ23  Poisons ratio components 

ρ Density (Kg/m
3
) 

ω Frequency (rad/s) 

Ω Frequency parameter for cylindrical shell. 

σ1,2,3,4,5,6 Stress components (Mpa), in principle axes 

direction. 

 

ABBRIVATIONS: 
CST Classical shell theory 

CLPT Classical plate theory 

ESL  Equivalent single layer  

FSDT 

HSDT 

First order shear deformation theory High shear 

deformation theory 

GTT  General third order theory 

 


