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ABSTRACT 

The behavior of forced convection heat transfer characteristics through and over porous layer near a 
heated flat plate at variable temperature has been investigated numerically. Two cases of variable wall 
temperature boundary condition are studied. The first case is of linear temperature variation with position 
along the flat plate and the second case is of sinusoidal temperature variation with time of heating. The flow 
field in the porous region is governed by the Darcy-Brinkman-Forchheimer equation, the thermal field in the 
porous region by the energy equation and the part over the porous matrix includes flow and heat transfer 
equations. Solutions of the problem have been carried out using a finite difference method through the use of 
a stream function-vorticity transformation. The effects of various governing dimensionless parameters, 
Darcy number, Reynolds number, Prandtle number as well as the inertia parameter are thoroughly explored. 
The variation of the non-dimensional period and amplitude values of the sinusoidal temperature distinction 
with time was also studied. Good results were obtained and reported graphically. It was found that the local 
Nusselt number on the flat plate increases with the increasing of the increasing non-dimensional values of 
period and amplitude individually. 

 
  :الخلاصة

و فوق طبقة وسط مسامي موضѧوعة فѧوف صѧفيحة ذات درجѧة     خلال بالحمل القسري   انتقال الحرارة    خصائص   دراسةيتناول البحث   
 لقد تضمنت الدراسة حالتان من تغير درجة الحرارة آشرط حدي للجزء السفلي مѧن             .  باستخدام الطريقة العددية للفروقات المحددة     حرارة متغيرة 

امѧا الحالѧة الثانيѧة فѧان التغيѧر آѧان بѧشكل        . ان الحالة الاولى آانت لتغير درجѧات الحѧرارة خطيѧا مѧع البعѧد علѧى طѧول الѧصفيحة                . الطبقة المسامية 
-Brinkman)(تѧѧضمن النمѧѧوذج الرياضѧѧي للجريѧѧان خѧѧلال الوسѧѧط المѧѧسامي معادلѧѧة الجريѧѧان بالاعتمѧѧاد علѧѧى صѧѧياغة            . مѧѧوجي مѧѧع الѧѧزمن  
Forchheimer سامي             المسѧط المѧوق الوسѧان فѧر للجريѧزء الاخѧسامي و الجѧط المѧلال الوسѧة خѧة الطاقѧي و معادلѧل   . تمدة من قانون دارسѧم حѧت

خلال البحѧث تѧم دراسѧة تѧأثير عѧدد           ). دالة الانسياب -الدوامية(و قد استخدمت طريقة     . الفروق المحددة المعادلات الحاآمة عدديا بأستخدام طريقة      
بالاضافة الى ذلك تم دراسة تأثير التغير في طول . تأثير القصور الذاتيرقم برانتل آذلك ، رقم رينولدز، ل رقم دارسيمن المجاميع اللابعدية مث  

و قѧد  . لقد ذُآِرتْ  النتائج بشكل تخطيطي و تم الحѧصول علѧى النَتѧائِج الجيѧدة            . الموجي مع الزمن  حرارة  و ارتفاع الموجة اللابعدية لتغير درجة ال      
  .آل على حدة رفم نسلت الموضعي على طول الصفيحة يزداد بزيادة طول و ارتفاع الموجة اللابعدية النتائج إن وُجِدَ من هذه
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INTRODUCTION 
Forced convection heat transfer through 

porous media has a major topic for various studies 
during the past decades due to many engineering 
applications such as thermal insulation 
engineering, water movements in geothermal 
reservoirs, underground spreading of chemical 
waste, thermal insulation, direct-contact heat 
exchangers, nuclear waste repository, grain 
storage, and enhanced recovery of petroleum 
reservoir. The heat transfer with forced 
convection in porous media is an interesting and 
challenging physical problem; therefore a 
considerable attention was given to this type of 
problems by accomplishing theoretical and 
experimental studies. 

