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ABSTRA

A new mathematical model for three-dimensional thin-walled curved beam element of closed
sechion with seven degrec-ol-freedom per node is derived using the finite element procedure. The
seventh degres-of-freedom is 1o account for warmng restraint etfects in thin-walled closed sections.
These cifects may become significant and should be fully considered in such sections for which
warping deformations are relatively large. This model considers the coupled action due o the
curved geometry of the element using its exact static behavior in the derivation of the displacemnenl
lield. Also, the model considers the non-uniform torsional behavior of closed thin-walled sections
i cases where additional axial direct siresses and complementary shear stresses are formed. 1 he
developed wurping function of this mode] considers the interaction between the normal walrping
stresses and the accompanying warping shear stresses as well as the coupled action helween the
torsion and bending,

In additton o the ordinary axial and flexural deformations, the siruin energy, which is used 1w
obiain the stiffness matrix of the developed curved beam clement fully, considers the additional
axial, primary and secondary shear deformations due to warping restraint. The validity of this

element is investigated by comparing the developed program analysis results with some available
analvtical solutions.
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INTRODUCTION

Thin-walled sections are olien used in bridges, highways and some other important structures. One
of the most distinctive features of thin-walled sections is their response o torsional loading. If
warping is restrained or non-uniform lorsion is applied, out of plane warping will oecur and
additional normal shear stress will arise, therefore considering warping in the analysis of thin-
walled structures is very important,

Some previous works consider the curvature of curved beam clements of closed seclions when
warping restraint effects are included (Yoo T987& 1979). Castigliuno’s theorem is wsed 1o obtain
the stiffress matrix by inverting the flexibility matvix. In the present work the finile clement
procedure is used 1o derive the notural shape functions of the new model which considers the
coupled action due to the curved grometry of the element using the exact stagic behavior as well as
the non-umorm torsional behavior of closed thin-walled sections when warping is taken as an
explicit degree-of fresdom. Such a model will be wseful in obtaining the stiffncss as well 4 the
CONSISIeNt mass matrices. which can be used 1n the dynamic analysis of curved slructures,

NON-UNIFORM TCRSION IN BOX GIRDERS

When warping displacemenis vary along the length causing non-uniform distribution of torsion
along it. because of restraints of warping displacement at 1 crass SCCTION OT & varying applicd
torque. an additional normal stress and an aceompanying shear stress develop. In thin-walled
section there is an interaction between this additional normal stress and the warping shear
deformation given by the second term ofthe following warping displacement equation:

I

L {U"E.T ; ifs — i!'r_[; frdy i1}
£

Wy 15 1he displacement at 5 =

Theretore the distribution of warping displacemen iy and warping normal stress Ty At the cpnee:

section is indeed affined o ®  pug the relationship is not defined by Fapd T respectively as in
the case of open seclions. but instead by the first and second de rivatives of a dimensionless WATPINE,
function /= f(x) (Dabrowski 1968).

Uy = i (2

Ty = B, =-FfG (3)
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Fig. (1) The compenents displacement due to torsional shear deformatio
Thus the bimoment (BM), which is a system of self-balancing components, is created as a resultang
of warping restraint stresses:

BM = [, dbdd (4)
4
which can be swritlen as:
BM = - kf T (3}
in which
Iy = |7 dd (6)
A

{5 15 the warping moment of inertia.

In dealing with closed sections, the shear deformation in the median surlace of the wall will be
tuben into consideration by the following expression (Dabrowski 1968):
3 I RO xS i

Y # ot el 7
o o iy {red )
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Fig. 12 ) A difTerential wall element

The total shear T can be determined from equilibrium conditions for a differential wall element
shown in Fig. (2), subjected to loading by normal lorces (o, & ) and shear forces T, as:

o H  BM 1
! e g e Wi
o S T ni & s/ &

This expression of the shear fow consists of two parts, a constant part known as the primary shear
[low. which occurs only in the closed part of the section, and the secondary shear flow.
W lrere:

S5 = [y @8 ds= [ uid {9y

A
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; I ..
o =Sa - 5 18 has (10}

The relationship between the functions § and rmay be determined from another description for the
total shear T which can be obtained from the equation of shear strain .5 Eqg. (7):

T=G 8¢ j"‘?"i‘_’;fm'}

i11)
L8]
WO | :
r' = i g (123
Gl
or
o "
]_I' . }"r__"F"_I'nl ¥ l?-"" I:“[ ".:I
Cul,
Itegrating this equation with respect Lo ¥ results:
Ets
Fm fe 1 (14)
Gt
where:

€71 15 the constant of integralion
p 2 is the warping shear parameter, which deterniined by the lollowing expression.

