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ABSTRACT 
Random Number Generators (RNGs) are an important building block for algorithms and protocols in 
cryptography. They are dominant in the construction of encryption keys and other cryptographic algorithm 
parameters. In practice, statistical testing is employed to gather evidence that a generator indeed produces 
numbers that appear to be random. In this paper a new algorithm is proposed to generate variable length 
random binary sequence. The random sequence is generated by selecting different point from hashed digital 
images; the selecting process is organized in such a way to ensure randomness and to avoid regeneration of 
same sequence within a year. The generated sequences are tested to meet the National Institute of Standard 
and Technology (NIST) criteria. In proposed algorithm the traditional key exchange is not needed which 
gives advantage to the system from the security point of view. This proposed algorithm is capable of 
generating random binary sequences that can meet security requirements of cryptographic algorithms. 

 
  :الخلاصة

 التشفيرِ مفاتيحِ بناءِ فهي المسيطرة في. المشفَّرةِ الكتابة في والإتفاقياتِ للخوارزمياتِ مهمةَ بناء كتلَ) RNG (العشوائيةِ العددِ مولّداتتعتبر 

الاعداد  مولّدعشوائية بات لاث الادلة لجمع يستَخدم إحصائي إختباريوجد  ،من الناحية العملية. الأخرى المشفّرةِ الخوارزميةِ ومتغيرات

 مِن نقاط مختلفة بإخْتياَر مولَّدةُ العشوائيةَ السلسلةَ إن. غيرة الطول متِالعشوائية ثنائيةِ سلسلةِ لتَوليد جديدة خوارزمية تم اقتراح. الحقيقة

 تم اختبار. سنَة خلال نفسهاِ السلسلةِ تجديدِ ولتَفاديوائية العش تَضمن بحيث بطريقة منظَّمةُ الإخْتياَر عمليةَ إن المثْرومةِ؛ الرقميةِ الصورِ

 تَلبي أَن يمكِن التي العشوائيةِ الثنائيةِ السلاسلِ تَوليد على قادرة المقتَرحةِ الخوارزميةِ هذه. )NIST( معاييرِ لمطابقة المولَّدةَ السلاسلَ

  .المشفّرةِ الخوارزمياتِ أمنِ متطلباتَ
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1. INTRODUCTION 
Randomness and random numbers have 
traditionally been used for a variety of purposes in 
many applications such as statistical sampling, 
experimental simulation, cryptography and 
etcetera. Computer Algorithm introduces 
randomness in the form of pseudo-random 
number generators. As the name suggests, 
pseudorandom numbers are not truly random. 
Rather, they are computed from a mathematical 
formula Pseudorandom numbers have the 
characteristic that they are predictable, meaning 

they can be regenerated if you know where in the 
sequence the first number is starting from [Nur 
and Sharin, 2010]. Traditionally, the concern in 
the generation of a sequence of allegedly random 
numbers has been that the sequence of numbers 
be random in some well-defined statistical sense 
[Nur and Sharin, 2010][Nur et al, 2010]. The 
following two criteria are used to validate that a 
sequence of numbers is random [William, 2006]: 

1. Uniform distribution: the distribution of 
numbers in the sequence should be uniform; 
that is; the frequency of occurrence of each of 
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the numbers should be approximately the 
same. 

2. Independence: no one value in the sequence 
can be inferred from the others. 

This paper will go through design criteria random 
key generation in next sections. 

2. KEY GENERATION TECHNIQUES 
There are several ways to generate keys which are 
widely used in cryptography. Keys are considered 
the secret part of any cryptographic system. Its 
robustness and characteristic specifies the security 
of any cryptographic system. Some of these 
techniques are [Bruce, 2006][Menezes, 1997]: 

2.1. Pseudorandom Number Generator 
(PRNGs): 
Cryptographic applications typically make use of 
algorithmic techniques for random number 
generation. These algorithms are deterministic 
and therefore produce sequences of numbers that 
are not statistically random. However, if the 
algorithm is good, the resulting sequence will pass 
many reasonable tests of randomness. Such 
numbers are referred to as Pseudo-random 
numbers. 

A Feedback shift register is made up of two 
parts: a shift register and a feedback function. 
The simplest kind of feedback shift register is a 
linear feedback shift register, or LFSR (see Fig. 
1). The feedback function is simply the XOR of 
certain bits in the register; the list of these bits is 
called a tap sequence. 