 
The problem of forced convection flow 

and heat transfer along a flat plate in a porous 
medium was examined by Beckermann & 
Viskanta [1987] including both, the inertia and 
boundary effects, while porosity variations close 
to the wall are not considered. They derived the 
velocity and temperature profiles for the fully-
developed momentum boundary layer and from 
the results they determined the wall shear stress 
and the Nusselt number as functions of modified 
Reynolds and Prandtle numbers. In addition, 
Vafai and Thiyagaraja [1987] analytically studied 
the fluid flow and heat transfer for three types of 
interfaces, namely, the interface between two 
different porous media, the interface separating a 
porous medium from a fluid region and the 
interface between a porous medium and an 
impermeable medium. Another related problem is 
that of Poulikakos and Kazmierczak [1987]. In 
that work a fully developed forced convection in a 
channel filled with a porous matrix was 
investigated and the existence of a critical 
thickness of the porous layer at which the value of 
Nusselt number reaches a minimum was 
demonstrated.  

 
A fundamental investigation on the 

effects of employing intermittently porous cavities 
for regulating and modifying the flow and 
temperature fields was done by Vafai  & Huang 
[1994]. They used a general flow model that 
accounts for the effects of the impermeable 
boundary and inertial effects to describe the flow 
inside the porous region and the solution of the 
problem has been carried out using finite 
difference method through the use of a stream 
function-vorticity transformation. Also the effects 

of various governing dimensionless parameters, 
such as the Darcy number, Reynolds number, 
Prandtle number and the inertia parameter were 
thoroughly explored. Then Huang & Vafai [1994] 
presented an analytical solution for forced 
convection boundary layer flow and heat transfer 
through a composite porous/fluid system by 
considering a layer of porous media over a flat 
plat with constant temperature boundary 
condition. The details of the interaction 
phenomena occurring in the porous medium and 
the fluid layer were systematically analyzed, 
revealing the effects of various parameters 
governing the physics of the problem. Their 
results presented a comprehensive yet easy 
comparative base for numerical solutions 
addressing this type of interfacial transport and 
their analysis provided a rather accurate 
simulation of the interfacial transport.  

 
Furthermore a finite-volume 

computational model had been developed by 
Vadakkan [2001] to analyze the steady 
performance of a pin fin array experiencing forced 
convection in a duct. This pin fin array was 
considered using transport equations of porous 
media. The analysis had been done utilizing two 
different approaches in solving the temperature 
fields in the porous structure and indicated that 
there is a significant difference between the solid 
and fluid temperature at higher values of porosity 
and lower values of the interstitial heat transfer 
coefficient. 

 
For an unsteady forced convection on a 

flat plate embedded in the fluid-saturated porous 
medium with inertia effect and thermal dispersion, 
Cheng & Lin [2002] presented a precise and 
rigorous method to obtain the entire solution from 
one-dimensional transient conduction to steady 
forced convection in porous medium under 
conditions of uniform wall temperature and 
uniform heat flux, respectively. In addition, the 
aim of their work is to quantify the effect of 
inertia force on the intermediate regime of 
unsteady forced convection in a porous medium. 
Huang et al. [2005] carried out a numerical study 
for enhanced heat transfer from multiple heated 
blocks in a channel by porous covers. The flow 
field was governed by the Navier-Stokes equation 
in the fluid region, the Darcy-Brinkman-
Forchheimer equation in the porous region, and 
the thermal field by the energy equation. Solution 
of the coupled governing equations was obtained 
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using a stream function-vorticity analysis. This 
study details the effects of variations in the Darcy 
number, Reynolds number, inertial parameter, and 
two pertinent geometric parameters, to illustrate 
important fundamental and practical results. 

