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ABSTRACT  
This research presents a method of using MATLAB in analyzing a nonhomogeneous soil (Gibson-type) by 
estimating the displacements and stresses under the strip footing during applied incremental loading 
sequences. This paper presents a two-dimensional finite element method. In this method, the soil is divided 
into a number of triangle elements. A model soil (Gibson-type) with linearly increasing modulus of elasticity 
with depth is presented. The influences of modulus of elasticity, incremental loading, width of footing, and 
depth of footing are considered in this paper. The results are compared with authors' conclusions of previous 
studies. 

  

  الخلاصة 
 ـهذا البحث يقدم طريقة       الإزاحـات  واسـطة حـساب    ب (Gibson-type)  غير متجانـســة    في تحليل تربة   MATLAB استخدام ال

في هـذه   .  الثنائية الأبعاد  المحددة صراعنالقدم طريقة   يبحث  ال اهذ.  متعاقب تحميل تزايدي  تطبيق  أثناء أساس شريطي  تحت   اتوالإجهاد

 بـشكل   د متزاي رونةم معامل ذات   (Gibson-type)ـــة  مقَدم ال نموذجالتربة  . المثلثةعناصرِ  اللتربة إلى عدد مِن     اتم تقسيم   الطريقة  

  النَتائج   . بحث ال ا في هذ   وعمق الأساس  عرضو،  المتزايدتحميل  وال  المرونة، تأثير معامل تم دراسة   . العمقمع  خطي نتمت  إنقَارتهـا م 

  .دراسات السابقةالمؤلفين من  استنتاجاتمع 
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INTRODUCTION 
 In general, the magnitude and distribution 
of the displacements and stresses in soil are 
predicted by using solutions that model soil as a 
linearly elastic, homogeneous and isotropic 
continuum. From the standpoint of practical 
considerations in engineering, anisotropic soils are 
often modeled as orthotropic or isotropic medium. 
Besides, the effects of deposition, overburden, 
desiccation, etc., can lead geotechnical media, 
which exhibit both nonhomogeneity and 
anisotropic deformability characteristics. 
 The type of elastic nonhomogeneity is a 
useful approximation for modeling certain 
problems of geotechnical interest (Selvadurai, 
1998). 
 In this work, an elastic static loading 
problem for a continuously nonhomogeneous 
isotropic medium with Young’s modulus varying 
linearly with depth is relevant. 
 The solutions of displacements and 
stresses for various types of applied loads to 
homogeneous and nonhomogeneous 
isotropic/anisotropic full/half-spaces have played 
an important role in the design of foundations. 
However, it is well known that a strip load 
solution is the basis of complex loading problems 
for all constituted materials. A large body of the 
literature was devoted to the calculation of 
displacements and stresses in isotropic media with 
the Young’s or shear modulus varying with depth 
according to the linear law, the power law, and the 
exponential law, etc. A more recent survey of the 
existing solutions for a nonhomogeneous isotropic 
is summarized in Table 1 (Wang et al., 2003). 
 A closed-form expression for a footing 
resting on a soil with stiffness linearly increasing 
with depth (Gibson, 1967) is given only for 
undrained loading (ν=0.5). To resolve drained 
loading cases with ν<0.5, finite element solutions 
were developed for estimating the displacements 
for nonhomogeneous cases (e.g. Carrier and 
Christian, 1973; and Boswell and Scott, 1975).  
 A numerical technique was used by Stark 
and Booker (1997) for the analysis of surface 
displacements of a non-homogeneous elastic half-
space subjected to vertical and/or horizontal 
surface loads uniformly distributed over an 
arbitrarily shaped area. 
 In geotechnical engineering practice, it is 
usual to consider only the change in stresses (∆σ) 
when computing displacements. 

 In practice, most foundations are flexible. 
Even very thick ones deflect when loaded by the 
superstructure loads (Bowles, 1996). 

