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ABSTRACT 

A boundary element numerical algorithm has been developed for the determination of stresses and 

deformations around cavities and tunnels. A study of the influence of depth below the ground 

surface on the distribution of stresses and deformations around cavities and tunnels is presented in 

this paper. The soil is assumed to behave linearly elastic. 

A computer program has been built to perform the numerical computations. The results show that 

with increasing the depth of placement of tunnel or opening below the ground surface, the 

settlements decrease. The maximum stresses occur at the haunches of the tunnel rather than at the 

crown. 

For the circular cavity that is considered in this paper, it was found that with increasing the depth 

below the ground surface (depth/tunnel diameter > 3), the surface settlements do not exceed 6 % 

from those obtained for the case of no-cavity condition. 
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INTRODUCTION 

Rapid growth in urban development has resulted an increased demand for the construction of water 

supply, sewage disposal and transportation systems. Tunnels are an essential component of these 

systems and constitute a major portion of project expenditure. 

Recent advances in tunnelling technology reduce construction time with consequent decrease in 

cost. However, even with modern equipment, experience has shown that designing of tunnels must 

include dealing with three important problems: 

1- Maintaining stability of face and wall of the tunnel before supported by lining. 

2- Predicting displacements caused by excavation of the tunnel on the surface and throughout the 

adjacent ground mass. 

3- Predicting the magnitude and distribution of earth pressure acting on the tunnel. 

So, there is an urgent need for reliable means to estimate the extent and nature of the 

movements and disturbance occuring in areas above and adjacent to tunnels. These 

deformations may significantly affect nearby structures and need to be considered during 

design. 

The object of this paper is to provide, as far as possible, a picture of the stress distribution around 

cavities and tunnels in an isotropic medium. Also, provide at least a temporary expedient for 

estimating the settlements to be expected at varying distances laterally from the centre line of a 

cavity or a tunnel.  

 

PREVIOUS STUDIES 
Although the finite element techniques have been used in so many practical problems, the boundary 

formulations appear as an alternative technique that, in many cases, can provide more reliable or 

economical analysis. Even with automatic mesh generation techniques, the finite element method 

has not found widespread application to tunneling problems because of the data preparation 

problems and considerable computer time requirements. 

The input data requirements of the boundary element method (BEM) are considerably less than 

these of the finite element method (FEM) since only the boundary needs to be discretized. Unlike 

the FEM, the BEM can model the boundaries at infinity without truncating the outer boundary at 

some arbitrary distance from the region of interest. 

In the boundary element method, the unknowns appear only on the boundaries of a domain, so the 

number of the unknowns may be reduced compared to the three-dimensional finite element method. 

This condition is well suited to tunnels, where the most significant unknown, the surface subsidence 

appears on the boundary. 

The research already conducted on tunneling problems or soil-structure interaction using the BEM 

can be summarized as follows: 

1- Brady and Bray (1978a and b) have described a boundary element method for determining the 

distribution of stress and induced displacements around long, narrow, parallel - sided openings in 

an elastic medium. A good agreement was found between the results of the boundary element 

analyses and those obtained from analytical solutions. A BEM of stress analysis was also 

developed for the solution of complete plane strain problems and applied to determine the stress 

distribution around openings with irregular cross sections having any arbitrary orientation in a 

triaxial stress field. The displacements induced by the excavation are also included. 

2- Venturini and Brebbia (1981) have described for the first time, the extension of the BEM to no 

tension materials such as those present in underground and surface excavations. 

3- Ito and Histake (1982)* treated generally, a three-dimensional problem of an advancing shallow 

tunnel in an elastic and non-elastic ground by the boundary element method. The tunnel advance 

velocity and the position of the face were taken  into consideration. The method has been 

illustrated and verified on two sites where subsidence measurements were taken simultaneously. 
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The disadvantage of this method is that it does not deal with displacements inside the ground nor 

with the corresponding changes in stresses. 

4- Gioda, Carini and Cividini (1984)** discussed a boundary integral equation technique for 

the visco-elastic stress analysis of underground openings. The results of a test problem were 

presented concerning a shallow circular tunnel. These results show that an acceptable 

accuracy of the numerical solution is obtained even when adopting a relatively small 

number of free variables  

5- Again, Venturini and Brebbia in (1984)** have proposed a boundary element formulation 

to analyze plane strain problems with possible displacements at the third direction. An 

algorithm to model nonlinear behavior is presented including an initial stress process. The 

study of an unlined opening was carried out illustrating that tunnels whose axes do not 

coincide with the original principal stress direction can not be analyzed assuming plane 

strain conditions only. 