IJ'.' = ] -.Ir |:|.:|:|
f
i [ iy (16}
el
{=
g L2 {17)
fds &

FORMULATION OF A CURVED BEAM ELEM ENT WITH WARPING

The basic assumptions utilized in the formulation of the curved beam clement are (Yoo 19873,
(Dabrowski 1968):;

1- The element is prismatic,

- The loads are applied statically and constitute a conservative torce systemn,
3- The cross-section maintains its original shape
4

The defirmations are small with respect o the dimensions of the cross-section (linecarized
problem).

3- The material is homogensous, isolropic and obeys Hook s law.
6 The cross-sectional dimensions are small relative ter the radivus of curvature,
T

The cross-sectional shape is preserved under all loads, or thin-walled beams of a non-
deformable cross-section.

8- The preiection of the cross-section on a planc normal to the tangential axis does not distort
during deformation.

The three dimensional formulation of curved beam clements can be divided

Lo wo Separale
PICHIDS:

1- Giroup-1: an in-plane group considering only displacement in the x, ¥ plane as an arch,

2= Ciroup-2: a normal-to-plane group considening only displacements in the x Z plane as a
horzontally curved beam.
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where x, v, 2 are the local curvilinear coordinates of the curved beam clement as shown in Fig. (3).

The forces and displacements are positive il their veclors point i the direction of the positive
coordinates. Right hand rule is used for the sign of moments and rotations.

Thim-walled corved beam coordinies

Fig. (3) Thin~walled curved beam clement in local curvilimear coordinates
Fig. (4) shows the generalized forces and displacements for the curved beam element with warping,
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Lenerslired Forces aod
Mixplaccmends Tor curved Beam with wonepang:

I'he relationship between internal forces and the displacements at a point on the middle surface of
the member are mentioned 1in (Dabrowsky 1968), (Yoo 1987 & 1979):

I =£A{u"— v/ R)

Mz« Efsf(v v v/ RE)
JHP .——t;j';{l.'r', 1;21'."r ﬂ.}
Moy, aGIfp' +w /R g
M, =—El;f" (18)
H=Mcy - My
BM =—El g 1"
Fy = =-M3
Fe=Mj+H/R J
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in which #5 is the axial foree: M gand Mz are the bending moments about ¥V oand F-axes (using
the nght-hand rule); I7 is the total lorque, being a vector sum of St.Venant torque Mgy and
WaArping [m'_qu-e M .2 BM is the bimoment; & is the axial deformation in the direction of ¥ v, w
are displacements in the dircctions of principal axes ¥, I, respectively: ¢ is the iJHE;]ﬂ_I‘. of rotation
aboul 3 -axis, ['is the warping lunction and 7 - A"} is the warping degree-of-freedom for closed
seclions associated with bimoment, primes denote derivatives with respect 10 X -axis; B is the
radius of curvature; E and €7 are the modulus of clasticity and the modulus of rgidity respectively;
A is the cross-sectional arca; [y, [ are principal moments of inertia; ./ is the torsiomal constant and
1.5 15 the warping constant for closed thin-walled.

The primary difficulsy in the analys1s of curved beam elements is due to the coupling action of
bending. torsion {in curved members loaded normal-lo-its plane) in addilion to bending and axial

extension (in curved members loaded in plane). So a coupled displacement feld is derived and

developed using the equations of equilibrium in lerms of companent deformation for the linear
static problem projected on coordinate axes

Equilibrinm Equations of Curved Beams
The equilibrium equations of a curved beam loaded in plane are:-

L R e T ,
—{1s JEEl (v =y = =g+ mh ( 14-
R " R- :
al
Er o ' ;
(v7+ I_h b+ Ediu” 1—?—:;; i (19-b)
# R f R

While the equilibrium cquations for a curved beam loaded normal-to-plane while warping effects
are comsidered are:

peo oW ol Ey
Ef o +-u_l b Ele + G 1" Bl F14 _1 I =m% vy (20-2)
: F- : R R Ol :
and
: 2 :
5= r  Ely F o T o ETC
— e Je e O R ey He e EIC (20-h)