An n-bit LFSR can be in one of 2n-1 internal 
states. This means that it can, in theory, generates 
a 2n-1 bit long pseudo-random sequence before 
repeating. Only LFSRs with certain tap sequences 
will cycle through all 2n-1 internal states, these 
are the maximal-period LFSRs. The resulting 
output sequence is called an m-sequence. 

The maximal length sequence has the following 
properties: 
• The number of ones in a sequence 

approximately equals the number of zeros. 
• The statistical distribution of ones and zeros is 

well defined and always the same. 
The number of ones and zeros in any linear 

maximal code is [Bruce, 2006][Menezes, 1997]: 

onesofnumber
n

=
2
2

zerosofnumber
n

=−1
2
2  

In order for a particular LFSR to be a 
maximal-period LFSR, the polynomial formed 
from a tap sequence plus the constant 1 must be a 
primitive polynomial mod 2. The degree of the 
polynomial is the length of the shift register. The 
easiest way is to choose a random polynomial and 
test whether it is primitive. 

2.2. Linear Congruential Generator: 
By far, the most widely used technique for 
pseudo-random number generation is the linear 
congruential method. The algorithm is 
parameterized with four numbers, as follows: 
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The sequence of random numbers {Xn} is 

obtained via the following iterative equation: 

mcaXX nn mod)(1 +=+  

If m,a,c, and Xo are integers, then this technique 
will produce a sequence of integers with each 
integer in the range mXn <≤0 . 

The selection of values for a,c, and m is critical in 
developing a good random number generator. For 
example, consider a=c=1. The sequence 
produced is obviously not satisfactory. Now 
consider the values a=7, c=0, m=32, and Xo=1. 
This generates the sequence {7,17,23,1,7, etc.}, 
which is also clearly unsatisfactory. Of the 32 
possible values, only 4 are used; thus, the 
sequence is said to have a period of 4. if, instead, 
we change the value of a to 5, then the sequence 
is {5,25,29,17,21,9,13,1,5, etc.}, which increases 
the period to 8. 

We would like m to be very large, so that there is 
the potential for producing a long series of distinct 
random numbers. 

 Unfortunately, linear congruential generators 
cannot be used for cryptography; they are 
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predictable. Linear congruential generators were 
broken. Quadratic generators denoted by the 
following equation were also broken [Bruce, 
2006][Menezes, 1997]. 

mcbXaXX nnn mod)( 2
1 ++=+  …(1) 

And cubic generator: 
 

mdcXbXaXX nnnn mod)( 23
1 +++=+ …(2) 

Linear congruential generators remain useful for 
non-cryptographic applications, however, such as 
simulations. They are efficient and show good 
statistical behavior with respect to most 
reasonable empirical tests. 
 

2.3. Blum Blum Shub Generator: 
A popular approach to generate secure 
pseudorandom is known as Blum, Blum, Shub 
(BBS) generator, named for its developers. It has 
perhaps the strongest public proof of its 
cryptographic strength. The procedure is as 
follows. First, choose two large prime numbers, p 
and q, that both have a remainder of 3 when 
divided by 4. That is, )4(mod3≡≡ qp . 

For example, the prime numbers 7 and 11 
satisfy )4(mod3117 ≡≡ . Let qpn ×= . Next, 
choose a random number s, such that s is 
relatively prime to n; this is equivalent to say that 
neither p nor q is a factor of s. then the BBS 
generator produces a sequence of bits according 
to the following algorithm. Thus, the least 
significant bit is taken at each iteration. 
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3. STATISTICAL TEST SUITE FOR 
RNG AND PRNG 
The focus of this paragraph is on the way to 
examine whether the generated sequence has 
randomness for cryptographic purposes. A set of 
statistical tests for randomness is described in this 
paragraph. The National Institute of Standards 
and Technology (NIST) believe that these 
procedures are useful in detecting deviations of a 

binary sequence from randomness. Various 
statistical tests can be applied to a sequence in 
attempt to compare and evaluate the sequence to a 
truly random sequence. Randomness is a 
probabilistic property; that is, the properties of a 
random sequence can be characterized and 
described in terms of probability. The likely 
outcome of statistical tests, when applied to a 
truly random sequence, is known a prior and can 
be described in probabilistic terms. There are an 
infinite number of possible statistical tests, each 
assessing the presence or absence of a “pattern” 
which, if detected, would indicate that the 
sequence is nonrandom. Because there are so 
many tests for judging whether a sequence is 
random or not, no specific finite set of tests is 
deemed “complete.” In addition, the results of 
statistical testing must be interpreted with some 
care and caution to avoid incorrect conclusions 
about a specific generator and the purpose of each 
test is given [Andrew et al, 2008][Andrew and 
Walter, 2003]: 

