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ABSTRACT 
          Numerical investigations of unsteady natural convection heat transfer through a fluid-saturated porous 
media in inclined cylindrical enclosure are studied by solving the governing (3-D) Darcy-Boussinesq 
equations using finite difference method. The momentum equation of flow was solved by Relaxation method 
and the energy equation by using Alternating Direction Implicit (ADI) method. The problem is analyzed for 
modified Rayleigh number with range of (50-300),angles of inclination (0°,25°,45°60°90°), amplitude of 
sinusoidal temperature (0.2, 0.4, 0.8) and period (0.005, 0.01, 0.02). Results indicate an increase in the heat 
transfer with increasing of Rayleigh number, time, amplitude, angle of inclination and period. Also average 
and local Nusselt number were calculated and it is found that Maximum temperature and velocity occur at 
angle α=45 and this indicate a strong buoyancy force effect on convective flow.                                                                   

      
  الخلاصة  

 ومائـل بواسـطة حـل       اسـطواني ، دراسة عددية لانتقال الحرارة بالحمل الطبيعي في وسط مسامي محـدد           ، تم في هذا البحث             

 تكراريـا  تم حل معادلة الـزخم .  طريقة الفروق المحددةباستخدام) Darcy-Boussinesq equation( الثلاثية الأبعاد متضمنا تالمعادلا

زوايا ، ) 300-50(حللت المسألة لقيم عدد رالي      ). ADI( الضمني المتناوب    الاتجاه معادلة الطاقة فقد تم حلها بطريقة        أما الإرخاءبطريقة  

النتائج بينت زيادة في انتقال الحرارة مـع        ). 0.02، 0.01، 0.005(والفترة  ) 0.8، 0.4، 0.2(الأتساع  ، )°90،°60،°45،°25،°0 (الميلان

ولقد وجد إن أعظم درجـة  تم حساب قيمة عدد نسلت المعدل والموضعي . زوايا الميلان والفترة، الأتساع، الزمن، زيادة عدد رالي المطور 

  .وهذا يعطي تنبأ عن تأثير قوي لقوة الطفو على المائع) 45(رة وأعظم قيمة للسرعة تحدث عند الزاوية حرا
  
KEYWORD(S):Natural Convection;  Cylindrical Enclosure;  Porous Media;  Sinusoidal 
                     Temperature Variation. 

  
INTRODUCTION 
          Natural convection heat transfer in fluid-
saturated porous media is a research topic of 
practical importance due to the many practical 
applications which can be modeled or 
approximated as transport phenomena in porous 
media, these flows appear in a wide variety of 
industrial application, as well as in many natural 

circumstances such as ground water flows, oil 
recovery processes, thermal insulation 
engineering, food processing, casting and welding 
of manufacturing processes, etc. Representative 
reviews of these applications and others 
convective heat transfer applications in porous 
media may be found in the resent books by 
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(Ingham and Pop 1998), (Nield and Bejan 
1999), and (Vafai and Hadim 2000), 
(Mohammad and Nawaf, 2005).Many studies 
were reported which deals with porous media, 
(Wang and Zhang, 1990) studied three-
dimensional steady natural convection in an 
inclined liquid-saturated porous concentric 
cylinders for different variables. (Shivakumara 
et.al., 2002) studied numerically transient free 
convection in a vertical cylindrical annulus filled 
with a fluid saturated porous medium with Ti>To 
while the top and bottom boundaries are adiabatic, 
a finite difference ADI and Successive Line 
Overrelaxation are used to solve the governing 
equations. (Iyer and Vafai, 1999) analyzed 
numerically free convection fluid flow and heat 
transfer in a horizontal cylindrical annulus in the 
presence of a porous geometric perturbation, the 
flow in the porous region is modeled using 
Brinkman-Forchheimer-Darcy model and the 
governing equations is modeled as (3-D) and 
solved numerically using Galerkin method of the 
finite element formulation. (Mohammad, 2008) 
studied natural convection in cylindrical enclosure 
of porous medium with constant and periodic wall 
temperature boundary conditions, the flow is 
modeled using Darcy model and the governing 
equations is solved numerically using finite 
difference method. Also there are studies for 
Cartesian enclosures such as (Wajeeh, 2006) who 
studied transient 3-D natural convection in 
confined porous media with periodic boundary 
conditions numerically and experimentally, the 
effect of the oscillating surface temperature on the 
fluid flow and heat transfer within the enclosure 
were determined. The purpose of the present 
paper is to study the natural convection flow 
behavior and its effects on the heat transfer and 
temperature distribution within a cylindrical 
enclosure filled with saturated porous medium and 
which is inclined by angle α from the horizontal, 
also velocity distribution and Nusselt number will 
be explained. 
  