 
In order to study the development of the 

forced convection thermal boundary layer in a 
definite layer of porous media near a wall with 
two types of temperature boundary condition, a 
flat plate of specified length and covered with 
definite height of porous media and a fluid with 
ambient velocity and temperature flowing over 
and through the porous matrix is taken into 
account in the present paper. Two cases for the 
lower boundary temperature condition are used; 
one is linear temperature variation with the length 
of the plate and the other is the temperature 
boundary condition that varies sinusoidally with 
time. 
MATHEMATICAL FORMULATION 

The configuration of the problem under 
investigation is depicted in Fig. 1. It includes a 
flat plate of length L  covered with a porous 
media layer of height H . A fluid with constant 
temperature ∞T  and velocity ∞u  is flowing 
through and over this porous medium layer. In 
this study, it is assumed that the flow is laminar, 
incompressible, and two dimensional. In addition, 
the thermo-physical properties of the fluid and the 
porous matrix are assumed to be constant and the 
fluid-saturated porous medium is considered 
homogenous and isotropic and in local 
thermodynamic equilibrium with the fluid. For the 
fluid region the conservation equations for mass, 
momentum, and energy are [Vafai & Huang 
1994]: 
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Based on the Brinkman-Forchheimer-

extended Darcy model, which accounts for the 
effects of the inertial and impermeable boundary, 
the mass, momentum and energy equations in the 
porous matrix can be expressed as [Vafai & 
Huang 1994]: 
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In order to express the governing 

equations in dimensionless form, the following 
non-dimensional quantities may be defined: 
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After utilizing the above dimensionless 

groups and canceling the pressure term P  from 
the resulted equations [Qahtan 2005], the vorticity 
and temperature equations respectively for the 
fluid region may be expressed as follows: 
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Whereas the vorticity and temperature 

equations for the porous region may be stated as 
the following two equations [Qahtan 2005]: 
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The governing equations above are cast in terms 
of the vorticity-stream formulation. Therefore the 
stream function and vorticity may be introduced 
as: 
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Where )(ω  is the vorticity component 

perpendicular to the flow surface. Also the 
vorticity may be related to the stream function by 
using the stream function equation which may be 
formulated as: 
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The applicable boundary conditions necessary to 
complete the problem formulation are: 
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In the present work two cases of boundary 

conditions where taken for the temperature 
condition at the lower boundary 0=Y . The first 
case is taken as temperature boundary condition 
which varies linearly with X  and it is expressed 
in non-dimensional form as: 
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 While the second case for the lower 
boundary condition is the temperature that varies 
sinusoidally with time and formulated in non-
dimensional form as follow: 
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 In addition to the above boundary 
conditions, the two sets of conservation equations 

are coupled by the following matching conditions 
at the porous/fluid interface [Vafai & Huang 
1994], [Huang & Vafai 1994]: 
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and the initial conditions are: 
 

0=== ωψθ        for      0* =t       (19) 
 

In the present work, an explicit finite 
difference numerical technique is used in order to 
solve the flow and heat equations. The finite 
difference form of the fluid and porous media 
regions and boundary and initial conditions are 
formulated in the next section. 

 
NUMERICAL SOLUTION  

To solve the above partial differential 
equations, a finite difference numerical technique 
is employed. A grid of points is first established 
throughout the calculation domain. However, the 
uniform rectangular grid system is the same for 
the fluid and porous media regions.  

 
An explicit finite difference method is 

utilized for the energy and vorticity equations 
(equations (8-11)) as recommended by 
[(Anderson et al. 1984) and (Fletcher 1987)]. In 
the explicit method, the vorticity and temperature 
are calculated at future time )( ** tt ∆+  for any 
internal grid by using the vorticity and 
temperature values at time )( *t  for the specified 
grid and the neighbor grids which are known from 
the initial conditions of the problem under 
consideration. By employing this time matching 
technique the values of the vorticity and 
temperature for the whole domain will be known 
for each time step until reaching the steady state 
condition. This condition is attained when the 
value of the average Nusselt number for two 
consecutive runs would become less than 810− . 
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On the other hand, after formulating the stream 
function equation (equation (14)) in finite 
difference form, the relaxation method is utilized 
in order to solve the resulted algebraic equations 
iteratively at each time step by employing Gauss-
Seidel iterative technique. In this method, 
convergence has been achieved when the absolute 
value of relative error for the whole grid points 
between two successive iterations, found by trial 
and error, was equal to 410− .  