3.1. Frequency (Monobit) Test 
 

The focus of the test is the proportion of zeroes 
and ones for the entire sequence. The purpose of 
this test is to determine whether the number of 
ones and zeros in a sequence are approximately 
the same as would be expected for a truly random 
sequence [Andrew et al, 2008]. 
 

3.2. Frequency Test within a Block 
 

The focus of the test is the proportion of one's 
within M-bit blocks. The purpose of this test is to 
determine whether the frequency of ones in an M-
bit block is approximately M/2, as would be 
expected under an assumption of randomness 
[Andrew et al, 2008]. 
 

3.3. Runs Test 
 

The focus of this test is the total number of runs in 
the sequence, where a run is an uninterrupted 
sequence of identical bits. A run of length k 
consists of exactly k identical bits and is bounded 
before and after with a bit of the opposite value. 
The purpose of the runs test is to determine 
whether the number of runs of ones and zeros of 
various lengths is as expected for a random 
sequence. In particular, this test determines 
whether the oscillation between such zeros and 
ones is too fast or too slow [Andrew et al, 2008]. 
 

3.4. Test for the Longest Run of Ones in 
a Block 
 

The focus of the test is the longest run of ones 
within M-bit blocks. The purpose of this test is to 
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determine whether the length of the longest run of 
ones within the tested sequence is consistent with 
the length of the longest run of ones that would be 
expected in a random sequence [Andrew et al, 
2008]. 
 
 

3.5. Discrete Fourier Transform 
(Spectral) Test 
 

The focus of this test is the peak heights in the 
Discrete Fourier Transform of the sequence. The 
purpose of this test is to detect periodic features 
(i.e., repetitive patterns that are near each other) in 
the tested sequence that would indicate a 
deviation from the assumption of randomness. 
The intention is to detect whether the number of 
peaks exceeding the 95 % threshold is 
significantly different than 5 % [Andrew et al, 
2008]. 

 

3.6. Serial Test 
 

The focus of this test is the frequency of all 
possible overlapping m-bit patterns across the 
entire sequence. The purpose of this test is to 
determine whether the number of occurrences of 
the 2m m-bit overlapping patterns is 
approximately the same as would be expected for 
a random sequence. Random sequences have 
uniformity; that is, every m-bit pattern has the 
same chance of appearing as every other m-bit 
pattern [Andrew et al, 2008]. 

 

3.7. Approximate Entropy Test 
 

The focus of this test is the frequency of all 
possible overlapping m-bit patterns across the 
entire sequence. The purpose of the test is to 
compare the frequency of overlapping blocks of 
two consecutive/adjacent lengths (m and m+1) 
against the expected result for a random sequence 
[Andrew et al, 2008]. 

 

3.8. Cumulative Sums (Cusum) Test 
 

The focus of this test is the maximal excursion 
(from zero) of the random walk defined by the 
cumulative sum of adjusted (-1, +1) digits in the 
sequence. The purpose of the test is to determine 
whether the cumulative sum of the partial 
sequences occurring in the tested sequence is too 
large or too small relative to the expected 
behavior of that cumulative sum for random 
sequences. This cumulative sum may be 
considered as a random walk. For a random 
sequence, the excursions of the random walk 
should be near zero. For certain types of non-
random sequences, the excursions of this random 

walk from zero will be large [Andrew et al, 
2008]. 

 

4. RANDOM HYPOTHESIS TESTING 
 

A statistical test is formulated to test a specific 
null hypothesis (H0). For the purpose of this 
study, the null hypothesis under test is that the 
sequence being tested is random against the 
alternative hypothesis (H1) for which the 
sequence is not random [Andrew et al, 2008][Nur 
and Sharin, 2010][Nur et al, 2010]. 

