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ABSTRACT 

Colorization is a computer assisted process of adding color to a monochrome (grayscale) image or 
movie. The early published methods to perform the image colorizing rely on heuristic techniques 
for choosing RGB colors from a global palette and applying them to regions of the target gray-
scaled image. The main improvement of the proposed technique is the adoption in a fully automatic 
way the genetic algorithm as an efficient search method to find best match for each pixel in the 
target image. The proposed genetic algorithm evolves a population of randomly selected 
individuals (that represents a possible color setting for target image using a reference colored 
source image toward solution that could resemble natural or real colors to the objects of the target 
scene). Moreover this study proposes new crossover operator, called Spread out Uniform Crossover 
(SUX) that turns the recombination scheme of uniform crossover over spreading vital genes at the 
expense of lethal genes rather than exchanging genes between mating parents to the generated 
offspring. The results of the proposed colorization techniques are good and plausible. 
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INTRODUCTION 

Colorization is a term introduced by Wilson Markle in 1970 to describe the computer assisted 
process for adding color to black and white movies [Lev04]. His company Colorization, Inc. 
released the first full-length colorized movie in August 1985. Nowadays, the colorization term is 
used to describe the process of adding color to monochrome still images and movies [Sap04].  
Colorization, in general, is an active and challenging area of research with a lot of interest in the 
image editing and compression community. With the luminance information and just some samples 
of the color ( much less than the ordinary sub-sampling in common compression schemes) , the 
color components of the data can be faithfully recovered .This has implications also in wireless 
image transmission, where lost image blocks can be recovered from the available channels [Sap04]. 
Additionally, colorization helps in scientific illustration by exploiting variations in chromaticity as 
well as luminance. Further, color can be added to a range of scientific images for illustrative and 
educational purposes. In medicine, image modalities which only acquire grayscale images such 
Magnetic Resonance Imaging (MRI), X-ray and Computerized Tomography (CT) images can be 
enhanced with color for presentations and demonstrations [Wel02]. 
Moreover, more "mundane" applications can benefit from colorization techniques. For instance, 
consider a scenario where two people that chat regularly through the Internet decide to enhance 
their virtual meetings with live video. If colorization software, inexpensive and fully automatic one, 
was available to them, they might buy less expensive monochromatic web-cams instead of color 
ones, use limited bandwidth by transmitting monochromatic video, but still be able to view fully 
colored video streams [Vie03]. 
 
PREVIOUS WORK 

Work interest in grayscale image colorization problem are pointed out:  
 
� E. Reinhard, M. Ashikhmin, B. Gooch, and P. Shirley [Rei01], describe a method for a general 

color correction that borrows one image's color characteristics from another using mean and 
standard deviation statistical analysis with ��� color space to make a synthetic image take on 
another image's look and feel. The transfer of statistics can fail in case that source and target 
images don’t work well together. To remedy this, the user selects separate swatches, the 
algorithm then computes their statistics. Then, scales and shifts each pixel in the input image 
according to the statistics associated with each of the cluster pairs. 

� T. Welsh, M. Ashikhmin, and K. Muller [Wel02], introduce a general semi-automatic t color 
transfer between a source color image and a destination grayscale image. They choose to 
transfer only chromatic information and retain the original luminance values of the target image. 
Further, their procedure is enhanced by allowing the user to match areas of the two images with 
rectangular swatches. Colors are then transferred but between the corresponding swatches.  

� G.Di. Blasi, and R. D. Recupero [Bla03], propose a semi-automatic colorization method. In this 
approach, image pixels are grouped into clusters of bounded radius by the Antipolee Tree 
Clustering. This clustering algorithm works in such a way that "far" elements lie in different 
clusters. The RGB source image is first converted to YUV space and the Antipole tree is 
constructed, in which each vector contains the information necessary to perform the Antipole 
search and the UV components of the pixel color. Then, for each grayscale pixel, in scan-line 
order, construct its vector and perform the Antipole search to select the best matching vector in 
the Antipole tree and transfer its UV components to the Y component (luminance) of that gray 
pixel. 