 
A computer program written in 

FORTRAN was used. Once the above algebraic 
flow and heat transfer equations is solved, the 
temperature distribution for internal and boundary 
grid points is identified. Then, when the steady 
state condition for the linear variation temperature 
boundary condition is reached and specified time 
for the sinusoidal variation with time temperature 
boundary condition is spend, the local Nusselt 
number value is found by employing the 
following formula [Anderson et al. 1984]: 
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where feff kk  is taken equal to one. 
 

While the average Nusselt number is 
found by integrating the local Nusselt number 
along the plate length by employing the Simpson 
numerical integration rule as given in the 
following expression: 
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RESULTS AND DISCUSSION 

In the present paper, the numerical values 
for the case under consideration was taken for a 
porous media layer of height 02.0=LH  and 
porosity equal to 92.0 . The metal foams was 
used as a porous medium and the material was 
Aluminum ( )6606 T−  with thermal conductivity 
of KmW .200 . Two cases of the temperature 
boundary condition at the lower boundary of the 
porous matrix are studied. The first case is the 
linear temperature variation with position until 
reaching steady state condition and the second 
case is the sinusoidal temperature variation with 
time for a specified period of time. Several values 
of dimensionless parameters were taken in order 

to study their effects on the heat transfer behavior. 
The Reynolds number values were verified within 
the laminar and transition regions 

)105101( 55 ∗−∗ , the Prandtle number values were 
taken for three most utilized fluids (air 7.0 , water 
7 , and engine oil 100), three Darcy number 
values were considered  ( 6108 −× , 6102 −× , and 

7109 −× ), and the effect of three inertial parameter 
values ( 001076.0 , 0025.0 , 00323.0 ) were studied. 
Finally, the variation effect of the non-
dimensional values of the sinusoidal temperature 
variation with time boundary condition was also 
investigated. These constant values were the non-
dimensional amplitude a  ( 2.0 , 4.0 , and 8.0 ) and 
the non-dimensional period η  ( 005.0 , 01.0 , and 

02.0 ). 
 
A testing for the optimum distance 

between grid points in X  direction was done and 
the relation between the average Nusselt number 
and the number of grid points was sketched in 
Fig. 2 for the linear temperature variation with 
position and sinusoidal temperature variation with 
time cases. From this figure, it is shown that a 75 
grid point in X  direction is suitable to choose for 
the present case study. As well, similar test was 
made for the number of grid points in Y  direction 
and it was found that the 75 grid point is 
appropriate. 

 
The propagation of the temperature 

through and over the porous media for five 
instances is demonstrated in Fig. 3 for the linear 
temperature variation case and in Fig. 4 for the 
sinusoidal temperature variation case. It is clear 
from these figures that the temperature values 
through the porous matrix are high in the 
beginning because of the small thermal boundary 
layer effect. But after a period of time this layer is 
grown up and then the temperature decreases.  
 
 
Effect of the Reynolds Number 

The variation of the average Nusselt 
number versus time for three values of Reynolds 
number for linear temperature variation case is 
presented in Fig. 5. It is clear from this figure that 
the time required to reach steady state condition 
decreases with increasing Reynolds number 
values. The increasing of Reynolds number causes 
a bigger value of the inertia force with respect to 
the viscosity force and then increasing in the 
velocity gradient followed by decreasing of the 
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time required for steady state condition. The same 
behavior was obtained for the sinusoidal case for 
specific non-dimensional time (equal to two) as 
illustrated in Fig. 6. In this figure, only one value 
of Reynolds number is drawn because, in the 
sinusoidal temperature case, there is not any 
significant effect of Reynolds number variation on 
the average Nusselt number.  