 

THE BOUNDARY ELEMENT METHOD 

There are many engineering problems for which it is possible to represent the governing equations 

by a system of boundary integral equations (BIEs); that is , the integrated unknown parameters, in 

such equations, appear only in integrals over the boundary of the problem domain. There are many 

numerical approaches for the solution of such equations, and each approach gives the solution of 

such equations, and each one of them may be called a boundary integral equation method (BIEM).  

 

Characteristics of the Boundary Element Method 

The boundary element method (BEM) is considered nowadays the most popular numerical 

technique for the direct solution of BIEM. It is based upon piecewise discretization of the problem 

boundary in terms of sub–boundaries, known as boundary elements, in a way similar to that 

employed for the finite element method. The main advantages of the BEM compared with domain 

numerical techniques can be summarized in the following statements: - 

1- For many applications, the dimensionality of the problem is reduced by one, resulting in a 

considerable reduction in the data and computer CPU time required for the analysis.  

2- The BEM is ideal for problems with infinite domains, such as problems of soil mechanics, fluid 

mechanics and acoustics. 

3- No interpolation errors inside the domain.  

4- Boundaries at infinity can be modeled conveniently without truncating the outer at some 

arbitrary distance from the region of interest. 

5- Surface problem, such as those of elastic fracture mechanics, or elastic contact, is dealt with 

more efficiently and economically with the BEM. 

6- Valuable representation for stress concentration problems. 

7- The BEM offers a fully continuous solution inside the domain, and the problem parameters can 

be evaluated directly at any point. 

The boundary element method has also disadvantages and they can be outlined as follows,                     

(EL-Zafrany 1992): 

1- The derivation of the governing BIEs may require a level of mathematics higher than that with 

other methods, but the procedure of the BEM itself is not different from that of the FEM. 

2-  It leads to fully populated matrices for the equations to be solved, thus it is not possible to 

employ the elegant FEM solvers such as the banded or frontal solvers with the BEM. 

3- The BIEs of nonlinear problems may have domain integrals which require the use of domain 

elements for their evaluation, thus losing the main advantage of the dimensionality reduction 

mentioned above. 

4- The method is not accurate for problems within narrow strips or curved shell structures. 
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The Governing Equations 

In the elastic stress analysis of a plane-stress, or a plane strain engineering component, there are 

eight basic independent parameters to be determined, namely: the displacements u and v, strains εx, 

εy and γxy and stresses σx, σy and τxy. They are governed, at any point inside the component, by 

eight partial differential equations, which can be deduced for homogeneous isotropic materials from 

equations given in the last section. 

 
Strain-displacement relationships  
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Stress-strain relationships 
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     G = shear modulus 

    P = ν (Poisson’s ratio) for plane strain problems 

       = 
νννν

νννν
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 for plane stress problems. 

 

Equations of equilibrium 
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with the following equations, at any point on the boundary: 
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where:   Tx and Ty are the traction components in x- and y- directions. 

              l and m are directional cosines in x- and y-directions, respectively. 

 

Two-dimensional equations in terms of displacement 

Substituting Equations (1) into (2), then the stress components may be expressed in terms of 

displacement components. Substituting the resulting equations into the equations of equilibrium 



Journal of Engineering� �Volume 12    March 2006       � �Number 1 
� �

 

����

(Equations 4), then the governing equations are reduced to the following elliptic partial differential 

equations in terms of displacement components u and v: 
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where  ĵvîuq ++++==== , which is the displacement vector. 

 

Biharmonic representation 

Gelerkin introduced strain functions Gx and Gy which may be expressed in terms of a vector known 

as the Gelerkin vector, i.e. (EL-Zafrany 1992): 

ĵGîGG yx ++++====                                                                                                        (7) 

such that (Little 1973): 
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−−−−∇∇∇∇====                                                                                            (8) 

Writing the partial differential equations (6) in the following vectorial form: 
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1
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++++∇∇∇∇                                                                                              (9) 

then from the definition of the Gelerkin vector, the previous equation can be  modified as follows: 
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which can be rewritten explicitly in terms of the following Biharmonic equations:  
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FUNDAMENTAL SOLUTION OF SOLID CONTINUUM PROBLEMS 

 

Fundamental Displacement 

A two-dimensional solid continuum problem is considered in a semi-infinite domain,  with the x-y 

plane in a state of loading defined by a concentrated force acting at point (xi,yi) with a uniform 

distribution, in the z direction, over a thickness t, which has a constant value for the whole domain. 

The applied force is represented by the following vector (Fung 1965): 

)ĵeîe(tF yx ++++====
→→→→

                                                                                                                    (11) 

where ex and ey are the x and y- components of the applied force per unit thickness. 

From the definition of the two-dimensional Dirac delta function,  a domain distribution of the load 

intensity equivalent to the applied force, may be expressed as follows (Fung 1965): 
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Using Equations (6) and (7), the governing partial diferential equations for the above case may be 

written in the following displacement form: 
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and the solution to such expressions is known as the fundamental solution. 