� L.F.M. Vieira, R. D. Vilela, and E. R. do Nascimento [Vie03], introduce a methodology for 
adding color to grayscale images from a database of color images. Initially the database is 
semantically indexed. The color transfer process then takes the grayscale image and the color 
one that has the most similar feature vector as inputs, and adds to each scalar pixel of the 
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former, the chromatic components of an automatically chosen pixel of the later. The 
colorization proceeds by scanning the target image in scan-line order so that, for everyone of its 
pixels, the source image pixel that is closest in terms of intensity value and intensity standard 
deviation is selected as a match.  

� Levin, D. Lischinski, and Y. Weiss [Lev04], present a method based on the simple premise: 
neighboring pixels in space-time that have similar intensities should have similar colors. This 
premise is formalized by using a quadratic cost function and obtain an optimization problem 
that can be solved efficiently using standard techniques.  

� Z. Pan, Z. Dong, and M. Zhang [Pan04], present a method to transfer color from a reference 
image to the whole video. This method take advantage of the correlation between two conjoint 
frames of video, by tracking the object and assigning the color of it in the preceding frame to 
that of the posterior one. In many cases, the background will keep unchanged while an object is 
moving. Rather than choosing RGB colors from a palette to color individual components, they 
choose ��� color space that minimize correlation between channels for many natural scenes.  

�  D. S�kor�, J. Buri�nek, and J. Ž�ra [S�k04], present a novel color-by example technique which 
combines image segmentation, patch-based sampling and probabilistic reasoning .This method 
is able to automatic colorization ofblack and –white cartoon. They state the problem as: having 
two segmented frames. First frame serves as a color example where each region has one color 
index assigned from the user-defined palette. The second frame contains unlabelled target 
regions. The colorization task, then, is to assign color indices to target regions similarly to as 
they are assigned in the example frame. 

� G.Sapiro [Sap04], presented an approach for adding color to a  monochrome image or movie, 
based on considering the geometry and structure of the  monochrome luminance input, given by 
its gradient information. The luminance channel in rbCYC color space faithfully represents the 

geometry of the whole (vectorial) color image. In addition to having the monochrome 
(luminance) channel, the user provides a few strokes of color,  that need to be propagated to the 
whole color channels. The color is then obtained by solving a partial differential equation that 
propagates the user selected colors while considering the gradient information brought in by the 
monochrome data. 

 

THE COLORIZATION PROBLEM COMPLEXITY 

The problem of coloring a grayscale image involves assigning three-dimensional (RGB) pixel 
values to an image whose elements (pixels) are characterized only by one feature (luminance). 
Since different colors may carry the same luminance in spite of differences in hue and/or saturation, 
the problem of colorizing gray-scaled images has no inherently "correct" solution [Bla03]. Thus , 
this in general a severely under-constrained and ambiguous problem for which it makes no sense to 
try to find an " optimum " solution , and for which even the obtainment of "reasonable " solution 
requires some combination of strong prior knowledge about the scene depicted and decisive human 
intervention [Vie03]. Even in the case of pseudo coloring, where the mapping of luminance values 
to color values is automatic, the choice of the color map is commonly determined by human 
decision [Bla03]. 
A major difficulty with colorization lies in the fact that it is an expensive and time-consuming 
process. For example, classically colorization is done by first segmenting the image into regions, 
and then proceeds to assign colors to each segment [Sap04]. Unfortunately, automatic segmentation 
algorithms often fail to correctly identify fuzzy or complex region boundaries [Lev04].    
Colorization of movies requires, in addition, tracking regions across the frames of a shot. Existing 
tracking algorithms typically fail to robustly track non-rigid regions, again requiring massive user 
intervention in the process [Lev04]. 
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THE PROPOSED COLORIZATION SYSTEM  
The general procedure for coloring grayscale image requires as input a pair of images. The source 
colored image, S , and  the  target grayscale image, T  . The source image could be selected to have 
similar semantic features to that of the target image (e.g., one can choose pair of faces, sunsets, 
trees , cars , etc.).  Next, both source (colored) and target (grayscale) RGB images are converted to 
a de-correlated color space. The color space provides three de-correlated, principal channels 
corresponding to an achromatic luminance L  channel, and two chromatic channels 1C  and  2C  in 
which changes made in one color channel should minimally affect values in the other channels. 
Examples of de-correlated color spaces are YIQ , YUV ,  � � �, and  sCIECAM 97 . The remaining 
(main) steps of the proposed colorization system are presented in what follows. 
 