For each statistical test, a set of p-values 
(corresponding to the set of sequences) is 
produced. For a fixed significant level, a certain 
percentage of p-values are expected to indicate 
failure. For example, if the significant level is 
chosen to be 0.01 (i.e. α=0.01), then about 1% of 
the sequences are expected to fail. A sequence 
passes a statistical test whenever the p-values ≥ α 
and fails otherwise [Wong et al, 2009][Nur and 
Sharin, 2010][Nur et al, 2010]. 

The parameter denotes the significance level that 
determines the critical region of acceptance and 
rejection. NIST recommended that α be in the 
range (0.001, 0.01) [Andrew et al, 2008][Nur and 
Sharin, 2010][Nur et al, 2010][Wong et al, 2009]. 

Only 8 tests are particularly suitable for practical 
cryptographic keys size here. The selected NIST 
random tests for short keys are listed in the Table 
(1). This set of random test shall be called upon to 
check on the validity of short random for 
proposed method. The 8 selected tests are 
basically relies heavily on the randomness of the 
binary sequence. Fig. (2) shows the hierarchy of 
the tests. Once a particular block key set fails one 
test it is considered non-random and will certainly 
fail the next test in lower hierarchy [Wong et al, 
2009][Nur and Sharin, 2010]. 

Additional numerical experiments should be 
conducted on different samples of the generator to 
determine whether the phenomenon was a 
statistical anomaly or a clear evidence of non-
randomness. 

For the interpretation of test results, NIST adopts 
following two approaches, the examination of the 
proportion of success-sequences (Success Rate). 
The range of acceptable proportions is determined 
using the confidence interval defined as 
[Charmaine, 2005][Andrew et al, 2008][Juan, 
1999][ R. B. P. Dept., 2003]: 
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…(3) 

Where p' = 1-α, and n is the sample size. 

If the proportion falls outside of this interval, then 
there is evidence that the data is nonrandom. 
 
5. PROPOSED ALGORITHM 
 

The idea of proposed model which is shown in 
Fig. (3) is to generate multi length random binary 
sequences suitable for use in cryptography and 
other applications. The seeds of the proposed 
model are selective images and the date. In this 
model four lengths of key are possible to be 
generated which are 128, 256, 512, and 1024 bits. 
Visual Basic 6.0 is used for model 
implementation. The function of blocks is 
illustrated in the coming paragraphs. 

5.1 Input : In this block the end user enters date 
or could use the auto dating option which leads to 
current date. User also should enter number of 
bits to be taken from the selected pixel (1, 2, 4 or 
8) in order to specify the key length. 
 
5.2 Generating X,Y,S: In this phase, three 
carefully selected equations are used to obtain 
one-to-one system that  there are no duplicate 
in(X,Y,S) values within a  year. These values are 
then used as initial value (X0, Y0, S0) of the seven 
bit PN- generator (7 Xor 6 for maximum-length 
LFSR [Peter, 1996]) resulting in 127 different 
states. The PN generator denoted by (S) is used to 
select one of the 43 generated images for each 
state according to the equation [Integer(S/3) +1] 
and also it has been used to determine which byte 
to be deal with (Red, Green, or Blue). This is 
done through the use of the following equation 
[Round(S/3 – Image Number)*3+3] which must 
give [0, 1 or 2] indicating red, green or blue 
respectively. 

The other PN generators marked (X and Y) are 
used to coordinate the pixel position by 
intersecting the x-axis and y-axis on the selected 
image. This process goes on for all states of PN 
generator resulting in 127 pixels randomly 
generated. 
 
5.3 Main Module:  The inputs to this phase are 
127 bytes which are randomly chosen and number 
of bits (LSBs) to be taken from these bytes which 
is determined by user to specify how long the key 
is.  The keys are then padded according to certain 
rules to reach predefined key lengths. The 

resulting keys are then examined by NIST test to 
evaluate its randomness and to check whether it is 
valid for cryptographic application or not. 
 
6. RESULTS AND DISCUSSION 
As previously mentioned, the proposed algorithm 
generates multi-length keys. These keys are 
examined for randomness issue under the NIST 
tests. The obtained results for 10 key sequences of 
different lengths are shown in Tables (2, 3, 4, and 
5) as all          p-values of the test are larger than 
required value (α=0.01) in order to reject the null 
hypothesis as random sequence. 
 
Fig. (4, 5, 6, and 7) show the average value for 
128, 256, 512 and 1024 bits key length 
respectively the tests with 10 generated sequences 
pass the threshold value (α)[Nur and Sharin, 
2010]. 