 
By referring to Fig. 7 and Fig. 8 it can be 

observed that the temperature gradient increases 
with the increasing of the Reynolds number. As a 
result, this increase in temperature gradient causes 
an increase in the local Nusselt number value as 
exposed in Fig. 9 and Fig. 10 for the linear and 
sinusoidal temperature variation respectively. 
Furthermore, the effect of the Reynolds number 
on the thermal boundary layer thickness for the 
two cases under study can be noticed from Fig. 11 
and Fig. 12. From these two figures, it can be 
deduced that the thermal boundary layer is grown 
inside the porous matrix only because of the 
solid structure of the porous media which causes a 
loss in the heat energy. As well, from these two 
figures it can be noticed that the thermal boundary 
layer thickness decreases with the Reynolds 
number increasing. This decreasing of the layer 
thickness is due to the sharp decreasing in the 
temperature gradient in the Y -direction because 
of the diffusion term small value. 
 
Effect of the Darcy Number 

Results for the effect of Darcy number 
variation are presented in several figures. In Fig. 
13 the relation between the average Nusselt 
number versus time for the linear temperature 
variation case is sketched. From this figure, it is 
clear that the time required for steady state 
condition decreases with the decreasing of the 
Darcy number values. This behavior is due to the 
increasing of the velocity gradient in Y -direction 
with the Darcy number decreasing values. 
Moreover, the decrease in Darcy number value 
means an increase in the flow uniformity and 
reduces vorticity and this leads to the reduction in 
the time required for steady state condition. 
Similar figure is presented for the sinusoidal 
temperature variation case for specific non-
dimensional time value in Fig. 14. There is no 
significant change in Nusselt number values when 
the Darcy number is varied therefore only two 
cases were sketched in this figure.   

 

The effect of Darcy number variation on 
the local Nusselt number along the flat plate is 
presented in Fig. 15 and Fig. 16. From these 
figures, it is clear that the local Nusselt number 
increases with the decreasing of the Darcy 
number. This decrease in Darcy number with 
constant porosity cause a decreasing in the solid 
fraction volume and increasing in the heat transfer 
exposed area. As a result, a rising in the 
temperature slop in Y-direction is occurred as 
shown in Fig. 17 and Fig. 18 and consequently an 
increasing in the local and average Nusselt 
number values.  Fig. 19 and Fig. 20 is adapted to 
the non-dimensional temperature distribution and 
the thermal boundary layer thickness. These two 
figures show that any reduction in Darcy number 
yields a decreasing in the thermal boundary 
thickness because of the enlarging in the velocity 
slop in Y -direction. 
 
Inertial Effects 

In order to study the inertia effect several 
figures are sketched. In Fig. 21, the relation 
between the average Nusselt number with time is 
illustrated. From this figure, it is clear that the 
time required to reach steady state condition 
decreases with the inertia effect increase. This 
behavior is due to the increasing in the velocity 
slop with inertia effect rising and then leads to a 
reduction in the time required for steady state 
condition. Similar figure is presented for the 
sinusoidal temperature variation but for specific 
value of time in Fig. 22. In addition, it can be 
noticed that the inertia is less effective than the 
Darcy number on the required time for steady 
state and this is because of the velocity slop value.  

 
In Fig. 23 and Fig. 24, the inertia effect 

on the local Nusselt number along the flat plate is 
illustrated for the linear and sinusoidal 
temperature variation. From these two figures it is 
shown that any increase in the inertia effect leads 
to a small reduction in local Nusselt number. This 
behavior is because of the small reduction in the 
temperature slope in Y -direction, as shown in 
Fig. 25 and Fig. 26, and this slope reduction 
causes a small decreasing in the local and Average 
Nusselt number values. For the same reason, the 
thermal boundary layer thickness decreases with 
the inertia effect rising as depicted in Fig. 27 and 
Fig. 28. 
 
Effect of the Prandtle Number 
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To study the effects of the Prandtl number 
on the flow and temperature fields, three different 
Prandtle numbers were chosen such that they will 
cover a wide range of thermo-physical fluid 
properties such as the kinematics viscosity. The 
variation of the average Nusselt number versus 
time is shown in Fig. 29 for linear temperature 
variation. From this figure, it is clear that 
whenever the kinematics viscosity is lower, the 
time required for steady state condition is higher. 
The reason of this trend is that, at specific 
Reynolds number, lower value of viscosity leads 
to smaller viscosity force and then smaller inertia 
and this needs more time to reach steady state. On 
the other hand, Fig. 30 is sketched for the 
sinusoidal temperature variation and for specific 
time. It can be seen that the time required to reach 
a complete periodic behavior (vanishing of 
transient period) raises with the Prandtle number 
increasing. The reason of this manner is that the 
inertia force increases with the viscosity force 
increasing which depends on fluid type. 