INDIVIDUAL REPRESENTATION AND INITIALIZATION 

First, a population of P size random chromosomes is generated. Each chromosome in the population 
is coded as a two-dimensional TT nm ∗  formation where Tm  and  Tn  are respectively height and 
width of the target grayscale image. Each gene in the chromosome can hold an integer value, I , 
refers to a colored pixel in the source image. Hence, 1 ≤ I  ≤  Sm ∗ Sn  where Sm  and Sn  are 

respectively height and width of the source colored image. Fig. (1) depicts this chromosome 
representation: 
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Fig. (1) The chromosome of height Tm  and width Tn  equal to the size of the grayscale image.  

Gene no. ( )1,1   in the figure, e.g., hold an integer 20 which refer to the colored pixel number 20  
(from left-to-right and top-to bottom counting) in the  source image . 

  

FITNESS EVALUATION 

A  GA must qualify its population individuals through fitness measure to let evolution to those 
favorite individuals at the expense of weaker ones. 
A similarity metric can be calculated for each GA individual to determine luminance differences 
between the GA selected pixels and the target pixels. Objective function, here, is calculated in three 
different variations. In the first approach (named objective 1), luminance values difference is used 
as the similarity measure between target and source images in which small difference gets better 
similarity measure than large differences. As a whole, objective1 is calculated as the sum of 
(achromatic) luminance differences between target gray pixels (indicated by the gene numbers) and 
source colored pixels (indicated by the gene contents) : 
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       Objective 1  =  � �
= =

t Tn

i

m

j1 1

( ) ( )( )jiILjiL ST ,, −          (1)                          

where: 

Tn , and Tm  are   respectively width and height of  T  image . 

T
L  , 

S
L are respectively luminance values of T  and S  images. 

ji,  are indices of a gene in row  i   and column  j . 

( )jiI ,  an indirect index to a pixel in S . 
In the second and third Objective calculation approaches, the texture similarity or match is also 
compared. Objective2 sums differences between luminance average of surrounding neighborhood 

TN  in T  image and surrounding neighborhood SN  in S  image: 

 

Objective2  =  � �
= =

t Tn

i

m

j1 1

(( ) (( )( )jiINLjiNL SSTT ,, −            (2)      

where : 

Tn , Tm  i , j  and ( )jiI , are as defined previously in  (1) . 
N  is the surrounding 33∗  , 55 ∗  ,or 77 ∗  neighborhood . 

TL  is the luminance average of  TN  neighborhood gray pixels . 

SL  is the luminance average of SN  neighborhood colored pixels . 

     Finally , Objective3 uses matches luminance differences in  term of weighted average (50 % 
weight) and weighted standard deviation(50 % weight) of neighborhood pixels : 
 

Objective 3  =  � �
= =

T Tn

i

m

j1 1

(( ) (( )( ) )jiINLjiNL SSTT ,, −          (3)         

where : 

Tn and Tm , i , j  , ( )jiI ,  , and N are as defined previously in  (1) and (2) . 

TL  is the sum of 50 % luminance average and 50 % standard deviation of  TN  neighborhood gray 
pixels . 

SL  is the sum of 50 % luminance average and 50 % standard deviation of  SN  neighborhood 

colored pixels . 
 