 
- NONHOMOGENEOUS “GIBSON-
TYPE” SOIL PROFILE 
 In natural soil deposits, the variation of 
soil modulus with depth may assume any of a 
number of possible scenarios which shown in 
Table 1. Since many soils exhibit stiffness 
increasing with depth because of the increase in 
overburden stress, the displacement and stress will 
be evaluated for a Gibson type soil. A footing 
resting on a nonhomogeneous elastic medium 
with modulus increasing with depth is a more 
generalized problem (Boswell and Scott, 1975; 
and Stark and Booker, 1997). 
The variation of elastic modulus for a generalized 
Gibson soil (Gibson, 1967) is expressed by: 

 
       (1) 

 
where  = the elastic soil modulus increasing 
linearly with depth;  = Young’s modulus of 
elasticity of soil directly underneath the 
foundation base;  = linear rate of increase of 
elastic modulus with depth (units of  per unit 
depth); and  = depth, (Figure 1) (Mayne and 
Poulos, 1999; and Das, 2002). 
 
- FINITE ELEMENT ANALYSIS   
 The finite element method provides an 
extremely powerful method for the analysis of 
elastic materials. Many natural soil deposits can 
be considered to have been deposited in a 
sequence of horizontal layers and, thus, there is no 
variation of elastic properties in any horizontal 
plane. 
  One of the essential ingredients 
for a successful finite element analysis of a 
geotechnical problem is an appropriate soil 
constitutive model (Potts and Zdravkovic, 2001). 
 The advantage of an arbitrary triangular 
shape is to approximate to any boundary shape 
(Zienkiewicz and Taylor, 2000). So the triangular 
element shape is considered in this research.
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A finite element computer program for a rigid 
circular plate resting on a non-homogeneous 
elastic half-space was presented by Carrier and 
Christian (1973). 
 Boswell and Scott (1975) presented a 
finite element solution for a flexible circular 
footing resting on a semi-infinite half space. 
 In the present study, 3-noded triangles 
elements with two degree of freedom at each node 
have been used to model soil. In each increment 
of the analyses, the stress-strain behavior of the 
soil is treated as being linear, and the relationship 
between stress and strain is assumed to be 
governed by the generalized Hooke's law of 
elastic deformations, which may be expressed as 
follows for conditions of plane strain case: 
 

    

                                                                            (2) 
 
where ∆σx , ∆σy and ∆τxy = the increments of 
stress during a step of analysis; ∆εx , ∆εy and ∆γxy 
= the corresponding increments of strain; Es = the 
value of Young's modulus; and ν = the value of 
Poisson's ratio. 
 
About MATLAB   
 The MATLAB programming language is 
useful in illustrating how to program the finite 
element method due to the fact it allows one to 
very quickly code numerical methods and has a 
vast predefined mathematical library. A simple 
two dimensional finite element program in 
MATLAB need only be a few hundred lines of 
code whereas in Fortran or C++ one might need a 
few thousand (Chessa, 2002). 
 MATLAB can be very useful as a 
solution tool for the finite element method which 
Matrix and vector manipulations are essential 
parts in the method (Kwon and Bang, 1997). 
 
- The Finite Element Computer Program by 
MATLAB 
 A computer program designed by the 
authors was used in the finite element analysis 
carried out during this research. The program 
allows for triangle type of elements to be used in 

the finite element mesh in solving soil problems 
under plane conditions (strain or stress). The 
behavior of the soil can be approximated by 
Gibson model (Gibson, 1967). The model that 
is considered in this work is 
nonhomogeneous, isotropic on primary 
loading with a different modulus. 
 The sign convention for the stresses and 
the convention for numbering the nodes of 
elements are shown in Figure (2). The program 
presents the results of analysis as the 
displacements of the nodal points, and the value 
of stresses developed at the centre of each element 
at the end of each solution increment. 
 
 Figure (3) is a flowchart that illustrates 
the main features of the solution procedure 
adopted in the finite element computer program 
used. 
 
Verification of the Computer Program 
 The authors have used this program in 
different problems (Figure 4) presented by another 
researchers (e.g. Brown, 1984; and Smith and 
Griffiths,1988).  
 
 The results obtained by the program 
modified in this research were compared with 
results presented by Brown (1984); and Smith and 
Griffiths (1988). In all these comparisons, 
excellent agreement was found between the 
present work results and those published, as 
shown in Table 2. 

