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ABSTRACT 

A constitutive law can be defined as a mathematical functional relation between physical quantities 

such as stress and strain and may take other factors like time, temperature and additional material 

properties into account. 

     In this paper, the endochronic model is used to predict the stress-strain relations of two Iraqi 

clays. This model is a viscoplastic one but without introducing a yield surface. It encompasses 

material behaviour such that the current stress state is a function of strain history through a time 

scale called “intrinsic time” which is not the absolute time but a material property. 

     The simulation showed that the model overestimates the strains for all cases studied. This may 

be attributed to the material parameters which require a parametric study to determine their actual 

values for Iraqi clays. 
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INTRODUCTION 

Endochronic theory was first introduced by Valanis in 1971. He coined this Greek name 

“Endochronic” that consists of two roots, endos (meaning inner) and chronos (meaning time). This 

theory encompasses material behaviour such that the current stress state is a function of the strain  
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history through a time scale called “ intrinsic time” which is not the absolute time measured by a 

clock as in viscoplasticity but a material property. Hence, the endochronic theory is a “viscoplastic” 

one but without introducing a yield surface. Therefore, all the complexities and difficulties that 

develop in introducing a suitable yield criteria are avoided, (Valanis,1971). 

     Bazant in 1974 and later with his coworkers extended Valanis theory to predict the behaviour 

of different engineering materials such as concrete , and soils. 

 

GENERALIZED CONSTITUTIVE RELATIONS: 

To generalize the uniaxial concept of the endochronic theory into three dimensions, first, the 

definition of the intrinsic time increment, dz, which is used in stead of real time increment, dt, is 

introduced. The intrinsic time for time-dependent behaviour is function of strain increments, d ij∈   

and time, dt. The dependence of dz upon d ij∈  is assumed to be gradual to exclude ideal plastic 

reponse. The function of dz will be continuous, smooth, and monotonically increasing. Thus, 

function (dz)
S
 with an appropriate exponent ”s” , can be expanded in a tensorial power series in 

d ij∈  and dt , i.e., (Bazant and Bhat,1976): 

     
.......
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where: 

         P= coefficient matrices, the subscripts refer to the components in the Cartesian coordinates xi, 

i = 1, 2, 3, and number (4) refers to the time axis. 

     Since, dz must vanish as d 0ij →∈  and 0dt → , thus P=0. Setting s=1, and neglecting all 

quadratic terms, then dz = P4. dt  which is of no interest, thus P4 = 0 . Setting s=2, and satisfying the 

conditions of isotropy, the quadratic form of Equation (1) can be written in terms of the first two 

invariants of d ij∈ , as follows, (Bazant and Bhat,1976): 
 

2

3

2
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2 )()()( dtPdtPIPJPdz o ++++++++++++====                                                                                            (2)         
 

where:   

       Po, P1 , P2, P3 = non-negative coefficients. 

       J2 = second deviatoric strain increment invariant, and 

       I1 = first strain increment invariant. 

Then, dz must vainish for both instantaneous time, dt =0, and pure volumetric deformation, J2=0, 

hence P1= 0. Thus, the remaining terms in Equation (2) can be rewritten in the following form: 

    2
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ξξξξ dt

Z

d
dz ++++====                                                                                                    (3)  

where: 

ζζζζσσσσξξξξ dfd ⋅⋅⋅⋅∈∈∈∈==== ),(1                                                                               (4.a) 

ijij dedeJd ⋅⋅⋅⋅========
2

1
2ζζζζ                                                                                (4.b) 

deij = deviatoric strain increment tensor 

      = ∈⋅−∈ dd ijij δ
3

1
 

ijδ = Kronecker delta. 

∈d = Volumetric strain increment = kkd ∈  

1,1z τ = Constants. 
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     ξd  is scalar called “damage measure” that depends on strain increments and stresses to predict 

hardening and softening. ζd  is called “deformation measure” that depends on strain increments 

only. From Equations (3) and (4), ζd  and dz represent geometrically the length of path traced by 

material states in a six-dimensional strain space for ζd , or in a strain-time space for dz., (Ansal et 

al., 1979). 

           Secondly, generalizing of equations to three dimensions using dz instead of dt, and splitting 

the strain components into deviatoric and volumetric components to satisfy isotropy conditions, the 

following differential constitutive equations are deduced: 

     dz
G

S

G

dS
de

ijij

ij ⋅⋅⋅⋅++++====
22

                                      (5.a) 
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where: 

       ∈⋅−∈= ddde ijijij δ
3

1
 

       332211 ∈∈∈∈++++∈∈∈∈++++∈∈∈∈∈=∈=∈=∈= dddd  

       λd = inelastic dilatancy, 
 

       Sij = deviatoric stress tensor, 
     

            = mijij σσσσδδδδσσσσ ⋅⋅⋅⋅−−−−  

       mσ = mean stress = kkσσσσ
3

1
 

       G, K = shear and bulk elastic moduli, and 

       o
d ∈ = stress-independent inelastic strains (e.g. thermal strains). 