> ins x o
X R rad R H I
aome forces in eqs. (18), (19} and (20) refer to the line of centroids others refer to shear center. The
shear center with conrdinates ap and @z, measured from the centroid, is called the principal
sectorial pole, or simply, principal pole. Using the same radius of curvalure, R, in these eruations
for gravity center and shear center can be acceptable since in most practical beams the Lpuaniity
¢/ R as compared to unity ean be neglected withoul inducing a significant error. Thus the derived

displacement lield does not have 1o be limited to curved heams of doubly or singly symmetric
sections with the axis of symmetry being in the plane of bending,

Gencral Displacement Ficlds and Displacement Functions
The gencraheed displacements and force vectars for a curved beam, as shown in Fig. (4). are:

gﬂ"w}=lnl-t’| Wi P W —ff my vy owy P2 Wy s f".:}r (21}

and
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Fui=\Fz, F5n Foy Hy My My BM| Fip Fap Fyp Hy My My BM,|T (22)
] ¥ ¥l ] 2 [T

The subscript w refers to a curved beam with warping. While the subscripts (1) and (2) refer 1o
nodes 1 and 2, respectively, which are the ened nodes of the clement. The positive direetion of the
zeneralized: displacements and forces poinl o the positive local coordinale system as shown in
Fig. (4).
A coupled boundary condition is intreduced for the first group, curved beam loaded in plane, which
15 delined in references (Yoo 1979 and (Yoo 1987) as:

Iy

=3+ (23}
¥ I

The subdivided gencralized displacement vectors are:

WApt=luy vy 0 0 0 Yo owz vy 00 0 y; I'J'IT {24-a)
{ ,l—ll"-' i Wy @y —11; { _,.flr {l Wi @ _|.-,-:.__, 0 - fs ]T (24-1)
{ q tand {a, wa |oure for group-1 and 2 nupmll'-'dv Alsn, the subdivided generalived lorce vectors
Are:
{Fl..;}-[fn-- Fee O 0 0 M:p 0 Foobs 0 0 0 Mo ”]-: (253
and

bF oot [n 0 Frp Hp My, 0 BM; 0 0 Fop Hs Mg 0 BM:|T (255

W dand (5,5 | are for group-1 and 2 respectively.

In-Plane Displacement Field and Displacement Functions
For group- 1. the homogeneous case of equilibrivm eqs. (19-a, b) can be rewritlen as:

Liv# Law ~1) (26-u)
Pav+Lqu=0 {26-h)
where:
Is 'd* A
fiwify el D (27-a)
T R R
A4 d
? ek i ' (27-b
e }
i “'3 Iz o
e — 2T
Ly - -:f' Hj ﬁ} e (27-c)
-
La=, (27-d)
di’
Finee the operators are linear and are commutative, the following equation can be applied 1o v or
(Lo Ly=i3L3 = ) (28)
or

I = 4 2
) - i‘_-su" L | 4 e (29
ex® BTt RY ay?
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The coupled displacenent field of the curved beam element loaded in plane can be obtained [rom
the solution of these differential equations as;

X X X T X x
VX =y + Ay cos = & de 5in—+ o 2 ros = & A s — 3ik-p
| . PRk i PR [ ]

" x X X X E x r x x
ufx)=Ady=+dysin——depos =+ A7 [ F cos 4 —3in -~ f+ Az [ F . sin —cax—J + 4
I » 2 o [ I 7. o J S H"lr gl F, =T R %
[ 3-h)
¥{X ) can b obtained from eq. (23)
= X | B e X L+  F A4
!l":"-j: A —+ A i — .JTI i i — = [','!{F_E]
F 'k2 7 R AT R
where:
: 21
Faml s (31)
AR~

which may be called the Winkler's consian (Yoo 1979) and (Yoo 1987),
Normal-to-Plane Displacement Field and Displacement Functions With Warping
A coupled model of a curved beam element loaded normal-to-plane wi
degree-of freedom, is derived. In addition 1o the coupling

th warping. as an explicit
action between bending and torsion, this
model considers the total shear deformation (pricnary and secondary shear deformation), which is
catsed by warping: the coupled displacement field is derived from the homogencous case o
equlibrium equations (20-a, b):

.II:-'H.'“ 1 f.-..?"'—:l’.-'

(32-a)
Ly + fgf = ) (32-h)
where:
A Els gt
Y e i 33-a)
3 1 |'."'!|"I _Il;lr..:.' {i'l?
Bty By g (El, +GI gt
Lpm—— el S s T Lea=h)
R GE g R el
rieotigd (33-c)
. :
Fl. db  Eff.d. ? R
Iy = --=='L-'“r4 {— _“”—+{,r1f‘_|d—, e (33-d)
Hodxt GRu art B