MATHEMATICAL MODEL 
          A schematic representation of the system 
under investigation is shown in Fig.(1). The 
cylindrical system of coordinates ( zr ,,φ ) is 
represented. The system is inclined with angle 
(α ) from the horizontal so, the gravitational 
acceleration ( g ) acts in the negative ( zr, ) 

directions and positive (φ ) direction as shown in 
Fig.(1) 

               The (3-D) cylindrical space contains a 
porous material of permeability (K) and porosity 
(ε ) which is saturated with a Boussinesq fluid of 
viscosity (υ ) and coefficient of thermal 
expansion ( β ). 
From Fig.(1) the components of gravity can be 
written as follows;  

  kgjgigg zr ++= φ
r
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By substituting the three components in eqs.(1) 
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          The equations which describe the problem 
of natural convection in cylindrical enclosure are 
mass, momentum, and energy equations (Bejan, 
1984);  
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 And from Darcy law for momentum the three 
components ( )zr ,,φ  with the effect of gravity are 
as follows;  
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        In order to write the basic equations and 
variables in dimensionless form, the following 
factors and scales are introduced.  
  :D  Diameter, :/ Dmα  velocity,  :o∆Τ  
temperature, amplitude 
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period                 
 Now we shall define the new dimensionless 
variables as; 
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         The dimensionless form for the basic 
equations is obtained by substituting the above 
factors in eqs.(4-8) and the corresponding form of 
the governing equations in vector form will be as 
follows;             
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             (10) 
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Where:   
mf

a
DgR

αυ
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=  = Modified Raylieh 

number for porous medium 
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               Now by introducing a vector 
potential ( )Φ  of the form 

                Φ×∇=V
r

                             (14) 
Into the formulation, the resulting equations may 
be solved numerically faster and more accurately. 
This vector potential satisfies identically the 
continuity equation. The potential is also 
solenoidal since the velocity is solenoidal 
(incompressible flow) (Wajeeh, 2006). 
            ( ) 0=Φ×∇⋅∇=⋅∇ V
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So,       0=Φ⋅∇                                      (16) 
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Taking the curl of eqs.(13);  
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                And introducing eqs.(14) and (16) and 
by solving the resulting equations, this yield the 
following set of equations; 
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The left hand side of the above three equations 
can be obtained as follows (Hiroyuki 1981) 
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          The hydrodynamic and thermal boundary 
conditions for the problem are; 

   0=
∂

Φ∂
=Φ=Φ

φ
φ

ZR      at πφ ,0=     (26) 

  0=
∂
Φ∂

=Φ=Φ
Z

Z
R φ       at 0=Z ,L      (27) 

  0)(
=

∂
Φ∂

=Φ=Φ
R

R R
Z φ   

at )(wallRR =                             (28)                             
And due to symmetry 

0=
∂
Φ∂

=
∂

Φ∂
=

∂
Φ∂

RRR
ZR φ

  at R= 0        (29)          

               For the temperature field, the non-
dimensional thermal boundary conditions are 
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              For the wall boundary, two cases for the 
cylinder temperature will be considered: 
Case (1): constant wall temperature 

1=θ       at )(wallRR =                     (33) 
Case (2): the temperature of the side wall varies 
sinusoidally with time about a mean value ( )hΤ  
with amplitude ( )Α and period ( )per , as 
graphically depicted in Fig.(2) 
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(Mohammad, 2008). 
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          The components of the dimensionless 
velocity are related to the components of the 
dimensionless vector potential as follows; 
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NUMERICAL FORMULATION 
          The above equations were approximated by 
finite-difference methods, the parabolic equations 
(energy equation) solved using the Alternating 
Direction Implicit (ADI) method, the Relaxation 
method were used for solving of elliptic equations 
(momentum equations).The numerical solution is 
obtained by dividing the domain of interest into a 
grid network of several nodes the position of a 
node on the grid is defined by the indices ( i ), ( j 
), and ( k ) which will be used for indicating the 
points along ( zr ,,φ ) directions respectively and 
the index (n ) will be used for indicating the time 
step. A mesh of (21 x 21 x 21) grid size seamed 
reasonable and was be used in the present study.  
          Applying the (ADI) method on the energy 
equations yields; 
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          Applying the Relaxation method on the 
momentum equations yields; 
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                                                                (44) 
 