 
Obviously, the Prandtle number variations 

have no effect on the flow field. Whereas, the 
variation of Prandtle number has significant effect 
on heat transfer as it is presented in several 
figures. In Fig. 31 and Fig. 32, it can be observed 
that the local Nusselt number increases with the 
increasing of the Prandtle number because of the 
rate of temperature change with respect to the Y -
direction high value. This high rate of change 
value is clearly shown in Fig. 35 and Fig. 36 for 
linear and sinusoidal temperature variation 
correspondingly. For the same reason the thermal 
boundary layer thickness decreases with 
increasing Prandtle number values as illustrated in 
Fig. 33 and Fig. 34. 

 
Finally, an attempt was made to study the 

effect of the non-dimensional period and 
amplitude variation for the sinusoidal temperature 
boundary condition at the lower boundary near the 
flat plate. Results for this attempt are presented in 
several figures. The effect of the non-dimensional 
period on the variation of the local Nusselt 
number at the end of the flat plate is illustrated in 
Fig. 37. From this figure, it is clear that the local 
Nusselt number increases slightly with the rising 
of the non-dimensional period increasing. While 
there is not any difference in the temperature rate 
of change with respect to Y -direction as it is 
noticed from Fig. 38. Similar figures are sketched 
in order to demonstrate the effect of the non-

dimensional amplitude. The same trends of curves 
are obtained when sketching these figures in order 
to express the effect of non-dimensional 
amplitude variation in Fig. 39 and Fig. 40. From 
these two figures, it can be observed that the local 
Nusselt number increases with increasing 
amplitude and also there is not any significant 
change in the temperature rate of change with 
increasing amplitude. The reason of the increasing 
in local Nusselt number is due to the direct 
relation with the temperature. 

 
The heat transfer characteristics of the 

present issue for the linear temperature variation 
with position and sinusoidal temperature variation 
with time cases are sketched in the following two 
figures. These figures include the heat transfer 
characteristics of previous work [Qahtan 2005] 
with constant temperature condition for the lower 
boundary. In Fig. 41, it is found that the 
temperature gradient in Y -direction for the 
sinusoidal temperature case is identical to that of 
Qahtan. However, the temperature gradient for the 
linear temperature case has a little distinction in 
magnitudes but the same trend of curves. This 
behavior leads to a similar trend of curves for the 
local Nusselt number variation for Qahtan's work 
and sinusoidal temperature case as shown in Fig. 
42.  

 
 
CONCLUSIONS 

The main focus of this research is to study 
the development of forced convection thermal 
boundary layer development in a porous media 
near a flat plate with variable temperature 
boundary condition by using the finite difference 
numerical technique. It may be concluded that the 
rate of heat transfer increases with the Reynolds 
number and Prandtle number increasing. In 
addition this rate increases with the inertia effect 
and Darcy number decreasing. Furthermore, the 
same trend of curves is obtained for the two cases 
of temperature boundary condition; the first case 
is of linear temperature variation with X-direction 
and the second is of sinusoidal temperature 
variation with time. It can be deduced that the 
time required vanishing the transient behavior of 
the sinusoidal temperature variation and reach a 
complete periodic behavior increases with the 
Prandtle number rising. Finally, the increasing of 
the non-dimensional period and amplitude of the 
sinusoidal temperature variation boundary 
condition case yields an increase in the local 
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Nusselt number. This increasing in Nusselt 
number leads to an increase in the rate of heat 
transfer. 
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NOMENCLATURE 
 
Symbols 
a : Non-dimensional amplitude. 
AL : Inertial parameter for porous medium. 
Cp : Specific heat [ KkgJ . ]. 
Da : Darcy number. 
F : A function used in expressing inertia terms. 
H : Height of porous medium [ m ]. 
k : Thermal conductivity of the porous media. 
K : Permeability of the porous medium [ 2m ]. 
L : Plate length [ m ]. 
Nu : Nusselt number. 
p : Pressure 2mN . 
P : Non-dimensional pressure. 
Pr : Prandtl number. 
Re : Reynolds number. 
t : Time [ s ]. 