Also these ~operators are linear and are commutative, therefvre the following cquation can be
applied w w or f;
(sl Lils) =8

(34)
0O

>db  RPwGT 4% 1 2ucr af wGS d2
R — +(2-2 £ it

0 7 : & Gz ;=0 )
% Elg “ax® RY Rl "t g El; dx

Solving these differential equations resulls the coupled displacement field of the curved beam
element loaded normal-to-plane while warping eflects are considered:
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3 X @& X T X
Wix )= Az + dq = + As cosh— + Aq sinh X 4 A o5
K R K N
- b {36H-a)
o sin = + A+ = cos 4 A4 2 sin
# =R 4 i
and
J s 3 I 1t ” i
.J’fl'.in?1+ Ay E_E F s Raa ’}msh-ﬂ' ol Aa w.\'mhg-‘:
I Ru " R R (36-hj
AR X ABIZ e
= |2 = Nl = M= [SEAY
e it £ K
: 3 i 2 W () 5
while ¢ can be obtained from this equation g=— "+ [ e e
R (g d,
i’ ¥y i iz A ! Iy
X x i X #
wfx )= ds “_ coshZE+ A7 s — 10 X AL 'l:
R R R I S R (36-c)
'J n ¥ S .‘r T t
~ 212 PABICW sine + Zeos =]+ Y L ABICH vos = —2 sin "
R o .1 I g R R
in which:
i3
ARIC = _:;:r - (37)
LT + B 80
2 ,."}q bET )
ABICW =200 2 {3%)
P+a”+ 0% +&
-2 0 GJ
= (RT {39)
lli 'IE"!I'H
| 57
aiptida
i IIH R (40
Vol
and
. |Els
£ ' i)
| G,

Struin Energy of The Curved Beam Element

In addition to the normal stresses due to bending and axial force, which are developed in a curved
beam, an additional axial direct stress (or normal warping stress) and hoth primary and secondary
shear sirest2s due to the total torque and the bimoment, respectively will be formed in the
horizontally curved beam when strained warping effects are included. As the cross-sectional

dimensions are small compared 1o the radius of curvature, the shear stresses due to bending can be
neglectcd

The relationship between forces and normal or shear stresses ol thin-walled curved beam clements
are:

Fe = (o dr (42
X xl T2

i which o, yand e ;> are the normal stresses of groups-1 and 2, respectively,
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Fo Msay
ks TMR 43

T (43)

M- F .

ST B&d o
Cyp=—; M . (44)

%2 T i "r-:*-}

7 B o .

e T e B AT (45)
: -:ff.!'.'.' -:][ef.ﬂ'

The strain encrgy is:

U= + U

i)

where U7y and £/ are strain energies of groups-1 and 2, respectively.

) o I o, W i
L —J,l".'i‘re.l = Rl R e} T {47

L i -
Phe sirain energy of group-2 comprises siruin energivs due to normal and shears deformations
U= lag 4l (48]
Phe stramn energy due 10 normal siress for uroup-2 1s;

T I|I i L ':|'I'I ik - 1

Can = ) tofn’ = Ak N R 5 (45

While the strain encrpy due to the primary and secondary shear deformations that will be appeared
when restrained warping ¢ffects are included. 1, can be expressed as:
d ¢ 2. G e
ag =— | N — . i 3 it 50
Uay =— -_;.-LI_JJ’H‘ FIf f ot {500
T ST

Stiffness Matrix of Curved Beams With Warping
A stilfness of order {14x14) is derivied by minimizing the potential energy. Due 1o the complication

of [#] matrix expressions, the numerical Integration technique is used 1o produce the stifTness
malnx elements.

K] [KIT11K2) - (513

in which
| &c): 15 the total stiffness matrix Tor the curved beam element with warping in the local coordinate.
[&1]: s the stiffness matrix of order (620} for the curved beam loaded in plane {group-1)

|[K2]: is the stilfiess matrix of arder (8x8) for the curved beam loaded normal to-plane {group-2)
when warping effects bemng included.