In Objective2 and Objective3, different colored regions give rise to distinct luminance clusters, or 
possess distinct regions. In other words, we expect pixels which are similar in texture to the source 
colored image regions to be colorized similarly.  As high fitness values can represent good solutions 
to the problem at hand , the fitness then can be computed as inverse of objective function, i.e. , 

 

=Fitness   
Objective

1
             (4) 

 

SELECTION OPERATOR 

Once fitness is evaluated for each individual, we can form the mating pool that is a collection of 
individuals who will have the right to reproduce themselves into future generations. This selection 
is random, not deterministic. The most common selection operator used in GA is tournament 
selection. In tournament selection with size two, pair of chromosomes is compared. The string with 
highest fitness is copied into the mating pool. Repeating this process until the mating pool is filled 
with probably better chromosomes of sizep  parents. 
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CROSSOVER OPERATOR  

After the mating pool is formed, pairs of chromosomes (parents) are randomly chosen to be 
manipulated by the crossover operator before releasing them into the offspring. There are various 
crossover operators (e.g., one-point, two-point, and uniform crossovers), but all aim at recombining 
the genetic material of the two selected parents in an efficient manner.  
However, a modification to the uniform crossover is proposed here. The new crossover operator (as 
we called Spread-out Uniform Crossover SUX) modifies the uniform crossover to spread out vital 
genes at the expense of lethal genes rather than exchanging genes between mating parents. 
A gene can be classified as vital or lethal according to a predetermined threshold value.                      
The threshold value determines whether luminance difference between a gray pixel and the GA 
selected colored pixel is accepted or not. If difference is less than or equal threshold value, then we 
can regard this gene as vital and a copy of it can be propagated to both offspring, otherwise the gene 
is lethal and is insufficient to be propagated next. Fig. (3).6 below depicts the scheme of SUX 

operator.                                                    
                                                    

      Parent 1                                                            Parent 2                            
                    

                 Vital genes      
                                                                              
                                                           
 

 

 

    
                      
                 Gene 14           
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      Offspring 1                                                          Offspring 2 
                                                                                     

Fig. (2)  SUX operator. 
As can be seen from the figure, the vital genes of parent1 and parent2 are spread out over the 
generated offsprings. Moreover, SUX operator allows competition between two vital genes of one 
location to propagate the winner. However, lethal genes remain in their chromosome to its offspring 
without propagating to the second offspring. Additionally, for crossover operator there is a very 
important parameter that is crossover probability Pc . The normal range for Pc  is between 0.5 to  
0.8.  
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MUTATION OPERATOR 

The second perturbation operator that manipulates the genetic material of individuals is mutation, 
which traditionally in GA plays as background operator. It randomly alters the genes of a 
population with a predetermined (normally low) probability, mp  from 0.005 to 0.05 to avoid the 

algorithm from becoming a purely random search. A gene in the chromosome may be altered to any 
value (from 1 to the  SS nm ∗ , full size  of source colored image ) if the condition of mutation is 

satisfied .               
          
ELITISM STRATEGY AND STOPPING CONDITION 

Elitist selection is the idea of preserving the best individual of a population in future generations. 
Elitist GAs copy the individual with the best fitness encountered so far into the next generation. 
 Different stopping conditions are used in GA literatures. However, we use the most common one. 
The GA is allowed to run to a maximum number gen-max, of generations [Gol89].  
 

CONVERGENCE OF THE PROPOSED COLORIZATION SYSTEM 

The genetic algorithm introduced in the previous section employs exhaustive searching                            
(or explore the luminance search space of the source colored image), which makes it slow. To 
compensate the lack of human intervention and at the same time accelerate GA speed, an 
acceleration approach is proposed here. Acceleration works by considering neighborhoods Ns  
source colored pixels with their luminance values given the luminance setting selected by the 
genetic algorithm for a given individual.  The proposed acceleration can be formulated as: 
1. Determine the size of the neighborhood SN , e.g., 33∗ , 5 * 5  , etc. 

