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ABSTRACT 

A theoretical study of a three-dimensional natural convection heat transfer from an 

isothermal horizontal square plate, with upper and lower heated surfaces is present. The transient 

Navier–Stokes and energy equations were solved by using finite deference method (F.D.M). The 

complete Navier–Stokes equations are transformed and expressed in terms of vorticity–vector 

potential and solved using an Alternating Direction Implicit (ADI) method for the parabolic 

portion of the problem, and Successive Over–Relaxation (SOR) method for the elliptic portion .A 

computer program in (FORTRAN 77) was built to carry out the solution. The numerical results 

were obtained for laminar flow range of Grashof number up to (10
5
) in up ward–facing and 

downward–facing with Prandtl number of (0.72). The results of local Nusselt number have 

maximum values at the outer edge of plate for two cases upward and downward facing heating. 

The comparison of the results of average Nusselt number with numerical data for downward 

facing and experimental data for upward facing shows acceptable agreement. It may be noted that 

the present data are generally different with experimental data, since the available data are 

extrapolated to high Grashof number. Thus the deviation may be large with present data.      
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INTRODUCTION  

    In resent years, natural convection heat Transfer from finite size bodies such as (square 

surface) has attracted much attention with relation to the electronic cooling industry. The problem  

of natural convection heat Transfer from square plate continues to be a topic of current research, 

and also a number of theoretical and experimental studies (Boehm  and Kamyab 1968), (Aihara  

et. al.1971), (Aziz and Hellums 1967) and (Rafa 2002) have been made in the past to determine 

the natural convection heat Transfer from a heated plate held in the horizontal position, one of the 

earliest studies (Rafa 2002) has been done experimentally for horizontal and inclined positions 
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for a square plate under conditions of constant temperature, and studied theoretically the two 

dimensional problem of upward–facing. The problem of natural convection from horizontal 

facing upward and downward with constant temperature wall conditions has been the subject of 

considerable interest and controversy. Since the natural convection flow above and below the 

heated square plate is three dimensional flow, the purpose of the work presented here is to 

develop a numerical calculations algorithm suitable for solution of the three–dimensional problem 

of laminar natural convection heat transfer from square plate upward and downward facing with 

constant wall temperature. Three dimensional time dependent governing equations in term of a 

vorticity–vector potential form and Temperature are solved numerically, using for the temperature 

and vorticity vector the Alternating Direction Implicit (ADI) method since this method is stable 

for three dimensions, and for vector potential a point iterative Successive over relaxation (SOR) 

method is used. The main theoretical investigations were made to investigate the effect of edges 

of a square plate on local natural convection heat transfer coefficient and to study the effect of 

position (up or down face) on the Nusselt Number.  

 

MATHEMATICAL MODEL 

In natural convection, a consideration of fluid flow is necessary in the study of energy and 

mass transfer mechanisms. A study of convection further necessitates consideration of the 

coupling between the fluid flow and the mechanisms underlying conduction. This is due to the 

fact that heat transported due to a moving fluid element would eventually be transformed to its´ 

neighboring elements through conduction. Moreover, in regions close to surface, which is at a 

temperature different from that of the ambient medium, there is no relative motion between the 

surface and the fluid, and the transfer of energy is predominated by conduction. 

Natural convection above and below the square plate of Fig.1 is described by the 

equations for the conservation of mass, momentum and energy in x , y and z directions simplified 

in accordance with Boussinesq assumption. The components of gravity in the x, y and z directions 

for facing upward are 0, 0, – g respectively. Taking a cross derivatives of momentum equations 

and subtracting out the pressure terms, introducing the vorticity and nondimensionalizing then 

yields the following dimensionless vorticity and energy equations,�(Aziz and Hellums 1967);   
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The components of dimensionless vorticity are (Aziz and Hellums 1967). 
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To calculate the velocity from vorticity ,it is convenient to introduce a vector potential 

Ψ
�

,which may be looked upon as the three dimensional counterpart of two dimension stream 

function. The component of the velocity are related to the components of dimensionless vector 

potential,  the dimensionless vector potential is defined such that its curl equals the dimensionless 

velocity vector (Aziz and Hellums 1967); 
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The vector potential satisfies the continuity equation  
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This vector potential is assumed to be solenoidal, i.e. 
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The components of the dimensionless velocity are related to the component of the  

dimensionless vector potential as follows; 
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BOUNDARY AND INITIAL CONDITIONS. 
At 0=τ  
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 1T =  at the heated surface 

 At 0>τ  
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NUMERICAL FORMULATION  

 

In finite difference approximation of partial differential equations the solution of the three 

components of vorticity and energy Eqs. (1), (2), (3) and (4) may be obtained by writing them as 

follows;  
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Where; 
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Using  the Alternating Direction Implicit (ADI) method, the solution of Eq. (21)is; 
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The application of the above algorithm to
n

χ involves the solution of try diagonal system 

of linear algebraic equations, three times to obtain
1n+

χ .   