In-Plane Stiffness Matrix
The stiffness matrix of this group consists of axial and vending stillness matrices, as:

[KI]=[KA]+ [KRI] (52)

in which [KE7] denotes bending stiflness matrix for group-1:
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[RA]=E4 E’[BA | [Bake (53-a)
aryd
[kBil=£1, [, [BBI] [BBI . (53-b)

in which [BA] and [£#1] are row vectors relating the joinl displacements 1o strain field for sroup-1

(s=[B]14})

[BA]=[N;, - N,/ R] {54-a)
armd
|BBi]-| Ve N, /R (54-b)

I'he individual element [or A4} and [K8F] can be expressed as:

- . ‘r [ N : r "M' 5 o
Kiji =Ed | (N - R" (N —R“-—J;.:E (33-a)
and

: cr il o B e :
KBLij = £ [y (NL+ =2 )i Ny +=2 ) ol (55-b)

/= %
wherefor J = (1,2,6, 8.9, 13)
re ':""II : rl [ 'r-_ _.I' 4 b ] 3 jl. -II A
(N, RF R A% sin 2 Az rﬂ—""{'m‘} (3G-a)
N, o Aoy 7 2 3
A T "’;}J —Apq oy = SR T P cor— (26-b)
R i €= 4 K R

Normal-to-Plane Stiffness Matrix

The shflners matrix of this group comprises of four subdivided stiffness matrices, as in the
tollowing:

lk2]- (kB2 |KBMm |+ [&T1]+ [KT2) (57)

where:

[ﬁ.’.’i;‘] 15 the bending stifTness matrix for group-2 when warping is considered.

iﬁ-"ﬁ:'»f]: 15 the stiffness matrix resulling from the warping normal stress and strain caused by the
birmoment.

|K71 Jand [K72]: are torsional stiffness matrices resulting from the total shear deformation, which
comprises the primary and secondary shear deformations.

|kB2]- £, [ |BB2] [BB2]ax (58-1)
[KBut)< £1, [ (880 ] (B8 ]ax (58-b)
(KT i}=cir [y [BT) [B11]ax (58-c)
[KT2]=Ge 1. ) [y [BT2Y (BT 2)d¥ (58-d)

i which [HB!.[HHM]. [E71] and EHTE] are row vectors relating the joint degrees-of-freedom to
strain [eld for group-2 with warping.
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[BB2]- {N;. ﬂ;ji}

[2BAr] - [N
[rr1)= ;]
[Br2]=[n - N3

in which
B II"":'"..
-'"l":r L J:"I-'Ij:, t "

he expressions for the individual element of the subdivided stillness mairices are:

N N
= : Loovrs By i =
kB2, -L'I_,,J'ﬂ (N, - H—J:{N“,—-E )y ey

KBM = b 15 [ (NF DN ) die

KTl =Gl [ (N )i (N ) di

KT2, =Gl )y NG =N, (N N ) ol
where [ j = (3.4.5, 7,10, 11, 12, 14)

The individual elenents of the [EB] vectors in egs. (59 are-

okt o depas 4 _
¢ “-iﬁ i = L ABICW =2 psink - T pres o0l
R* R K
. o _ T Ao e .
r.-".c"_',.- o r,i !sz] +-:r1 .:'L':'.P.‘-T.IIFFI i _r?.' r,:l."] o il ,l.?r'.-zh{ri+ I'r”%'l AR 5in 3
R u £ Ry 1'? R
I » -
I—J.J " ABIC cos =
o iy
i Ay A g - Eore e o s o
(NG Ji =- :Ii— Ir_:—Jlrir’." b’ J.ﬁnhﬂﬂr [ L;r’l xf T+ Jeosh™
R ' g
A T
= L ABICW cos =T ey i X
R R f

rli".";,-- N ’If.__‘{-g"r,j,l_zhf -&fflfﬁzjli-fraia'%1_1{{:_.” )-'I_ &I'f-lr'l-ﬁ’lj{:.;rﬂ;ﬂex

> | O
DT 12
| .-']l.' F2:i) . i — ABK LA n L +.-'ﬂ|.- P _..! o — AR dl'i'."i";

R7Gpd R Gu i,

TRANSFORMATION INTO SYSTEM CORD INATES

[ 59-a)

(5%-b)
(59-c)
{59-d)

(61

{G1-a)

{61 -h)
(al-cl

(61-d)

[62-a]

(62-h)

(62}

(62-d)

The stiffness matrices of the three-dimensional curved beam elements refer to the clement lacal
axes x, v, = The wial translformation of the stiffness matrices of curved beam clements from local

coordinales can be expressed as:

[&el=lr] [rFlk, 1frir]

328
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whernz
[£::]: 15 the. global stiffness matrix of a curved beam element.
[ £y [ is the stiffness matrix of curved beam element in the local coordinate system.