 
For long sequences more than 10 sequences 
another tests will be taken into account which 
gives an indication for sequence randomness. It 
has been shown that as long as the sequence 
length increases, the possibility of fail mark may 
appear, so success rate test should be done to 
validate sequences for use in cryptographic 
application with respect to their randomness. 
Table (6) clearly illustrates the success rate test 
for multi-length keys according to equation (3)                           
 

⎩
⎨
⎧

==

=−

974376.0
005625.1

015624.099.0

365
01.0*99.0399.0'

m

mValueP
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Tables (7,8 and 9) shows the proportion test for 
Linear Feedback Shift Register (LFSR), Blum 
Blum Shub (BBS) and Linear Congruential 
Generator (LCG)  respectively,  and show that 
these techniques fail in some of the tests. From 
Table (10) its obvious that the proposed 
algorithm show better results when compared 
with other techniques. 
 
7. SOFTWARE IMPLEMENTATION 
The proposed method is implemented using 
Visual Basic 6.0 as shown in Fig. (8) and Fig. (9). 
It can be seen from these two figures the 
flexibility and the reliability taken in software 
design. It is very easy to the interested people in 
cryptographic field use this application and 
generate the random multi-length keys by 
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specifying the input parameters by pressing 
generate button and Select No. of Bits button and 
then follow the procedure. 
 
8. CONCLUSION 
In this paper, a new method of key generation is 
proposed and modeled depending on hashed 
images and date-dependent algorithm. The 
proposed method of key generation is examined 
and tested for different cases and different key 
lengths and compared with classical techniques 
and it is well proven that this method is very 
suitable for applications used in cryptography as it 
has random nature and has all properties of 
randomness. 
 
9. REFERENCES 

• Andrew Rukhin, et al "A Statistical Test 
Suite for Random and Pseudorandom 
Number Generators for Cryptographic 
Applications", National Institute of 
Standard and Technology, 2008. 

• Andrew W, Walter A., "Hardware 
comparison of seven random number 
generators for smart cards", In: ITG-GI-
GMM Workshop of Test Methods and 
Reliability of Circuits and Systems, 
Timmendorfer Beach, pp. 55–58, 2003. 

• Bruce Schneier, "Applied Cryptography", 
John Wiley and Sons, 2nd Edition, 1996. 

• Charmaine Kenny, "Random Number 
Generators: An Evaluation and 
Comparison of Random.org and Some 
Commonly Used Generators" the 
distributed systems group, Computer 
Science Department, TCD, 2005. 

• Juan Soto, "Statistical Testing of Random 
Number Generators", Proceedings of the 

22nd National Information Systems 
Security Conference, 1999. 

• Menezes A., van Oorschot P., and 
Vanstone S., "Handbook of Applied 
Cryptography", CRC Press, 1997. 

• Nur A. Abu, and Sharin Sahib, 
"Random ambience key generation live on 
demand", Signal Processing Systems 
(ICSPS), 2010 2nd International 
Conference on 2010, Vol. 1, pp. 110-114. 

• Nur A. Abu, Nanna S. Herman, and Sharin 
Sahib, "An Enhancement of the statistical 
test for randomness", Networking and 
Information Technology (ICNIT), 2010 
International Conference 2010, pp. 521-
525. 

• Peter Alfke, "Efficient Shift Registers, 
LFSR Counters, and Long Pseudo-
Random Sequence Generators", Xilinx 
application note, 1996. 

• R. B. P. Dept. "The Evaluation of 
Randomness of RPG100 by Using NIST 
and DIEHARD Tests". Technical report, 
FDK Corporation, 2003. 

• William Stallings, "Cryptography and 
Network Security", Perntice Hall, Fourth 
Edition, 2006. 

• Wong Siaw Lang, 
Nur Azman Abu, Shahrin Sahib, 
"Cryptographic Key From Webcam 
Image", International Journal of 
Cryptology Research 2009, vol. 1, pp. 115-
127.

 

 

 

Fig. (1): Typical linear sequence generator using LFSR. 
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Table(1). List of suitable tests for short keys. 
 