 

     Both of the first terms of Equations (5.a) and (5.b) represent the elastic strain increments, while 

the remaining terms represent the inelastic strain increments. For instance, the term 

)/( 13 ττττσσσσ Kdtm ⋅⋅⋅⋅ represents the time-dependent inelastic volumetric strain, i. e. creep, while λd  

represents the time-independent volumetric strain. 

      To develop a quasi-linear elastic incremental constitutive law for simplicity, the plastic stress 

increment tensor 
p
ijdσ can be obtained from Equations (5) by multiplying Equation (5.a) by 2G, and 

Equation (5.b) by 3K, hence: 

 

    )( p

ij

p

ij

p

ij dKdeGd ∈∈∈∈⋅⋅⋅⋅++++⋅⋅⋅⋅==== 32 δδδδσσσσ  

       )/( o

mijij dKdKdtdZS ∈∈∈∈++++++++⋅⋅⋅⋅++++⋅⋅⋅⋅==== 331 λλλλττττσσσσδδδδ                                                                                       (6) 

The stress increments ijdσ  are related to the elastic strain increments e
ijd ∈  by the following 

equations: 

 

)dK3(deG2d e
ij

e
ijij ∈⋅+⋅= δσ                                               (7) 

Hence, the summation of Equations (7) and (8) yields: 

klijkl

p

ijij dDdd ∈∈∈∈⋅⋅⋅⋅====++++ σσσσσσσσ                                                                                      (8) 

where: 

     ijklD  = elastic coefficient matrix  
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THE NUMERICAL PROCEDURE: 

The basic constitutive law, Equation (5), is of a differential form, and the variables that govern 

inelastic deformations are (dz) and ( λd ). Bazant and Bhat (1976) used the step-by-step integration 

or step-iterative algorithm  in which for each loading step, a number of iterations are performed till 

satisfaction of equilibrium of stresses and strains occurs. This is assured when the change in values 

of (dz) and ( λd ) for the same loading step becomes very small. 

       In this algorithm, the values of (dz) and ( λd ) computed from the previous loading step provide 

an initial estimate for the next loading step. 

 

Endochronic Hardening Functions and Parameters: 

The function f1 in Equation (4) that accounts for hardening or softening, should decrease as the 

inelastic strains accumulate, because ξd is adopted as a measure of the accumulated inelastic strain, 

hence: 

ζζζζσσσσηηηη
ηηηη

ηηηη
ξξξξ dFd

f

d
d ⋅⋅⋅⋅∈∈∈∈======== ),(;

)(
                                              (9) 

where: 

)(f η    = Strain-hardening function. 

),(F ∈σ = Strain-softening function. 

Thus, the function )(f η has a significant effect on the non-linearity of the stress-strain relations, 

while the function ),(F ∈σ  allows for a gradual decrease of these relations on approach to peak 

stress. Both functions depend mainly on material type. 

 

Hardening Functions and Dilatancy for Normally Consolidated Clays: 

The function F in Equation (9) is determined semi-empirically from experimental data. The function 

F is governed by the effective confining stress σσσσ
1I , the volume change, εεεε

1I , and the second 

deviatoric strain invariant, εεεε
2J . Bazant et al. (1979) introduced the following formulation for 

function F: 

 

              
)/(01.0

)1(/1
),(

12

2311

PaIa

JaIa
aF

σ
σ

+

+−
+=∈
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                                              (10) 

where:   a’s = material constants. 

              Pa = atmospheric pressure = 101.3 kN/m
2 

 

     The division of  σσσσ
1I  in Equation (10) by Pa is to make the relation dimensionless. Constant “a” 

must be positive to ensure irreversible strain increment for the critical case of no hardening or 

softening, (Bazant et al., 1979). 

     The function f (η) represents the limiting critical case of no hardening or softening. Thus, for 

large values of η, this function, f (η), must converge to one. The function f (η) takes the following 

form: 

             
ηηηηββββ

ββββ
ηηηη

2

1

1
1

++++
++++====)(f                                                                                (11) 

where: β1 and β2 = constants. 