          A computer program was developed in 
Fortran 90 language to perform the numerical 
solution. The program consists of main program 
and two-subroutines, in the main program, the 
first step is input of data then after specifying the 
initial and boundary conditions of the problem, 
the vector potential ( ZR ΦΦΦ ,, φ ) at every grid 
point in the domain are calculated from an 
iterative process, then calculate velocities (U, V, 
W) from ( ZR ΦΦΦ ,, φ ), after this calculate i,j,k-
implicit coefficients (a, b ,c, d) for the tridiagonal 
systems of equations. Then calculate T at every 
grid point in the domain. After this the local and 
average Nusselt number will be calculated then 
printing the results in the last part of the main 
program. The first subroutine solves the 
tridiagonal system of equations formed in the 
calculating of the temperature field while the 
second subroutine calculates the average Nusselt 
number. The time implementation of program is 
between 15 to 70 minutes depending on the 
studied case and time intervals. The following is 
the numerical equations which solved by the 
program. 
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RESULTS AND DISCUSSION 
          Numerical results have been obtained for 
radius R=0.5 and length L=1, the computations 
were carried out for only one half of the 
computational domain due to symmetry about 
central vertical line. For the first case (constant 
wall temperature boundary conditions), Figs.(3 
and 4) shows the isothermal lines and velocity 
vectors for different Rayleigh number and angle 
of inclination. It is clear that 0=V

r
at both ends 

and so the velocity and temperature distributions 
will differ with different cross-sections. Here we 
choose Z=1, for temperature and 0.75 for velocity,  
as shown an increase in temperature and heat 
transfer with increase of Ra number and α and the 
maximum value of temperature and velocity is at 
α =45 since the gravity vector aligned with the 
flow and the density imbalance helps the 
circulation of the fluid inside the enclosure. The 
ascending and descending flows will causes the 
movement of convective fluid, this processes 
caused velocity vectors movement. Fig.(5) shows 
the variation of average Nusselt number with 
different Ra number and angle of inclination, it is 
found that as Ra number increase the Nu number 
increase this indicate a strong buoyancy force and 
more heat transferred and circulated in the 
enclosure. Fig.(6) shows the distribution of local 
Nusselt number and as shown the maximum value 
of local Nu at vertical position, its value increase 
with increasing Ra number and decrease with 
increase of (Z) due to effect of boundary layer. 
For the second case (periodic wall temperature 
boundary conditions), Fig.(7) shows the 
temperature distribution (isothermal lines) at Ra 
=125, Z=1, different simulations and angle of 
inclination (Table 1) show the values of 
amplitude and period which will be used in this 
study. During the first three simulations at fixed 
period heat transferred to enclosure is very high 
and increase with increasing amplitude and angle 
of inclination also the isothermal lines began to 
deform with increase of amplitude and angle, this 
deforming in the right side is greater than that in 
the left side. Hot regions formed in the height 
right corners and this hot regions increase with 
increasing amplitude, cross section, Ra, and angle 
of inclination. At simulation (4) a different 
behavior appears, the cold layer surrounding the 
wall, the hot layer confined in the center of 
enclosure, a regions of high temperature appear 
and began to move to right side with increase of 
(α ,Z). at simulations (5) also the behavior 

changed , the cold layer surrounding the wall, the 
hot layer occupies the center of cylinder, thickness 
of thermal boundary with increase of (Z) and 
decrease with increase of (α), the lines of thermal 
boundary becomes curvilinear with increase of 
(α). Fig.(8) shows the variation of average Nusselt 
number with dimensionless time, it is found that 
that the average Nusselt number along the hot 
wall varies sinusoidally according to the variation 
of the hot wall temperature and it increases with 
increase of amplitude and decrease with increase 
of period. The value of the Nusselt number at the 
hot wall fluctuates at the most, from maximum 
periodic value of Nu =1.7 at τ =0.0015 to a 
minimum value of Nu = -1.99 at τ =0.00625, this 
is for simulation (1), the hot wall Nusselt number 
is negative over a short duration of the cycle 
0.0037 ≥ τ ≤ 0.0087, stating that over this time 
period there is an overall energy loss or a net heat 
transfer exiting the enclosure through the hot wall. 
Fig.(9) shows the variation of Nusselt number 
with time at Ra (125,200) and α=45,there is an 
increase in Nusselt value with increase Ra 
number. By comparing the average Nusselt 
number in this case with the case of constant wall 
temperature. We found in case one the average 
Nusselt number decreases with time until reach 
steady state in a curvilinear behavior and all heat 
is transferred to enclosure but in case two the 
value of average Nusselt number at hot wall is 
fluctuates from maximum to minimum value in a 
sinusoidal profile and heat is transferred to 
enclosure then to outside, this is the effect of 
period and amplitude.  
          A comparison was made for the case one to 
validate the results by convert the problem to a 
concentric cylinder like the study by (Khalid, 
2002) and using his boundary conditions in the 
present study, choosing the Nusselt number as a 
comparison parameter because it gives a clear 
picture to heat transfer into computational 
domain, so, a plots gives the relation between 
average Nusselt number and Ra number for aspect 
ratio (S=1) and radius ratio   (Y =2, 5, 10) are 
presented in Fig.(10) as a comparison between 
results of (Khalid) and present work. It is found 
that the same behavior of increasing in Nu number 
with increase of Ra is obtained, and a small 
difference between results is detected. Results 
difference is caused by difference in model, 
difference in grid size. 
         In order to describe the relation between the 
dependent variable (Nusselt number) and the 
independent variables (Raylieh number and angle 
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of inclination), a correlation have been made to 
describe the heat transfer data as in the form of ;  
         Nu=B (Rac.(1/(1+cosα))n)                     (45) 
        This correlation work for all range of Ra 
number and angles of inclination, the values of 
constants are; 
            Nu=0.605324899*Ra0.389673014 (1/ (1+cos 
α)) -0.07051460                                                       (46)  
α in rad 
                                                           