Test Code Statistical Test Test Parameters 
1 Frequency Test No Parameter 
2 Block Frequency M=8 
3a Cumulative Sum (Forward) No Parameter 
3b Cumulative Sum (Backward) No Parameter 
4 Runs No Parameter 
5 Longest Run of Ones M=8 
6 Spectral DFT No Parameter 
7 Approximate Entropy m=7 
8a Serial P-Value1 m=7 
8b Serial P-Value2 m=7 

 
 

 

Fig. (2). The hierarchy of Random tests 

 
 
 
 

 

 

 

 

 

 

 
Fig. (3) The proposed Model 
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Table (2) 128 bit Key p-values for 10 sequence test result 
 

Test / Sequence 1 2 3 4 5 6 7 8 9 10 
Frequency 0.3768 1.0000 0.8597 0.4795 0.7237 0.0339 0.2159 0.2159 0.0771 0.5959 
Block Frequency 0.3540 0.8095 0.2436 0.7440 0.1432 0.0110 0.5615 0.8392 0.1432 0.1010 
Cusum (Forward) 0.0841 0.9842 0.8188 0.5748 0.7375 0.0543 0.3697 0.3697 0.1037 0.8188 
Cusum (Backward) 0.4999 0.9842 0.8920 0.6548 0.8920 0.0207 0.3146 0.4314 0.1542 0.4999 
Runs 0.9137 0.3768 0.7257 0.4507 0.6032 0.8189 0.3939 0.8252 0.9368 0.7418 
Longest Run 0.5837 0.0788 0.7632 0.4360 0.4749 0.0371 0.8569 0.1068 0.3374 0.9936 
Spectral DFT 0.5164 0.5164 0.5164 0.5164 0.5164 0.5164 0.3304 0.1443 0.0231 0.5164 
Approx. Entropy 0.9456 0.9445 0.9623 0.8460 0.9025 0.7680 0.6176 0.7601 0.9155 0.6912 
Serial 1 0.1121 0.7202 0.3427 0.2063 0.1636 0.0149 0.5119 0.1841 0.0743 0.3745 
Serial 2 0.0382 0.9513 0.3944 0.7411 0.6192 0.2490 0.6694 0.2867 0.5937 0.0278 
Minimum 0.0382 0.0788 0.2436 0.2063 0.1432 0.0110 0.2159 0.1068 0.0231 0.0278 
Maximum 0.9456 1.0000 0.9623 0.8460 0.9025 0.8189 0.8569 0.8392 0.9368 0.9936 

 
Table (3) 256 bit Key p-values for 10 sequence test result 

 

Test / Sequence 1 2 3 4 5 6 7 8 9 10 
Frequency 0.5320 0.3816 0.7077 0.4533 0.7077 0.8026 0.2606 0.0801 0.8026 0.4533 
Block Frequency 0.6939 0.7853 0.5425 0.2867 0.4917 0.9862 0.2674 0.5170 0.9074 0.1565 
Cusum (Forward) 0.5731 0.5197 0.9459 0.5731 0.6872 0.9980 0.2363 0.0415 0.8580 0.6292 
Cusum (Backward) 0.9459 0.4693 0.8035 0.8035 0.7458 0.9064 0.2083 0.1216 0.9908 0.2672 
Runs 0.1268 0.2800 0.6107 0.3336 0.3213 0.1678 0.0113 0.2804 0.0794 0.9719 
Longest Run 0.7165 0.5793 0.1040 0.5855 0.8809 0.0260 0.8077 0.3157 0.9560 0.8894 
Spectral DFT 0.3588 0.0512 0.0512 0.8185 0.3588 0.3588 0.8185 0.1359 0.4220 0.4220 
Approx. Entropy 0.1871 0.2364 0.0447 0.0330 0.0280 0.0921 0.1294 0.0255 0.1405 0.4462 
Serial 1 0.5731 0.5197 0.9459 0.5731 0.6872 0.9980 0.2363 0.0415 0.8580 0.6292 
Serial 2 0.9459 0.4693 0.8035 0.8035 0.7458 0.9064 0.2083 0.1216 0.9908 0.2672 
Minimum 0.1268 0.0512 0.0447 0.0330 0.0280 0.0260 0.0113 0.0255 0.0794 0.1565 
Maximum 0.9459 0.7853 0.9459 0.8185 0.8809 0.9980 0.8185 0.5170 0.9908 0.9719 

 
Table (4) 512 bit Key p-values for 10 sequence test result 

 