(n the other hand, [T'] is the transformation matrix used for the frst stage of transformation from
the local curvilinear ~oordinates x, 1.7 o the local straight coordinates x, v, = (Fig. (5). The
elements ol this matrix are the direction cosines between the 1wo systems (X, ¥.2 ) and (x. ., 2). For

curved beams with warping, the {T’] matrix will be of order of (14x14). which can be expressed as:

¢ 2 b
g o 0
g o 1
B 0 0D e —g 0
Wb D s o O
O 0 BB o | SV MM
(] g 06 0D & 90 (63)
g 0 0. B 80 & 3D
0@ 0 & 0 0l=x 2 0
o o oo o o0 D1

dl
0 @ 00 o Do e B & & '
0 O o0 o 060 0 oon ¥
b @ a9 O o 0 o0 0
0 0 00 0 DO 0 OO0 O 0G|
whicre 5 = sinf@ /2 ). and ¢ = cos(@ /2.

o

N .\.u L /
{enter of
vty /
w4

Fig. (5) Curvilincar coordinates X, 7. 2
and straight coordinales x, v, z
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STATIC ANALYEIS OF THIN-WALLED CURVED ]

FEAM ELEMENT INCLUDING WARFING EFFECTS

{T] Matrix in Eq. (63) is for the second stage of transformation to convert the stiffness matrix from

local straight coordinates 1o the global coordinate system. For curved beams with warping, | 7] can
be expressed as:

sl o o0 0 0 0
1 0 ¢ o o

1 @ B0 e

il (25}
] o
=¥ AN [}.-r'l ‘}
I

where iT“] 15 the (3x3) transformation matrix as described by reference (Dabrowski o8 and can
be cxpressed as (Azar 1972 & Krishnamoorthy 1988):

|_ casorcos fi sin f1 sine. cos 3
| —cose.sin B cos ¥ cas yooos ¥ siee. sin ff cos ¥
[ ] — St siny + COF LS ¥ ' {0i)
cos e sin [Fosiny st y.cos fi sinde sin B siny
SR a8y + CUNEE COS }

where o, /7,7 are rotations about ¥, 7 X respectively.

The value (1) in |1"']and |-]""]. in rows T oand 14 ds the direction cosines of the memiber for tle
seventh degree-of -frecdom {warping).

VERIFICATION PROBLEMS
A computer program is developed for static unalysis o demonstrate the accuracy of the developed

curved beam element. Tweo problems are analysel. The results of the present study analvsis are
compared with exact solutions.

Froblem (1)

A single span curved box girder subjected to truck eccentric loading is analyzed. Eilicts of warping
are considered in the analysis. The loading and geomelry ol the box girder of this problem with its
seclonal properties are shown in Table, (1) and Fig. (6). The modulus of elasticity £ and Poisson's
ratio © are 30000 k / in” (20683241 MPa) and (0.2931), respectively. Both supports of the girder
are pinned in bending and torsion (M =0, =0 BM =0}. Four clements are used in the analysis

of this girder. Table, (2) shows a comparison between the present study analysis results, when
curved beam: elements with warping are used and re srence (Heins and Oleinik 1976) analysis
results, This reference analyzed the same problem and presented results where 200 curved beam
elements that he developed were used, Also. this comparison includes the results of the closed-form
solution from reference (Dabrowski 1968). The closed-form solution equations are presented in
Appendiz (A). The results of the present study amalysis show an excellent agrecment with the

closed-form solution resulis and the maximum diflference is (3.2325107 ‘“-,'-'u} lrom these resulls. On
the other hand, the present study analysis results show a maximum dilference of ((174 %) from the
displacements and rotations resulls of reference {Hemns and Oleinik 1976). The values of (he
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bimoment in reference (Heins and Oleinik 1976) arc found to be far from the closed form solution
values, while the present analysis bimoment values are very close o those of the exact solution.

