
Journal of Engineering Volume 17 June 2011 Number 3

 486

IMAGE BASED MULTI-LENGTH RANDOM KEY GENERATOR

Dr. Firas Ali Sabir
University of Baghdad
College of Engineering

Computer Engineering Department

Sadiq Habeeb Abdulhussain
University of Baghdad
College of Engineering

Computer Engineering Department

ABSTRACT
Random Number Generators (RNGs) are an important building block for algorithms and protocols in
cryptography. They are dominant in the construction of encryption keys and other cryptographic algorithm
parameters. In practice, statistical testing is employed to gather evidence that a generator indeed produces
numbers that appear to be random. In this paper a new algorithm is proposed to generate variable length
random binary sequence. The random sequence is generated by selecting different point from hashed digital
images; the selecting process is organized in such a way to ensure randomness and to avoid regeneration of
same sequence within a year. The generated sequences are tested to meet the National Institute of Standard
and Technology (NIST) criteria. In proposed algorithm the traditional key exchange is not needed which
gives advantage to the system from the security point of view. This proposed algorithm is capable of
generating random binary sequences that can meet security requirements of cryptographic algorithms.

 :الخلاصة

 التشفيرِ مفاتيحِ بناءِ فهي المسيطرة في. المشفَّرةِ الكتابة في والإتفاقياتِ للخوارزمياتِ مهمةَ بناء كتلَ) RNG (العشوائيةِ العددِ مولّداتتعتبر

الاعداد مولّدعشوائية بات لاث الادلة لجمع يستَخدم إحصائي إختباريوجد ،من الناحية العملية. الأخرى المشفّرةِ الخوارزميةِ ومتغيرات

 مِن نقاط مختلفة بإخْتياَر مولَّدةُ العشوائيةَ السلسلةَ إن. غيرة الطول متِالعشوائية ثنائيةِ سلسلةِ لتَوليد جديدة خوارزمية تم اقتراح. الحقيقة

 تم اختبار. سنَة خلال نفسهاِ السلسلةِ تجديدِ ولتَفاديوائية العش تَضمن بحيث بطريقة منظَّمةُ الإخْتياَر عمليةَ إن المثْرومةِ؛ الرقميةِ الصورِ

 تَلبي أَن يمكِن التي العشوائيةِ الثنائيةِ السلاسلِ تَوليد على قادرة المقتَرحةِ الخوارزميةِ هذه.)NIST(معاييرِ لمطابقة المولَّدةَ السلاسلَ

 .المشفّرةِ الخوارزمياتِ أمنِ متطلباتَ

Keywords: Key Generator, Randomness, NIST, Hypothesis, Hash Function.

1. INTRODUCTION
Randomness and random numbers have
traditionally been used for a variety of purposes in
many applications such as statistical sampling,
experimental simulation, cryptography and
etcetera. Computer Algorithm introduces
randomness in the form of pseudo-random
number generators. As the name suggests,
pseudorandom numbers are not truly random.
Rather, they are computed from a mathematical
formula Pseudorandom numbers have the
characteristic that they are predictable, meaning

they can be regenerated if you know where in the
sequence the first number is starting from [Nur
and Sharin, 2010]. Traditionally, the concern in
the generation of a sequence of allegedly random
numbers has been that the sequence of numbers
be random in some well-defined statistical sense
[Nur and Sharin, 2010][Nur et al, 2010]. The
following two criteria are used to validate that a
sequence of numbers is random [William, 2006]:

1. Uniform distribution: the distribution of
numbers in the sequence should be uniform;
that is; the frequency of occurrence of each of

Dr. Firas Ali Sabir
Sadiq Habeeb Abdulhussain

Image Based Multi-Length Random Key
Generator

 487

the numbers should be approximately the
same.

2. Independence: no one value in the sequence
can be inferred from the others.

This paper will go through design criteria random
key generation in next sections.

2. KEY GENERATION TECHNIQUES
There are several ways to generate keys which are
widely used in cryptography. Keys are considered
the secret part of any cryptographic system. Its
robustness and characteristic specifies the security
of any cryptographic system. Some of these
techniques are [Bruce, 2006][Menezes, 1997]:

2.1. Pseudorandom Number Generator
(PRNGs):
Cryptographic applications typically make use of
algorithmic techniques for random number
generation. These algorithms are deterministic
and therefore produce sequences of numbers that
are not statistically random. However, if the
algorithm is good, the resulting sequence will pass
many reasonable tests of randomness. Such
numbers are referred to as Pseudo-random
numbers.