Test / Sequence 1 2 3 4 5 6 7 8 9 10 
Frequency 0.3768 0.9296 0.7909 0.1116 0.2888 0.2505 0.8597 0.1573 0.0421 0.1849 
Block Frequency 0.3273 0.0797 0.7666 0.3427 0.7360 0.6361 0.2063 0.0407 0.0916 0.2063 
Cusum (Forward) 0.0196 0.6960 0.8188 0.8188 0.2040 0.2040 0.5748 0.8920 0.8188 0.4999 
Cusum (Backward) 0.2348 0.9231 0.7375 0.8188 0.4649 0.1542 0.2438 0.8920 0.6548 0.4999 
Runs 0.5756 0.3750 0.4797 0.9296 0.2848 0.3595 0.9724 0.2159 0.1582 0.1329 
Longest Run 0.2471 0.7019 0.2690 0.7971 0.7815 0.8187 0.7650 0.4566 0.7111 0.1910 
Spectral DFT 0.7456 0.3723 0.0885 0.7456 0.4654 0.1233 0.1233 0.1233 0.4654 0.4654 
Approx. Entropy 0.5159 0.6769 0.1723 0.2719 0.4572 0.4396 0.4846 0.7793 0.7802 0.3599 
Serial 1 0.0261 0.4245 0.5565 0.7740 0.8953 0.2559 0.8092 0.4416 0.3197 0.3427 
Serial 2 0.0927 0.2068 0.3170 0.8935 0.8258 0.0435 0.7691 0.4792 0.4792 0.1111 
Minimum 0.0196 0.0797 0.0885 0.1116 0.2040 0.0435 0.1233 0.0407 0.0421 0.1111 
Maximum 0.7456 0.9296 0.8188 0.9296 0.8953 0.8187 0.9724 0.8920 0.8188 0.4999 
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Table (5) 1024 bit Key p-values for 10 sequence test result 
 

Test / Sequence 1 2 3 4 5 6 7 8 9 10 
Frequency 0.0244 0.2880 0.4918 0.3485 0.5320 0.4165 0.2606 0.9005 1.0000 0.5320 
Block Frequency 0.1319 0.2298 0.7367 0.2298 0.9625 0.1259 0.7881 0.0807 0.0585 0.0726 
Cusum (Forward) 0.0108 0.2220 0.3193 0.3785 0.6580 0.3382 0.3382 0.9742 0.7458 0.4693 
Cusum (Backward) 0.0351 0.3579 0.7458 0.2220 0.4941 0.3382 0.1713 0.9064 0.7458 0.3785 
Runs 0.0964 0.7752 0.6274 0.9720 0.2301 0.5877 0.1567 0.2115 0.0699 0.1539 
Longest Run 0.0618 0.6673 0.4714 0.8769 0.2426 0.9741 0.1676 0.9077 0.4156 0.0299 
Spectral DFT 0.3296 0.6881 0.3296 0.3019 0.6881 0.3296 0.4559 0.4559 0.1871 0.1871 
Approx. Entropy 0.0977 0.1775 0.0125 0.3482 0.1919 0.4139 0.2546 0.8374 0.0098 0.0448 
Serial 1 0.2461 0.4034 0.4546 0.2151 0.4076 0.8753 0.2798 0.8024 0.1277 0.0586 
Serial 2 0.5329 0.2722 0.1990 0.2148 0.6632 0.9631 0.5075 0.7853 0.0413 0.0501 
Minimum 0.0108 0.1775 0.0125 0.2148 0.1919 0.1259 0.1567 0.0807 0.0098 0.0299 
Maximum 0.5329 0.7752 0.7458 0.9720 0.9625 0.9741 0.7881 0.9742 1.0000 0.5320 
 

 
Fig. (4) 128 bit Key p-values and average of p-values 

 

 
 

Fig. (5) 256 bit Key p-values and average of p-values 
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Fig. (6) 512 bit Key p-values and average of p-values 

 
 

 
Fig. (7) 1024 bit Key p-values and average of p-values 

 
Table (6) p-value proportion test for 365 (one year) sequences 

 