 
- PROBLEM GEOMETRY  
 The case study is treated as plane strain 
two-dimensional problem for simplicity when 
analyzed by the finite element method. The shape 
of elements used is the triangular element because 
of its suitability to simulate the very important 
behavior of soils under strip footing. 
 The basic problem chosen for the 
parametric study shown in Figure (5.a), involves a 
soil stratum, 21.0 m thick and 28.0 m width, of a 
silty clay soil underlaid by bedrock and loads by 
strip sequence loadings (80, 160, 240 kN/m2) with 
base width equal to 1.0 m. 
 The finite element mesh (Figure 5.b) used 
consists of 989 nodal points and 1848 triangular 
two-dimensional elements. The nodal points along
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 the bottom boundary of the mesh are assumed to 
be fixed both horizontally and vertically. The 
nodes on the right and left ends of the mesh are 
fixed in the horizontal direction while they are 
free to move in the vertical direction. All interior 
nodes are free to move horizontally and vertically. 
 
- MATERIAL CHARACTERIZATION 
 The stratum is silty clay soil and the 
properties of the soil are reported in Table 3, (Das, 
2002). The behavior of soil material is a 
nonhomogeneous elastic medium with modulus 
increasing linearly with depth.  
 
- RESULTS AND DISCUSSIONS 
 In this study, a model of silty clay soil 
was analyzed under uniformly flexible strip 
loading with soil modulus increasing linearly with 
depth. In order to develop more knowledge about 
the behavior of soils under strip loading problems, 
a parametric study is performed by varying the 
basic problem parameters and comparing these 
results with the original basic problem results. The 
results of increasing the load, constant soil 
modulus with depth, and changing the footing 
depth (Df) and width (B) are presented as follow: 

 For uniformly flexible strip loaded area 
the vertical displacement along the surface of the 
model is shown in Figure (6) and the contact 
settlement under the strip footing is shown in 
Figure (7). The settlement at the center is much 
larger than the settlement at the edge of the loaded 
area. These results agree with the results founded 
by Wu (1974) and Das (2002). Also the vertical 
displacement increases in direct proportion to the 
pressure of the loaded area, as shown in Figures 
(6) and (7), which agrees with that reported by 
Craig (1987). 
 The vertical stress contours throughout 
the soil to depth (5B) under the strip loadings (80, 
160, 240 kN/m2) with base width (B) equal to 1.0 
m are shown in Figure (8). It can be seen that the 
vertical stress values along the depth of the layer 
decrease throughout the layer for each increment 
and increase throughout the loading sequence 
stages. 

 
From the settlements at depth (4B) from 

the top of model (Figure 9), it can be seen that the 
settlement for soil with modulus increasing 
linearly with depth is less than the settlement for 

soil with constant modulus (Es = Eo = 9000 
kN/m2). The results agree with that mentioned by 
Terzaghi in Wu's book (Wu, 1974). 

 
 The immediate settlement at the center of 
the loaded area is reduced when the strip footing 
is placed at some depth (Df ≤ B) in the ground, 
depending on footing width (B), as shown in 
Figure (10). These results agree with that 
mentioned by Fox in Bowels' book (Bowles, 
1996). 

 
The vertical displacement (immediate 

settlement) increases in direct proportion to the 
width of the loaded area (size of the footing), as 
shown in Figure (11), which agrees with that 
reported by Wu (1974) and Craig (1987). 

 
CONCLUSIONS 
 The results obtained from this study can 
lead that the computer program can simulate the 
analysis of the nonhomogeneous silty clay soil 
(Gibson-type), which had a soil modulus 
increasing linearly with depth and loaded with 
incremental strip loading. 
 This paper shows how the computer 
solutions may be used to improve the prediction 
of settlements and stresses beneath a strip footing 
resting on Gibson-type soil. 

 Displacements and stresses can be 
calculated with knowledge of soil stiffness 
beneath the footing, rate of increase of soil 
stiffness with depth, soil Poisson’s ratio, depth to 
an incompressible layer, and footing width. 