     The dilatancy or densification function dλ of clays depends on shear and volumetric stresses and 

strains. Hence, the function dλ depends on εεεε
2J , σσσσ

1I  and εεεε
1I . Moreover, dλ depends on λ  itself 

because the volumetric strain increment should decrease monotonically till zero as a limit in the 

case of failure. Hence dλ  is equal to (Bazant et al., 1979): 
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where:     co, c1, c2, c3, c4 = material constants. 

 

dλ is determined empirically from tests and it depends on the clay type, stress path and stress 

history. 

     The tensile strengths of soils are very small and hence neglected. 

      The elastic moduli G and K of the soil element change during loading, and thus the accumulated 

densification-dilatancy measure λ  and the effective normal stress also change. Thus, the effect of 

void ratio is: 
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where:  eo = initial void ratio 

             εv = volumetric strain = εkk 

             n = porosity. 

while the effect of normal stress is the ratio oo III
σσσσσσσσσσσσ
111 /)( −−−− , where oI

σσσσ
1 is the initial first stress 

invariant. Hence, the elastic moduli will be equal to: 

       )
3

1( 2

1

11
1

n
b

I

II
bGG

o

o

o

λ
σ

σσ

+
−

+=                                                                                             (14) 

where: b1 and b2 = constants, 

    and  )21/()1(
3

2
νννννννν −−−−++++==== GK                                                                                                      (15) 

 

MODEL PARAMETERS OF CLAYS 

All material parameters in the previous equations are based on best fit of experimental results. 

         Constant “a” in Equation (10) affects the value of the peak stress. Constant a3 which is called 

“distortion coefficient” is determined by the following correlation proposed by Ansal et al. (1979). 

Based on general pattern of results: 

 

    623481533 .)/(. ++++==== PoPaea o                                                                                         (16) 

where: 

       Po = consolidation pressure. 

 

     Similarly, the plasticity coefficient Z1 in Equation (3) that accounts for rigidity and deformibility 

of clays, is determined from the following correlation: 

 

     0396001770002940 2

1 .)/(.)/(. ++++−−−−==== aooaoo PPePPeZ                                        (17) 

   Ansal et al. (1979) determined an approximate correlation for densification coefficient Co in 

Equation (12), softening coefficient 2β  in Equation (11), and the elastic modulus E, as shown in 

Figure (1). This correlation depends on the consolidation pressure Po, and the liquidity index of the 

clay IL, where (Mitchel, 1993): 

 

     
P

pnat

L
I

ww
I

−
=                                                                                                      (18) 

where: 
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    want = natural water content. 

    wp = plastic limit 

    Ip = plasticity index = wL -wP 

    wL = liquid limit. 

      

     Choice of appropriate ratio of the liquidity index to the consolidation stress is tempered by 

judgement in the absence of test results. 

     All other constants are determined experimentally. The values of the parameters as proposed by 

Bazant et al. (1979) are shown in Table (1): 

 
 

                                   Table (1) – Material parameters of endonchronic model for normally 

consolidated clays. 

  Value 

ao 4 

a1 500 

a2 0.75 

1β  5n   (n = porosity) 

C1 2500 

C2 0.25 

C3 1000 

C4 9000 

b1 0.1 

b2 0.1 

 

Computer Program 

The computer program Endoch, coded in Fortran laguage, was written by the authors. The 

algorithm used in the endochronoc model  incorporates an iterative procedure. The program 

computes stresses, strains, all functions like F, f (η), and variables like λ, η, at mid-step loading. 

Iterations are then performed till the tolerance of the values of dz and dλ becomes less than 0.05 %. 

The values of strain increments, dε, intrinsic time, dz, and inelastic dilatancy, dλ, or the previous 

step are taken as an estimate for the current step. 

 

APPLICATIONS: 

This model have been applied for simulating stress-strain relationships of  two Iraqi soils: 

i) First application     Al- Mufty (1990) carried out a series of tests on al-Fao soft clay. 

Block samples were obtained from an area close to the river Shatt-Al-Arab. 

    The top layer of Fao soil was found to be stiff to very stiff brownish gray silty clay with a 

desiccated crust. This layer is followed by a soft to very soft gray silty clay. 

    According to the unified classification system, the soil from both layers may be classified as CL-

CH, inorganic clays of medium to high plasticity. According to, AASHTO M145-73, the soil is 

classified as A-7-6 (16). 
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Fig. (1) – Approximate correlation for:  
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The average properties of the soil at sampling depths 1.25 m and 3 m respectively are listed in 

Table (2).  

 
 

Table (2). - Average properties of the soft clay from Al-Fao, (from Al-Mufty, 1990). 
 