If  the  displacement  components  (u*, v*)  are expressed  in  terms  of  the componants 

)G,G( *
y

*
x  of Galerkin’s vector, such that: 
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then, equations (13) can be reduced to the following biharmonic equations:         
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The previous equations lead to the conclusion that the parameters 
*
y

*
x G,G  can be defined in terms 
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Hence, Equations(15) may be reduced to the following equation: 
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Defining another function ϖ*
 such that:  G/g **2 ϖϖϖϖ====∇∇∇∇                                                           (18) 

Then Equation (17) can be rewritten in terms of the following Poisson’s partial differential 

equation: 
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Substituting the above expression into equation (18), and using direct integration, it can be shown 

that: 
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where C1 and C2 are arbitrary integration constants. 

Then, equations (14) become as: 
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where the fundamental solution parameter Gαβ is expressed as follows: 
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All explicit expressions for the fundamental solution parameters given in this paper are found in (al-

Adthami, 2003). 

 

Fundamental Strain 

The components of Cauchy’s strain tensor can be defined for the previous case, as follows (Desai 

and Siriwardane 1984): 
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and using equation (22), the previous equation may be written in the following form: 
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All fundamental solutions given in this paper are functions of (x-xi,y-yi). 

 

Fundamental Stress 

Substituting the fundamental strain tensor defined by equation (25) into the stress-strain 

relationships, then it can be proved that: 
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Fundamental Traction 

If the fundamental stress components defined above are employed in equations (5), then the 

corresponding components of fundamental tractions can be expressed in the following form: 
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Boundary Integral Equations 

The governing boundary integral equations are usually obtained by employing   fundamental   

solutions as weighting  functions  in  inverse  weighted - residual expressions. For linear elastic 

problems, the Maxwell-Betti reciprocal theorem may also be used for direct derivation of boundary 

integral equations. 

 

Boundary Integral Equations of Displacement 

Substituting the fundamental loading parameters defined by equations (12) into the inverse 

expression, and using Dirac delta properties, it can be deduced that: 
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where:  )y,x(vv),y,x(uu iiiiii ========                                                 

Employing fundamental displacements (equation 22), and fundamental tractions (equation 28), for 

arbitrary values of ex, ey, then equation (19) can be split into the following boundary integral 

equations which are defined with respect to the source point (xi, yi): 
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which represent domain loading terms. 

If the source point (xi, yi) is inside the domain, then Ci=1, and equations (30) and (31) may be 

modified as follows: 
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The analysis given in the remaining subsections will be limited to cases with source points being 

inside the domain. 

 

Boundary Integral Equations of Strain 

Equations (34) and (35) can be differentiated partially with respect to xi and yi; that is, Cauchy’s 

strain components may be defined at an internal point (xi,yi) as follows (Banerjee 1994):     
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When employing displacement equations (equations 34 and 35) in the previous expressions of strain 

components, integral terms are to be differentiated with respect to xi and yi. Then, the boundary 

integral equation for Cauchy’s strain tensor may be expressed in the following form: 
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Boundary Integral Equations of Stress 

Substituting the strain tensor defined by the boundary integral equation (37) into the stress-strain 

relationships, then a boundary integral equation for the stress tensor at the internal source point                 

(xi, yi) can be described, and expressed in the following form (Banerjee 1994): 
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                         (39) 

where: αβγαβγαβγαβγαβγαβγαβγαβγ −−−−==== DD                                                                                                                  (40) 

 

Numerical Treatment of the Boundary Integral Equations 

The boundary element method, as described in the previous sections, is based upon dividing the 

boundary into a suitable number of boundary elements, and approximating the boundary 

distributions of field function parameters such as displacements and tractions  by interpolating them 

in terms of their  nodal values within each element. Discretizing the boundary Γ of a two-

dimensional elasticity problem into ne boundary elements, the boundary integral equations 

(equations 30 and 31) with respect to the source point may be rewritten as follows: 
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where each parameter in the form of f(Γe) represents a field function parameter approximated over 

the boundary Γe of the eth element. 

 

 A Computer Program for Two-Dimensional Solid Continuum Problems 
A computer program based upon the theory of the two-dimensional solid continuum mechanics 

problems of the boundary element method with constant elements is coded in FORTRAN 77 and 

introduced herein. The program can deal with plane-stress and plane strain problems with surface 

and domain loading.  
 

In the design of tunnels to be constructed in urban areas, it is necessary to estimate the magnitude 

and distribution of the stresses and settlements that are likely to occur due to a particular design and 
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construction technique. Also, the effect of these stresses and movements upon existing surface and 

buried structures has to be studied. 