The immediate settlement at the center is 
much larger than the settlement at the edge of the 
strip loaded area. The immediate settlement 
increases in direct proportion to the pressure and 
the width of the strip loaded area. The vertical 
stress values (stress bulb) under the strip loaded 
area decrease throughout the layer for each 
increment and increase throughout the loading 
sequence stages. The vertical displacement for 
soil with modulus increasing linearly with depth 
(Gibson-type) is less than the vertical 
displacement for the same soil with constant 
modulus which leads to that the soil with (Gibson-
type) modulus is more approximate simulation for 
soil modulus. The immediate settlement of the 
strip loaded area decreases when the depth of strip 
footing increases. The results compare favorably 
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with available published analytical and numerical 
solutions. 
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Table 1. Existing analytical/numerical solutions for nonhomogeneous isotropic media, (Wang 
et al., 2003) 

 
Types of nonhomogeneity Author 

Rostovtsev ; Lekhnitskii ; Popov ; Zaretsky and 
Tsytovich ; Kassir ; Rostovtsev and Khranevskaia ; 
Carrier and Christian ; Puro ; Popov ; Booker et al. ; 
Oner ; Booker ; Giannakopoulos and Suresh ; Stark 
and Booker ; Yue et al. ; Holzlohner . 
Plevako ; Chuaprasert and Kassir ; Kassir and 
Chuaprasert ; Dhaliwal and Singh ; 
Harnpattanapanich and Vardoulakis ; Rajapakse and 
Selvadurai ; Jeng and Lin . 
Gibson ; Gibson et al. ; Brown and Gibson ;  
Awojobi and Gibson ; Carrier and Christian ; 
Alexander ; Calladine and Greenwood ; Rajapakse ; 
Chow ; Rajapakse and Selvadurai ; Dempsey and Li ; 
Yue et al. . 
Ter-Mkrtich'ian ; Rowe and Booker ; Row and 
Booker ; Selvadurai et al. ; Vrettos ; Selvadurai ; 
Giannakopoulos and Suresh ; Jeng and Lin . 

 George . 

 Singh ; Dhaliwal and Singh . 

 Awojobi . 

 Gibson and Sills . 
 

 

 
Fig. 1. Variation of soil modulus with depth 
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Fig. 2. Sign convention and element numbering 
 

 
 
 
 
 

Fig. 3. Simplified flow chart of the finite element program 
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Fig. 4. Mesh and data for different problems 

 

 
Table 2. Comparison with the theoretical results 

 

Item 
considered 

Brown
results Authors results Item 

considered 

Smith and 
Griffiths 
results 

Authors 
results 

Hor. Disp. 
of  node 1 7.712 7.7122134E+000 Ver. Disp. 

of  node 2 -0.1000E-05 -1.000000E-
006 

Ver. Disp. 
of  node 3 

-
13.582 

-
1.3583206E+001

Hor. Disp. 
of  node 6 0.3000E-06 3.000000E-007 

Ver. 
Stress at 
elem. 2 

-2.461 -
2.4605374E+000

Ver. Stress 
at elem. 1 -0.1000E+01 -

1.000000E+000

Hor. 
Stress at 
elem. 2 

6.816 6.8155730E+000

 

Shear 
Stress at 
elem. 8 

0.0000E+00 0.000000E+000

 

 

(b) after Smith and Griffiths (1988).(a) after Brown (1984). 
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Fig. 5. The basic problem for the parametric study 
 

Table 3. The soil properties 
 

Eo  9000 kN/m2 
k  500 kN/m2/m 
ν 0.3 
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Fig. 7. Contact settlements under the strip loadings (80, 160, 240 kN/m2) with base 
width equal to 1.0 m 

Fig. 6. Settlements along the surface of the model under the strip loadings (80, 
160, 240 kN/m2) with base width equal to 1.0 m 
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Fig. 8. Vertical stress contours for the soil model to depth (5B) throughout the loading 

sequences 
 

 
 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
 
 
 

 
 

 
 

Fig. 9. Settlements along the horizontal distance at depth (4B) under strip loading (80 kN/m2) 
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Fig. 10. Immediate settlements at the center of the strip loading (80 kN/m2) with 
different width of footing according to depth of footing  

Fig. 11. Immediate settlements at the center of the strip loading (80 kN/m2) with 
different depth of footing according to width of footing  
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