CONCLUSIONS 
          Numerical results obtained for natural 
convection in an inclined liquid-saturated porous 
enclosure can be summarized as follows. Average 
Nusselt number increase with increase of Ra 
number, and increase very slightly or decrease 
with increase angle of inclination but in periodic 
case average Nusselt number increase with 
increase of amplitude and decrease with increase 
of period and increase very small with increase of 
Ra number and its variation is a sinusoidal profile 
with the time from maximum value in positive 
direction to a minimum in negative direction. 
Maximum temperature and velocity occur at α = 
45and this is increase with increase Ra number.  
Local Nusselt number increase with increase Ra 
number and decrease with increase Z and 
maximum value of it at vertical position α = 0. 
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NOMENCLATURE   

 
 Description  Symbol  

Dimensionless amplitude  a  
Amplitude A 

Constant in equation (45) B 
Specific heat at constant pressure cp  

Diameter of cylinder  D  
Acceleration due to gravity g  

Permeability  K  
Effective thermal conductivity of porous media  Km

*  
Length of cylinder  L  

Nusselt number  Nu  
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  Dimensionless pressure  P  
Pressure p  

Dimensionless radial coordinate  R  
Radial coordinate   r  
Raylieh number  Ra  

Reference temperature  
oΤ  

Mean hot wall temperature hΤ  
Hot wall temperature Th  

Time t 
Dimensionless component of velocity in R-direction  U  

Velocity component in R-direction u  
Dimensionless component of velocity in φ -direction  V  

Velocity component in φ -direction  v  
Dimensionless component of velocity in Z-direction  W  

Velocity component in Z-direction w  
Dimensionless axial coordinate  Z  

Axial coordinate z  
 

Greek symbols 
Angle of inclination α  

Effective thermal diffusivity of porous medium  
mα  

Volumetric thermal expansion coefficient  β  
Dimensionless temperature  θ  

Angular coordinate  φ  
Vector potential Φ  

Vector potential components in R,φ and Z directions  
ZR ΦΦΦ ,, φ  

Reference density at T°    oρ  
Dimensionless time τ  

period  per  
Dimensionless period η  

Dynamic viscosity  µ  
Kinematic viscosity of the fluid 

fυ  
Distance between the grid points in R,φ and Z direction  ZR ∆∆∆ ,, φ  

Interval between two time steps  τ∆  
Del operator  ∇  

  
 

Subscript   
Description Symbol 

Fluid  f  
 Grid points location in R,φ and Z directions i, j, k 

Hot h  
Solid m  

Constants in equation (45) c,n 
Reference  º  
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Table (1): Input Data for the Simulations 
Simulation number Ra a η  

1 125 0.2 0.01 
2 125 0.4 0.01 
3 125 0.8 0.01 
4 125 0.4 0.005 
5 125 0.4 0.02 

  
  
 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

z 

z 

r 

φ

x  

y 

α Insulated lower wall 

Insulated upper wall 

     θ Take two cases, constant 
wall temperature and vary with 
time on all side surfaces  

Porous media 

Fig.(1): Geometrical Shape of the Problem 
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Fig.(2): The Hot Wall Time-Dependent Boundary Condition 
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Fig.(3):Transient Temperature Distribution for Z =1 
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Fig.(5): Variation of Nusselt number, a with Ra number, b with angle of inclination  
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Fig.(7): Continued 
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Fig.( 8): Transient Nusselt Number for Different Simulations, Ra =125 
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Fig.( 9) Transient Nusselt Number for α =45 
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Fig.(10): Comparison of the Results 
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