Test 
Code 

p-value proportion 
of 128 bit 

p-value proportion 
of 256 bit 

p-value proportion 
of 512 bit 

p-value proportion 
of 1024 bit 

1 0.98904 0.99178 0.99178 1.00000 
2 0.98904 0.99726 0.99178 0.98630 
3a 0.98630 0.98904 0.98356 0.99726 
3b 0.99178 0.99726 0.99452 0.99452 
4 0.99452 0.98630 0.99726 0.99178 
5 0.99452 0.98904 0.99178 0.98904 
6 0.97808 0.98904 0.98904 0.98630 
7 1.00000 0.97534 0.97808 0.99452 
8a 0.98904 0.98356 0.99452 0.99726 
8b 0.99178 0.97808 0.99726 1.00000 
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Table (7) p-value proportion test for 365 (one year) sequences for LFSR 

 

Test 
Code 

p-value proportion 
of 128 bit 

p-value proportion 
of 256 bit 

p-value proportion 
of 512 bit 

p-value proportion 
of 1024 bit 

1 1.00000 1.00000 1.00000 1.00000 
2 1.00000 1.00000 1.00000 1.00000 
3a 1.00000 1.00000 1.00000 1.00000 
3b 1.00000 1.00000 1.00000 1.00000 
4 1.00000 1.00000 1.00000 1.00000 
5 1.00000 1.00000 1.00000 1.00000 
6 0.30136 0.20273 0 0 
7 0.21917 1.00000 1.00000 1.00000 
8a 1.00000 1.00000 1.00000 1.00000 
8b 1.00000 1.00000 1.00000 1.00000 

 
Table (8) p-value proportion test for 365 (one year) sequences for BBS 

 

Test 
Code 

p-value proportion 
of 128 bit 

p-value proportion 
of 256 bit 

p-value proportion 
of 512 bit 

p-value proportion 
of 1024 bit 

1 0.99452 1.00000 0.99452 0.98904 
2 0.99178 0.98630 1.00000 0.99726 
3a 0.99452 1.00000 0.99178 0.99178 
3b 0.98630 1.00000 0.99452 0.98904 
4 0.98630 0.98630 0.98630 0.98904 
5 0.99452 0.99452 0.99726 0.98356 
6 0.98630 0.99178 0.99452 0.98904 
7 1.00000 0.93698 0.81369 0.92602 
8a 0.98356 0.98356 0.98904 0.98082 
8b 0.98904 0.98904 0.99178 0.98904 

 
Table (9) p-value proportion test for 365 (one year) sequences for LCG 

 

Test 
Code 

p-value proportion 
of 128 bit 

p-value proportion 
of 256 bit 

p-value proportion 
of 512 bit 

p-value proportion 
of 1024 bit 

1 0.98082 0.99178 0.99726 0.98630 
2 0.99178 1.00000 1.00000 0.99452 
3a 0.98904 0.98630 1.00000 0.98356 
3b 0.98082 0.99178 0.99452 0.98356 
4 0.98904 0.99178 0.98356 0.98630 
5 0.99452 0.99726 0.99726 0.98082 
6 0.98904 0.99452 0.99726 0.98082 
7 1.00000 0.95616 0.75068 0.92602 
8a 0.97260 0.97808 0.99452 0.98630 
8b 0.98904 0.99452 0.99726 0.99452 
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Table (10) the Pass / Fail for the proposed algorithm (TPA), LFSR, BBS, and LCG 
 

Test 
Code 

p-value Pass/Fail 
for 128 bit 

p-value Pass/Fail 
for 256 bit 

p-value Pass/Fail 
for 512 bit 

p-value Pass/Fail 
for 1024 bit 

 

T
PA

 

L
FSR

 

B
B

S 

L
C

G
 

T
PA

 

L
FSR

 

B
B

S 

L
C

G
 

T
PA

 

L
FSR

 

B
B

S 

L
C

G
 

T
PA

 

L
FSR

 

B
B

S 

L
C

G
 

1 P P P P P P P P P P P P P P P P 
2 P P P P P P P P P P P P P P P P 
3a P P P P P P P P P P P P P P P P 
3b P P P P P P P P P P P P P P P P 
4 P P P P P P P P P P P P P P P P 
5 P P P P P P P P P P P P P P P P 
6 P F P P P F P P P F P P P F P P 
7 P F P P P P F F P P F F P P F F 
8a P P P F P P P P P P P P P P P P 
8b P P P P P P P P P P P P P P P P 

 (P = Pass) (F = Fail) 
 
 
 

 
 

Fig. (8) 128 Bit Generation 
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Fig. (9) 1024 Bit Generation 
 