            The three equations of vector potential components
1

Ψ ,
2

Ψ and 
3

Ψ  can  be solved for any 

time-step by using a point iterative successive over relaxation method.  
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A relaxation factor 
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W  was defined as follows,  
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Where the counter (s) refers to the number of successive point iterations performed at the n
th

 time 

step, and )1s(n

)k,j,i(

+Ψ  is the value of the component Ψ at the n
th

 time step after (s+1) iterations. the 

values of )1s(n

)k,j,i(

+Ψ   are resubstituted into Eq.22 which is then solved with Eq.23 until the following 

convergence criterion is satisfied  
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Where 310−=ε . The relaxation factor 
Ψ

W  was in the range (1-2) the optimum value of 1.7 was 

obtained by trial and error.  

The local Nusselt number defined as, 
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which can be solve by forward finite difference for four point . The average Nusselt number is 

defined as ��=
A

NudA
A

1
Nu . This integration can be carried out by the trapezoidal rule  

(Torrance 1985). 

         The above equations were approximated by finite difference equations and solved by the 

general three dimensional ADI (alternating direction implicit) method developed by (Aziz and 

Hellums 1967). 

        The steady–state was computed transiently starting from the static. The energy equation (4) 

was first solved for a time step, then the three vorticity equations. The vector potential at each grid 

point was next computed from the known vorticity by using three dimensional (S.O.R) successive 

over–relaxation methods. 

            The computations were carried out for only one half of the computational domain since 

symmetry in terms of the central vertical plane was expected. 
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RESULTS AND DISCUSSION 

Fig.2 shows the isothermal line at section y = 1/2 for different Grashof number (Gr = 10
3
, 

Gr = 10
4
 and Gr = 10

5
) respectively at late – time steady – state condition. It is clear from the 

figure that the temperature gradient above the surface of the heated plate increased rapidly in the 

vicinity of the free edge. In the case of upward facing, the boundary layers from all sides of the 

heated plate were observed to join and rise as a plume, without any flow reversal. Temperature 

profiles in the case of facing downward are more stable than those of facing upward case. The 

effect of convection for Grashof number of (10
4
) is clear by the appearance of the plume over the 

heated surface.  

Fig.3 shows the y – component of vector potential Ψ 2  at section y = 1/2 for different 

Grashof number (10
3
, 10

4
 and 10

5
),respectively, and for two cases upward and downward facing 

at late–time steady state condition. In the case of upward facing the center of cells move to the 

outer portion of domain because of the increase in velocity at the center due to the increase in 

temperature that causes an increase in buoyancy force at the center, and fluid moves down due to 

the increase in weight. In case of downward facing most of fluid flows toward the center portion 

of the plate horizontally enters into the boundary layer and flows toward edge in the boundary 

layer. 

 Fig.4 shows the contour line of Y-component of vorticity Ω 2 at section Y = ½ in X-Z 

plane for Grashof numbers (10
3
 , 10

4
 , 10

5
) respectively, for upward and  downward facing at late 

time for steady state condition. In both cases of upward and downward facing, the distribution is 

symmetric, but the values of contour lines for downward facing are less than the values of contour 

lines for upward facing for the small effect of convection in downward facing, and to the direction 

of vorticity opposite that of facing upward. It is clear from  Fig.4 that the values of contour lines 

increase with the increase of Grashof number. 

          Fig.5 shows the velocity vector in X-Z plane at section Y = ½ for Grashof numbers (10
3
 , 

10
4
 , 10

5
) respectively, for upward and downward facing cases at late time for steady state 

condition. In both cases the distribution is symmetric. We notice that for high Grashof number 

more violent because of convection effect. For the case of upward facing, particular attention is 

paid to the region near the heated surface. The fluid is drawn from all sides and below and 

increases its velocity near the center. The velocity at the center line, velocity in the flow within a 

very short distance. This is obviously due to the continuing effect of buoyancy force, which is 

maximum at the centerline due to the temperature being highest there, because the buoyancy force 

is directed outward normal to its heated surface. The fluid is pulled from the edge then moves 

away from the heated surface owing to the outward buoyancy. For the case of downward facing, 

the buoyancy force is directed inwards normal to its active surface, the fluid is drawn inward 

towards the center and moves outward towards the edges. The distribution of local Nusselt 

number for the two cases for Grashof number of (10
3
 , 10

4
 , 10

5
) respectively, is shown in Fig.7. 