*t : Non-dimensional time. 
T : Temperature [ Co ]. 
u : −x Component velocity [ sm ]. 
U : −X Component non-dimensional velocity 

∞uu . 
v : −y Component velocity [ sm ]. 
V : −Y Component non-dimensional velocity 

∞uv . 

mV : Mean value of X  and −Y velocity 
components. 
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x : Horizontal coordinates. 
X : Non-dimensional horizontal coordinate. 
y : Vertical coordinates. 
Y : Non-dimensional vertical coordinate. 
 
Greek Symbols 
α : Thermal diffusivity [ sm 2 ]. 
ε :  Porosity. 
η :  Non-dimensional period. 
ψ :  Non-dimensional stream function. 
ω :  Non-dimensional vorticity. 
ϑ :  Non-dimensional temperature. 

σ : Thermal capacity ratio. 
ρ : Density [ 3mkg ]. 
µ : Dynamic viscosity of fluid [ 2. msN ]. 
 
Subscript     
∞ : Free stream. 
f : Fluid. 
p : Fluid inside porous media. 
eff : Effective. 
w : Wall. 
s :  Solid.
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Fig. (3): Propagation of the Non-Dimensional 
Temperature with Time (Linear). 

Fig. (4): Propagation of the Non-Dimensional 
Temperature Time (Sinusoidal). 

Fig. (5): Effect of Reynolds No. on the Average Nusselt 
Number Variation with Time (Linear). 

Fig. (7): Effect of Reynolds No. on the Temperature at 
the Flat Plate End (Linear). Fig. (8): Effect of Reynolds No. on the Temperature at the 

End of the Flat Plate (Sinusoidal). 

Fig. (6): Effect of Reynolds No. on the Average Nusselt 
No. Variation with Time (Sinusoidal). 
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Fig. (11): Distribution of the Non-Dimensional Temp. at Various Reynolds Number (Linear). 
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Fig. (12): Distribution of the Non-Dimensional Temp. at Various Reynolds Number (Sinusoidal). 

Fig. (9): Effect of the Reynolds Number on the Local 
Nusselt No. along the Flat Plate (Linear). 

Fig. (10): Effect of the Reynolds Number on the Local 
Nusselt No. along the Flat Plate (Sinusoidal). 
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Fig. (13): Effect of Darcy Number on the Average Nusselt Number with Time (Linear). 
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Fig. (15): Effect of Darcy Number on the local 
Nusselt Number along the Flat Plate (Linear). 

Fig. (16): Effect of Darcy Number on the local 
Nusselt Number along the Flat Plate (Sinusoidal). 

Fig. (17): Effect of Darcy Number on the Non-
Dimensional Temp. at the Flat Plate End (Linear). 

Fig. (18): Effect of Darcy Number on the Non-
Dimensional Temp. at the Plate End (Sinusoidal). 
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Fig. (19): Distribution of the Non-Dimensional Temp. at Various Darcy Number (Linear) 
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Fig. (20): Distribution of the Non-Dimensional Temp. at Various Darcy Number (Sinusoidal). 



Journal of Engineering Volume 17   April    2011      Number2    
 
 

 387

 
 

0 1 2 3
t*

0

200

400

600

800

A
ve

ra
ge

 N
us

se
lt 

N
um

be
r N

u

F=0.001076

F=0.0025

F=0.00323

Re=3.0e5
Da=8.0e-6
Pr=0.7

          
Fig. (21): Effect of Inertia on the Average Nusselt Number with Non-Dimensional Time (Linear). 
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Fig. (22): Effect of Inertia on the Average Nusselt Number with Time (Sinusoidal). 
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Fig. (27): Effect of Inertia on the Temperature Distribution at Specific Reynolds Number (Linear). 