2. Select the best GA individual to be modified.    
For each gene content of the selected GA individual, the acceleration searches over those Ns  
neighborhood of the colored pixel indexed by the gene content, I , and replace it with the index, J , 
of the neighborhood pixel that has luminance value close to the luminance value of the gray pixel 
indicated by that gene.  
 By this way, the search technique imposed by the proposed colorization system has two forms. A 
global search ability manifested by the genetic algorithm to explore the luminance search space of 
the source colored image to locate suitable regions (or swatches) to that of the luminance regions of 
the target grayscale image. This global search is hybrid with a local search that exploit the selected 
GA swatches for most suitable pixels luminances to that of the corresponding pixels in the target 
grayscale image. In short, there is a collaboration between the explorative power of the GA and 
exploitative power of the acceleration search.  
   
RECOVER COLOR INFORMATION 

The last step to do is that how to display the target image on the screen as a colored RGB one. This 
step represent how to extract phenotype of a GA individual and displaying it in RGB space on the 
screen. Figure 3.9 illustrates the color recovering sequences. 
Recall that the target and the source images are represented in RGB color model. After processing 
(by GA and local accelerator) in luminance space, we can recover the color at each gray pixel by 
copying the two chromatic channels ( SC1 and SC2 ) of the genetically chosen   selected source 

colored image pixels into the output target image, combining them with the target luminance 
channel TL , and then followed by a conversion back to RGB color space. 
 
RESULTS 

The experiments have been performed on a database of different image classes with a total of 30 
images of colored and grayscale natural scenes. Both source colored and target grayscale images of 
a colorization query are taken from this database. In general, database images can be divided into 
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two groups: homogeneous and heterogeneous. Images that include a single object in the foreground 
and this object is clearly discernible from a mostly homogeneous background is said to be 
homogeneous (e.g. Apple, sunset1, and tiger1). On the other hand, an image that has multiple 
objects on the foreground, or has a cluttered background, or is illuminated in an uneven way is said 
to be a heterogeneous image (e.g., Trees, White Rose, and yellow Roses). Note that some images 
may not conform to this loose definition of the homogeneous or heterogeneous group. In other 
words, they could be semi- homogeneous or semi- heterogeneous images. Intuitively, for the 
colorization problem, a heterogeneous image is more complex than a homogeneous one. A 
colorization query requires two images, one source colored image, and one target grayscale image. 
Although input images can be taken from different classes, and one can just to see how this 
colorization technique work, we select input source and target images to be of the same semantic 
meaning. For example, the input to the colorization query can be a pair of cats, a pair of sunsets, etc. 

 

    
 

    
 

   
 

    
 

        
 

              
 

       
 

Fig. (3)  Results (source colored image + target grayscale image = target colored image). 
 

CONCLUSIONS 

The presented results analyze the behavior of the genetic algorithm for grayscale image colorization 
problem experimentally. The core of the proposed colorization technique consists of searching 
luminance in a high dimensional space using genetic algorithm. The genetic algorithm searches for 
each target pixel, the most suitable source pixel that matches in luminance value. Take a simple 
example the case in which the source and target images are both of size 3232 ∗  pixels. Then for 
each target pixel of the 1024  ( )3232 ∗  pixels, the genetic algorithm explores the 1024  candidate 
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source pixels for best possible luminance match. This leads to a huge search space size of 10241024  
potential solutions. Taking this problem complexity into account, it can be argued that the proposed 
colorization technique achieves convergence to suitable and near realistic results in a fully 
automatic way (without human intervention) and without adding excessive iterations.  
The results of the proposed colorization system, as a whole, demonstrate that it is possible to color 
many grayscale images (including natural scenes, cartoons, and scientific data) in a way that is 
completely automatic and look, reasonably well using a GA of small population size and a few 
generations evolution. Further, this technique works well on scenes where the image is divided into 
distinct luminance clusters. More images can be colorized using this technique with better results 
but at the expense of increasing the GA population size and/or generations number. The satisfactory 
quality of the technique is established by collaborating the exploration power of the genetic 
algorithm with the exploitation power of the local acceleration search operator. One can imagine 
that the GA can locate the most suitable clusters (in luminance and / or texture) to those of target 
image while the local accelerator searches the located GA clusters for most suitable pixel                      
(in luminance) to transfer its color to the corresponding grayscale pixels.  
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