The main factors that greatly affect the stresses and deformations around tunnels and underground 

excavations are the shape, dimensions, depth of opening below the ground surface, distance 

between the openings and the kind of supports (gap parameters). Therefore, the influence of the 

depth of the tunnel below the ground surface is conducted herein by considering a cavity of 4 

meters diameter under a constant surcharge load of 50 KN/m
2
.  

The computer program is used for the determination of the stress and deformation fields around one 

cavity. The soil is assumed to be homogeneous, isotropic and a linearly elastic medium containing 

one opening representing the cavity dimensions and positions. The chosen discretization boundary 

element mesh is shown in Fig. (1).  

 

 

INFLUENCE OF DEPTH BELOW THE GROUND SURFACE: 
 

Case of a Single Cavity: 

Fig. (2) shows a schematic representation of the problem to be studied for 6 values of 

depth/diameter ratios (Zo/D = 1, 1.5, 2, 2.5, 3 and ∞) 

Figs (3) and (4) show the vertical and horizontal displacements (Uy and Ux) along the ground 

surface. It can be noticed from these figures that as (Zo/D>3), the disturbing influence on the ground  

surface does not exceed 5% from the case of no-cavity condition. 

Fig. (5) shows the variation of vertical stresses over a line passing through the centerline of the 

surface loading and the center of cavities (line I-I) in Fig. (3). The stresses are normalized by 

dividing the values by the applied load. From this figure, it can be seen that the vertical stress 

distributions increase with the increase of Zo/D ratio, reaching to maximum values as Zo/D ∞∞∞∞→→→→  

(case of no cavity). 

Fig. (6) shows the variation of horizontal stresses over a line passing through the centerline of the 

surface loading and the center of cavities ((line I-I) in Fig. (3)). The stresses are normalized by 

dividing the values upon the applied load, P. From this figure, it can be seen that the maximum 

value of horizontal stress decreases as Zo/D increases, and the point of maximum compressive 

horizontal stress lies between the ground surface and 0.5D below it, depending on the position of 

the cavity.  

Fig. (7) shows the variation of vertical stresses along a vertical line (II-II) (in Fig. (3)) at a distance 

of 0.625D from the cavity’s centerline (where D is the diameter of the cavity). It is evident from this 

figure that the maximum values of σy occur at the point lying on the horizontal level of the 

centerline of the cavities.  

Fig. (8) shows the variation of the horizontal stresses along the same line (as described above). 

From this figure, it can be seen that the value of σx  increases to  a  maximum  compressive  value 

above the centerline of  the cavity then reverses back to a maximum tensile value on the spring 

level. Afterwards, it decreases asymptotically to a minimum value as Zo/D ∞∞∞∞→→→→ . 
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  Fig. (7)-Variation of vertical stresses along line II-II. �
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Fig. (9) shows the distribution of vertical stresses over a horizontal line 4.0 meters below the 

ground surface, namely (III-III in Fig.(3)), which may represent the raft foundation level of some 

buildings. It is obvious that by increasing values of Zo/D, the corresponding σy values increase for 

the region X<D /2 and then take an opposite trend for X ≥ D/2. 
 
   

 

 

 

 

 

 

 

 

 

 

 

 

Figs. (10) and (11) show the vertical and horizontal displacements on the same line (III-III). It is 

noticed that their values increase with the decrease of Zo/D ratio. 
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Fig. (12) shows the vertical stresses over a horizontal line 1.0 meter below the ground surface              

(IV-IV) (Fig. (2)) which may represent the foundation level of many isolated footings. It is noticed 

that the heave effect starts to appear at a distance equal to d from the centerline of the surface 

loading. 
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Fig. (13) shows the vertical displacements along the same line above (IV-IV). It is noticed that for 

the values of Zo/D < 3, the displacements can be significantly more and the cavity effect has to be 

considered.  For the values of Zo/D >3, the displacements do not exceed those from the case of no- 

cavity by more than 6% and then the effect of cavity can be neglected. 

 
 

 

 

 

 

         

 

 

 

 

 

 

 

 

 

 

       

  

CONCLUSIONS 

1- The boundary element method is a practical numerical tool that can be used to obtain solutions to 

a number of geotechnical problems of considerable complexity. 

2- For two-dimensional solid continuum problems, the boundary element method presents the same 

advantage concerning the discretization of only the boundaries and reduction of the time for 

preparation of data.  

3- A marked increase of stresses is found as the cavity approaches the ground surface and the stress 

distribution is very sensitive to the depth variation compared with the case of no-cavity 

conditions. 
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4- The maximum stresses occur at the haunches of the tunnel rather than at the crown. 

5- For the circular cavity that is considered in this paper, it was found that with increasing the depth 

below the ground surface (depth/tunnel diameter > 3), the surface settlements do not exceed 6 % 

from those obtained for the case of no-cavity condition. 
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