 

Property 
 

1.25 m depth 
 

3 m depth 

Total unit weight γt , kN/m
3
 17.9 17.7 

Water content w % 30 45 

Liquid limit wL % 54 50 

plasticity index Ip % 27 24 

Liquidity index IL 0.11 0.79 

Specific gravity G 2.7 2.72 

Sand size fraction % 9 12 

Silt size fraction % 58 60 

Clay size fraction % 33 28 

Activity A 0.82 0.86 

 

 Among the tests carried out by Al-Mufty (1990) unconsolidated undrained triaxial compression 

tests on samples compacted by the standard compaction test to the maximum dry density and 

optimum moisture content. These results are compared with those predicted by the endochronic 

model in Figures (2) to Figure (6). 

     Fig (2) and  (3) represent the samples that are taken from the top layer, and the figures from (4) 

to (6) represent the samples that are taken from the layer below the top layer. 
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Fig.(2). - A comparison between the stress-strain relationships predicted by the endochronic model 

with laboratory tests of Al – Mufty (1990), σ3 =300 kPa. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Fig.(3). - A comparison between the stress-strain relationships predicted by the endochronic 

model with laboratory tests of Al – Mufty (1990), σ3 =300 kPa.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.(4). - A comparison between the stress-strain relationships predicted by the endochronic model 

with laboratory tests of Al – Mufty (1990), σ3 =100 kPa. 
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   Fig. (5). - A comparison between the stress-strain relationships predicted by the endochronic model 

with laboratory tests of Al – Mufty (1990), σ3 =200 kPa. 
 

 

Fig (6).    with laboratory tests of Al – Mufty (1990), σ3 =300 kPa. 
 
    

It can be observed in these figures that the model overestimates the strains for all the cases studied 

under high stress increments. 
 

In addition, there is no definite yield point can be obtained. Thus it is approximately suitable for 

normally consolidated clays where ductile behaviour of the stress-strain is expected. 
 

ii) Second application  

      Al- Saady (1989) carried out laboratory tests on an A-6 soil during construction of a road 

embankment. A representative area located at Al – Zafarania (south of Baghdad), was chosen for  

the research. The site covers an area of soil composed of silty clay with varying thickness. This 

stratum behaves as normally or slightly overconsolidated soil, have an upper desiccated crust 0.5-

0.75 m thick. 

The distribution of the particle sizes indicated: 

     Clay fraction = 45 %, silt fraction = 37 %, sand fraction = 18 %. 

It is classed as “CL” in a Casagramde classification chart.  

Among the tests carried out by Al- Saady (1989) consolidated undrained triaxial test which was 

designated as series D as shown in Table (3). 

 In addition, unconsolidated undrained triaxial test which was designatd as series G as shown in 

Table (4).  

     Consolidated undrained triaxial test results are compared with those predicted by the 

endochronic model in Figures (7) to (12) which show a comparison between the stress-strain 

relationships predicted by the endochronic model with laboratory tests of Al – Saady, (series, D).  

Consolidated drained triaxial test results are compared with those predicted by the endochronic 

model in Figures (13) to (18). Figures (19) to (24) show a comparison between the volumetric 

strain–axial strain relationships predicted by the endochronic model with laboratory tests of          

Al-Saady, (series, G).  
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Table (3). -  The results of series (D), (from Al-Saady, 1989). 
 

Test No. 

 

cσ ′  kN/m
2
 

 

eo 
 

wc % 

 

(((( ))))
f31 σσσσσσσσ −−−− kN/m

2
 

 
f

����
����
����

����
����
����

3

1

σσσσ
σσσσ  kN/m

2
 

 

fu∆∆∆∆  kN/m
2
 

1 79 0.76 26.0 123.24 3.50 30.81 

2 100 0.70 24.3 123.00 3.55 52.22 

3 150 0.74 25.6 189.21 3.30 72.45 

4 200 0.69 24.6 219.60 3.25 104.45 

5 300 0.75 25.4 279.00 3.25 176.68 

6 376 0.73 26.0 348.01 3.30 224.07 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.(7). - A comparison between the stress-strain relationship predicted by the endochronic model 

with laboratory tests of Al – Saady, Test 1, Series D. 
 
 

 

Fig. (8) - A comparison between the stress-strain relationship predicted by the endochronic model 

with laboratory tests of Al – Saady, Test 2, Series D. 
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Fig. (9) - A comparison between the stress-strain relationship predicted by the endochronic model 

with laboratory tests of Al – Saady, Test 3, Series D. 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. (10) - A comparison between the stress-strain relationship predicted by the endochronic model  

               with laboratory tests of Al – Saady, Test 4, Series D. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (11) A comparison between the stress-strain relationship predicted by the endochronic model  

                with laboratory tests of Al – Saady, Test 5, Series D. 