Table{1) Problem (1) applied leads

o A

lable {2} Results of problem (1)

331

s i u;: Exaa_m!utiﬂn Ref, RGLEE’E;E? . Present study
: o0 (Dabrowski 1968) results
Friy i “analySis results ;
Vertical 0050 0.53808172F-1 | 0.53804271E-1
displacement w | (.151 015688950 0.15687853
{in} [ 0.22L 027150741 022149105
B agas 0.051. 0,14346389 E-3 | -0.14337976 E-3
Gbatpon —_— ; ey
(rad) | ‘0151 042225950 E-3 | 042172726 F-3
; E | 060145488 E-5 | -0.00250367 F-3
Shear force #= (k) 0 2928 )28
D05 | 093261162613 | D93261258E:3 | 09326115 L+3
Bending moment S T . - S et
M, th.in) 0.15L (L 2T7955038E+4 D.27955067E+4 | 027935037 F 14
0.221. | 040956474144 | 040956516614 | 040956472 E+4 |
ke 0 0.21723501E+4 | -0.21725838E+4 | -0, zwﬂaw'ni_@
H (k in) 0.05L | -0.21606918E14 | -0.21606924E14 | 0216069201~
0151, [ -0.206746951514 | 0.20674700E14 | -0.30674697E<4 |
‘ JC 02165358814 | 0.21680428E 14 | -0.21653590k14
fkfi]w 0.05L | -0.21532267E14 | -0.21563426E14 | -0.21532268E+4
0.15L | -0.20536354E+4 | -0.20576431L 14 | -0.20536356E+4
r 0 0.69912562E+1 | -0.43073081E+1 | 0699125575 +]
im) 0.05L | 074651696111 | 043497252511 | 0.74651694E+]
| 0.I5L | -0.13834114E+2 | -0.98269119+1 | -0.13834115E+2
e 0.051 | -0.214301126+3 | -0.12958343E+3 | -0.21436111E+3
ki) 0.05L | -0.79732544E+ 3 0.45TI0444E+3 | 079732545613
0221 | -0.16957586E+4 | -0.24010951E+4 | 0.16957586E+4
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L= 600in (15.24 m)

\ S S
—— -
1__-"--

7
L e

R= 1200in (3(1L.48m)

5in

-
W

2

(i) Cross section

section propertics;
ST QIOTSISII LeS i (23621679 F 2en') 5 02724672458 £ 15 in' (1134093 E 2 m),

{ =8 914387775 E +6 in® (1319743 E 3 m®), 1.~ D6OTSE1301TE =5 in' (29054697 E 2 mY

Fig. & : Curved box girder of problem (1)

A semicirenlar lixed ended arch of radius (R=1.5 m} is analyzed. The scctional propertics are (]

64E-3. /.- 1.6E-3 m". The modulus of elasticity 1= (B ~ 200000 MPa) and Poisson’s ratio is
{o-0.3). To assess the validity of both in-plane action of the developed curved beam clement; the
arch 15 loaded by a concentrated load of (250 KMN) at the crown in the plane of the arch.. The
analyzed arch consists of two elements. The results of this analysis are compared with the exact
solutions of reference (Martin 1966). The comparison, which is given in Table {3), shows an
excellent agreement with the exact solution and the maximum difference is (187 %)
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Table (3) Results of problem (2

e e B T bl 2 -.. i .
S f".n._-m e i -E;‘“HE‘-‘"”““F m'@ﬁ”ﬁ%ﬂ?ﬁ%mf - Prese
TS AT O ik |1 (Martic. 1966} o el e, T
Wertical JJlprw;,r.:ant under the | 3, ¥ i .
load (cm) ] PRE5.802E § = =0.5073E-2 U ST L2
B-:'ndlng_ MOMENL Al SUppoTts -
EHM PR=04 ird Q. laTidE
M - (kN em) =04 140 k4
Bending rrlq_'un:lcﬂ'[ under the kosd 015 18PR- 0 S6TT5EA 0 SHS005E+4
(kM cm)

CONCLUSIONS

1- Smee the new displacement field is derived from the homogencous part of the equilibirum
equations that control the static behavior of a thin-walled curved beam element of a closed
section -vhen warping effects are included, the element’s stilfaess matrix that derived using this
dsplacement field gives very closed resulls Lﬂn'l]'mr':“d with the closed form solution results and

can be said it is an exact solution therefore there is no added advantage or increase in the
accuracy when implying finer mesh.

2= Considering the non-uniferm toesional behavior of a closed thin-walled section of the curved
beam ¢lement in the dervation of its warping function makes the results very close to the closed
[orm solution
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Appendix A

Table (A.1): Stress resultants in the basic s

STATIC AMALYEIS OF THIN-WALLED CLURVEDR
BEAM ELEMENT INCLUDING WA BFTNG EFFECTS

ystem for a loading system COMPISINg a concentrated

load P and a separate twisting moment M Ref. (Dabrowski 1 968).