            Referring to Fig.6, the local Nusselt number have very small changes for the two cases  

because of the very small effect of convection mode of heat transfer exists, since at low Grashof 

number the mode of heat transfer is conduction only. The local Nusselt number has maximum 

values at the outer edge of the plate. The values of local Nusselt in the case of downward facing  

is less than the values of upward facing. 

          Fig.7 and Fig.8 show the local Nusselt along X at Y = ½, the maximum value at the outer 

edge and minimum value at the center of the plate for the two cases. In general with thickening of 

boundary layer as flow proceeds downstream from the leading edge, the local Nusselt number 

gradually decreases. Due to realignment of the flow, velocity levels increase sharply and this is 

reflected in an increase in the local Nusselt number. 

         Fig.9 and Fig.10 show the average Nusselt number with time. Fig.11 presents the general 

correlation of the average Nusselt number for the two cases for the plate. The general equation of 

the average Nusselt number facing upward and downward for plate is in the form:   ncRaNu =  
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           Fig.11 shows a comparison of the average Nusselt number Nu  with numerical results of 

(Goldstin et.al. 1983) and experimental results of of (Goldstin et.al. 1983)  and (Rafah 2002) for 

facing upward .it may be noted that the present  data are generally different with his experimental 

data ,since the available data are extrapolated to Grashof number thus the deviation may be large. 

Fig.12 shows a comparison of present data of average Nusselt number Nu  with numerical and 

experimental results of of (Goldstin et.al. 1983) for horizontal square plat facing downward 

 

CONCLUSIONS 

The numerical results of natural convection heat transfer from horizontal square plate with 

constant wall temperature, upward  and downward facing, has been obtained in the present work. 

The numerical results were obtained for laminar flow range of Grashof number up to (10
5
) in 

upward and downward–facing with Prandtl number of (0.72). The local Nusselt number have 

maximum values at the outer edge of plate for the two cases . The comparison of the results of 

average Nusselt number with numerical data for downward facing and experimental data for 

upward facing shows acceptable agreement. It is concluded that the present data are generally 

different with experimental data, since the available data are extrapolated to high Grashof number. 

Thus the deviation may be large with present data.       
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NOMENCLATURES��

H: side length of square plate 

h: heat transfer coefficient[w/m
2
.
�

k] 
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k: thermal conductivity[w/m . k] 

X: dimensionless X-coordinate =x/H 

Y: dimensionless Y-coordinate =y/H 

Z: dimensionless Z-coordinate =z/H 

T: dimensionless temperature =
∞

∞

Θ−Θ

Θ−Θ

w

 

U: dimensionless X-component of velocity =uH/α  

u: X-component of velocity[m / s] 

V: dimensionless Y-component of velocity =vH/α  

v: Y-component of velocity[m/s] 

W: dimensionless Z-component of velocity =wH/α  

w: Z-component of velocity[m/s] 

g : gravitational vector[m/s
2
] 

Greek Symbols 

α : thermal diffusivity of  air[m
2
/s] 

β : volumetric coefficient of expansion with temperature[1/K] 

υ : kinematics viscosity of air[m
2
/s] 

τ : dimensionless time = tα /H
2
 

 

Ψ
�

: dimensionless vector potential  

Ω
�

: 
dimensionless vorticity vector 

Θ : temperature [K] 

 

 

Subscripts 

∞  : ambient 

w : value of surface 

1: vector component in X-direction 

 

3: vector component in Z-direction 

 

DIMENSIONLESS NUMBERS 

Ra: Rayleigh number = 
( )

υα

Θ−Θβ
∞

3

w
Hg

 

 

 

 

Gr: Grashof number = 
( )

2

3

w
Hg

υ

Θ−Θβ
∞  

Nu: local Nusselt number = 
K

hH
 

Pr: Prandtl number = αυ /  
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Fig (1): Dimensionless Coordinates for a Horizontal Square Plate and 3-D computational domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 

                      Fig(2):Steady State Temperature At Section Y=1/2 In X-Z Plane 
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Fig(3):Steady State of 2Ψ  At Section Y=1/2 In X-Z Plane 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                Fig(4):Steady State of 2Ω  At Section Y=1/2 In X-Z Plane 
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                      Fig(5):Steady State of Velocity Vector at Section Y=1/2 In X-Z Plane 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

   Fig.6 :Steady State of Local Nusselt  Number Distribution over plate surface 
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Fig.7 :Steady State of Local Nusselt  Number Distribution at Y=1/2 For Up Ward Facing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8 :Steady State of Local Nusselt  Number Distribution at Y=1/2 For Down Ward Facing 
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Fig.9 :Transient of Average Nusselt  Number for Up Ward Facing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.10 :Transient of Average Nusselt  Number for Down Ward Facing 
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Fig.11 : Comparison with the Available Data for Horizontal Plate Facing upward 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.12 : Comparison with the Available Data for Horizontal Plate Facing Downward 
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