 
 

 

 

 

 

 

 

 

 

 

 

Fig. (12). A comparison between the stress-strain relationship predicted by the endochronic model  

               With laboratory tests of Al – Saady, Test 6, Series D. 
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Table (4). -  The results of series (G), (from Al-Saady, 1989). 
 

 

Test No. 

 

'

cσσσσ  kN/m
2
 

 

eo 
 

wc % 
 

(((( ))))
f31 σσσσσσσσ −−−− kN/m

2
  

fOV
V ����

����
����

����
����
����∆∆∆∆  kN/m

2
 

1 79 0.66 23.5 198.87 2.300 

2 100 0.69 24.7 281.18 2.283 

3 150 0.75 26.0 348.03 3.026 

4 200 0.75 27.0 405.03 3.016 

5 300 0.69 25.2 752.55 3.590 

6 376 0.72 25.0 913.52 3.710 

 

 

 

 

 

 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (13). - A comparison between the stress-strain relationship predicted by the endochronic model 

with laboratory tests of Al – Saady, Test1, series G. 
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Fig. (14). - A comparison between the stress-strain relationship predicted by the endochronic model 

with laboratory tests of Al – Saady, Test2, series G. 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.(15) - A comparison between the stress-strain relationship predicted by the endochronic model 

with laboratory tests of Al – Saady, Test3, series G. 
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Fig.(16) - A comparison between the stress-strain relationship predicted by the endochronic model 

with laboratory tests of Al – Saady, Test4, series G. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.(17) - A comparison between the stress-strain relationship predicted by the endochronic model 

with laboratory tests of Al – Saady, Test5, series G. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig.(18) - A comparison between the volumetric strain – axial strain relationship predicted by the 

endochronic model with laboratory tests of Al – Saady, Test1, series G. 
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Fig.(19) - A comparison between the volumetric strain – axial strain relationship predicted by the 

endochronic model with laboratory tests of Al – Saady, Test2, series G. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig.(20) - A comparison between the volumetric strain – axial strain relationship predicted by the 

endochronic model with laboratory tests of Al – Saady, Test3, series G. 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Fig.(21). - comparisons between the volumetric strain – axial strain relationship predicted by the 

endochronic model with laboratory tests of Al – Saady, Test 4, series G. 
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Fig.(22) - A comparison between the volumetric strain – axial strain relationship predicted by the 

endochronic model with laboratory tests of Al – Saady, Test 5, series G. 

The same behaviour is noticed in this clay. The predicted volumetric strains are closer to measured 

strains under small stress increments. At large stresses, the predicted strains became larger. 

 

 

CONCLUSIONS: 

1- The endochronic model overestimates the strains for all the cases simulated under high 

stress increments. 

2- There is no definite yield point can be obtained when simulating the laboratory tests. This 

means that this model can be adopted for normally consolidated clays where ductile behaviour 

of the stress-strain is expected. 

3-  The error in simulation may be attributed to the model parameters, which need to be 

evaluated by carrying out parametric study for Iraqi clays. 
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NOTATION: 

d ij∈  Strain increments  

dt Time increments 

P Coefficient matrices 

J2 second deviatoric strain increment invariant 

I1 first strain increment invariant 

deij deviatoric strain increment tensor 

ijδ  Kronecker delta 

∈d  Volumetric strain increment 

1,1z τ  Constants 

ξd  damage measure 

ζd  deformation measure 

λd  inelastic dilatancy 

Sij deviatoric stress tensor 

mσ  mean stress 

G shear elastic moduli 

K bulk elastic moduli 
o

d ∈  stress-independent inelastic strains 

ijdσ  The stress increments 

ijklD  elastic coefficient matrix 

e
ijd ∈  elastic strain increments 

)(f η  Strain-hardening function. 

),(F ∈σ  Strain-softening function. 

σσσσ
1I  effective confining stress 

εεεε
1I  the volume change 

εεεε
2J  the second deviatoric strain invariant 

a’s material constants 

Pa atmospheric pressure 

β1 constants 

c’s material constants 

2β  softening coefficient 

eo initial void ratio 

εv volumetric strain 

n porosity 

b’s constants 

Po consolidation pressure 

Co densification coefficient  

E elastic modulus 

IL the liquidity index of the clay 

want natural water content. 

wp plastic limit 

Ip plasticity index  

wL liquid limit. 
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