Quantity | Rang. | Expression ’
3 sim 3
i R~ M}—Tmf_ sing
| sin
i, BT Siv 3 ol
(PR )EE
sing '
. fl. f' T ——
|4 (M -.me_Jﬂf”;} cosq + PR ;-
xin
H 2 =S
i sinfi S
(M —PK)— cosgp’— PR |
e P g |
BE Ml PR sink kb W e
! L AR L (MR- PR2 8 i
-"_'rn s sink shnfd
Fel P _]rf"'[—_ P _ _JT S :: sin gt
{1 My _J?_,' | PRy sinh sl (MR PRy ni o
[y wsinh ik, s
o T i - _.i.J'r.'F:.ﬁ e e sin M
; Wil—a)+ PR p = -coshby + (M = PR il NI
gM ¢ d " '.'-‘.'u'r.U.: 4 KIR
i e e " ——
! l|' g i
-IFJr _llf'lijrlrr_l;.lll J L lr_.lllll:l.rlllIlfi"rlll:'l:.-sillruhkx._ |"1.,|r I;R”?:'II!HI? _'\C?.I.II;:'J
sinlr kS sinf?
|I,L|!|::-':-._lr
i VEl,
B e e |
L+ kR )2 J
— — — — — e — — — — — [
J.l
I Ir
3 — .'H
£ £y
xoke | xeRp
= R h=RpS |
| .
) Lere |
LIST OF SYMBOLS
ay, il - Coordinates of shear center ineasured from centroid.
A _ Cross-sectional areq,
ABIC ABICW Dimensionless parameters defming cross-sectional rigidities.
A

[B4] . (881

: Ihsplacement field unknowns.

Row vectors relating the joint degree-of-freedom to strain

ficld of group
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L
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L.
Row veclors relating the joint degree-of-freedom to strain field of group -
2 without warping.
Row vectors relating the joiet degrec-ol-freedom to strain field of graup -
2 with warping.
Bimoment.
Cieneralized displacement field for groups - 1.

Lieneralized displacement field for proup =2 when warping is considered.

Modulus of elasticity.
Axial and shear forces,

Dimensionless warping function.

Generalized lorce and displacement veclors for the curved beam element
with warping.

Dimensionless parameters.

Shear modulus,

The distance of contour from the shear center.,

Total torgue.

Principal monnents of inertia.

Warping moment of mertia for closed and open-closed sections.,

Central second moment of area.

S1. Venant's torsional constant.

Stiffness matrix for a curved beam element loaded in plane.

aliffness matrix for a curvedd beam clement normal 1o plane,

Axial stilTness matrix of group 1.

Bending stiffness matnices of groups 1 and 2.

Stillness matrix for a curved beam clement normal to plane when warping
15 considered.

Stiffness matrix results from warping normal stress and strain caused by
Brirnoment.

Bending stiffness matriees of group 2 when warping is considered.
Tarsional stiffness matrices from result primary and secondary shear
delormation.

Global stillness matrix of curves] beam elements.

Tolal stiffness matrix for curved beam elements withoul warping in the
incal coordinate, .

Total stiffness matrix for curved beam elements with warping in the local
coordinate.

Llement length.

Differential operalors.

st Venant's and warping torgues,

Bending moments.

Shape function matrices for grewps -1,

shape function matrices for group —2 when warpicg are consideied.
Radius of curvature,

The polar radius of gyration.

The contour ordinate measured from a selected point on the median line
of the section.

The: principal seclorial static moment.
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BEAM ELEMENT INCLUDING WARPING EFFECTS

STATIC ANALYSIS OF THIN-WALLED CURVED J ‘

Shear Mow.
Translformation matrix.
Strain energy.
Displacements in direction of X,

Axial and tangential components of the median surface displacement of
the plate wall. '

Local curvilinear coordinates,
Local straight coordinates.
Gilobal coordinates,

Decay eoefficient for non-uniform torsion of closed and open-closed
SeChions.

Dimensionless parameters.

Kinematic degree-ol-[reedom,

Wall thickness in general.

subtended angle of the curved beam element,
Warping shear parameier for closed and open-closed seetions.
Poisson’s ratio,

Mormal stresses of proups 1 and 2.

Warping normal stregs

shear stress of group -2,

Total angle wist it =g+ w/ R),

Angle o 1wist.

Seclorial area,

Linat warping for closed and vpen-closed sections,

Twice the arca of closed pant of a section enclosed by the median line of
the wall,
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