Fig. (23): Effect of Inertia on the local Nusselt 
Number along the Flat Plate (Linear). 

Fig. (24): Effect of Inertia on the local Nusselt 
Number along the Flat Plate (Sinusoidal). 

Fig. (25): Effect of Inertia on the Temperature 
at the Flat Plate End (Linear). 

Fig. (26): Effect of Inertia on the Temperature 
at the End of the Flat Plate (Sinusoidal). 
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Fig. (28): Effect of Inertia on the Temp. Distribution at Specific Reynolds Number (Sinusoidal). 
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Fig. (29): Effect of Prandtle Number on the Average Nusselt Number Variation with Time at Specific 

Reynolds Number (Linear). 
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Fig. (30): Effect of Prandtle Number on the Average Nusselt Number Variation with Time at Specific Reynolds 

Number (Sinusoidal). 
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 Fig. (31): Effect of Prandtle Number on the Local 

Nusselt Number Variation with Time (Linear). 
Fig. (32): Effect of Prandtle Number on the Local 
Nusselt Number Variation with Time (Sinusoidal). 
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Fig. (33): Effect of Prandtle Number on the Temperature Distribution (Linear). 

0 0.25 0.5 0.75 1
X

0

0.01

0.02

0.03

0.04

0.05

Y

1

1

2

2

3

3

4

4

5
5

6

6
6

7

7
7

8
8

9
9

10
10

11
11

13
12 12

14
13 13

14 14
16

15 15
16 16
17 1718 1819 1920 2021 21

21 0.9600
20 0.9143
19 0.8685
18 0.8228
17 0.7771
16 0.7314
15 0.6856
14 0.6399
13 0.5942
12 0.5484
11 0.5027
10 0.4570
9 0.4112
8 0.3655
7 0.3198
6 0.2741
5 0.2283
4 0.1826
3 0.1369
2 0.0911
1 0.0454

Re=3.0e5
Da=8.0e-6
F=0.001076
Pr=0.7

 
0 0.25 0.5 0.75 1

X
0

0.01

0.02

0.03

0.04

0.05

Y

1
1

2
2

3
3

4
4

5 5
6 67 7

8
89 910 1011 1112 1213 1314 1415 1516 1617 1718 18 1819 19 1920 2021 21 21

21 0.9600
20 0.9143
19 0.8686
18 0.8229
17 0.7771
16 0.7314
15 0.6857
14 0.6400
13 0.5943
12 0.5485
11 0.5028
10 0.4571
9 0.4114
8 0.3657
7 0.3200
6 0.2742
5 0.2285
4 0.1828
3 0.1371
2 0.0914
1 0.0456

Re=3.0e5
Da=8.0e-6
F=0.001076
Pr=7

 
Fig. (34): Effect of Prandtle Number on the Non-Dimensional Temp. Variation (Sinusoidal). 
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Fig. (37): Effect of Period on the Local Nusselt 
Number Variation (Sinusoidal). 

Fig. (38): Effect of Period on the Temperature at 
the Plate End (Sinusoidal). 

Fig. (35): Effect of Prandtle Number on the 
Temperature at the Plate End (Linear). 

Fig. (36): Effect of Prandtle Number on the 
Temperature at the Plate End (Sinusoidal). 
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Fig. (39): Effect of Amplitude on the Local Nusselt 
Number Variation for 01.0=η  (Sinusoidal). 

Fig. (40): Effect of Amplitude on the Temperature at 
the Plate End for 01.0=η  (Sinusoidal). 

Fig. (41): Comparison of the Temp. at the Plate End 
for the Two Temp. Cases and Recent Work 

Fig. (42): Comparison of the Local Nusselt Number 
for the Two Temp. Cases and Recent Work 