A Feedback shift register is made up of two
parts: a shift register and a feedback function.
The simplest kind of feedback shift register is a
linear feedback shift register, or LFSR (see Fig.
1). The feedback function is simply the XOR of
certain bits in the register; the list of these bits is
called a tap sequence.

An n-bit LFSR can be in one of 2n-1 internal
states. This means that it can, in theory, generates
a 2n-1 bit long pseudo-random sequence before
repeating. Only LFSRs with certain tap sequences
will cycle through all 2n-1 internal states, these
are the maximal-period LFSRs. The resulting
output sequence is called an m-sequence.

The maximal length sequence has the following
properties:
• The number of ones in a sequence

approximately equals the number of zeros.
• The statistical distribution of ones and zeros is

well defined and always the same.
The number of ones and zeros in any linear

maximal code is [Bruce, 2006][Menezes, 1997]:

onesofnumber
n

=
2
2

zerosofnumber
n

=−1
2
2

In order for a particular LFSR to be a
maximal-period LFSR, the polynomial formed
from a tap sequence plus the constant 1 must be a
primitive polynomial mod 2. The degree of the
polynomial is the length of the shift register. The
easiest way is to choose a random polynomial and
test whether it is primitive.

2.2. Linear Congruential Generator:
By far, the most widely used technique for
pseudo-random number generation is the linear
congruential method. The algorithm is
parameterized with four numbers, as follows:

mXseedorvaluestartingtheX
mcincrementthec
mamultiplierthea

mulusthem

oo <≤
<≤
<<

>

0,
0
0

0mod

The sequence of random numbers {Xn} is

obtained via the following iterative equation:

mcaXX nn mod)(1 +=+

If m,a,c, and Xo are integers, then this technique
will produce a sequence of integers with each
integer in the range mXn <≤0 .

The selection of values for a,c, and m is critical in
developing a good random number generator. For
example, consider a=c=1. The sequence
produced is obviously not satisfactory. Now
consider the values a=7, c=0, m=32, and Xo=1.
This generates the sequence {7,17,23,1,7, etc.},
which is also clearly unsatisfactory. Of the 32
possible values, only 4 are used; thus, the
sequence is said to have a period of 4. if, instead,
we change the value of a to 5, then the sequence
is {5,25,29,17,21,9,13,1,5, etc.}, which increases
the period to 8.

We would like m to be very large, so that there is
the potential for producing a long series of distinct
random numbers.

 Unfortunately, linear congruential generators
cannot be used for cryptography; they are

Journal of Engineering Volume 17 June 2011 Number 3

 488

predictable. Linear congruential generators were
broken. Quadratic generators denoted by the
following equation were also broken [Bruce,
2006][Menezes, 1997].

mcbXaXX nnn mod)(2
1 ++=+ …(1)

And cubic generator:

mdcXbXaXX nnnn mod)(23
1 +++=+ …(2)

Linear congruential generators remain useful for
non-cryptographic applications, however, such as
simulations. They are efficient and show good
statistical behavior with respect to most
reasonable empirical tests.

2.3. Blum Blum Shub Generator:
A popular approach to generate secure
pseudorandom is known as Blum, Blum, Shub
(BBS) generator, named for its developers. It has
perhaps the strongest public proof of its
cryptographic strength. The procedure is as
follows. First, choose two large prime numbers, p
and q, that both have a remainder of 3 when
divided by 4. That is,)4(mod3≡≡ qp .

For example, the prime numbers 7 and 11
satisfy)4(mod3117 ≡≡ . Let qpn ×= . Next,
choose a random number s, such that s is
relatively prime to n; this is equivalent to say that
neither p nor q is a factor of s. then the BBS
generator produces a sequence of bits according
to the following algorithm. Thus, the least
significant bit is taken at each iteration.

end
XKeyGenerated
nXX

toifor
nsX

start

ii

ii

o

2mod
mod)(

1
mod

2
1

2

=
=

∞=
=

−

3. STATISTICAL TEST SUITE FOR
RNG AND PRNG
The focus of this paragraph is on the way to
examine whether the generated sequence has
randomness for cryptographic purposes. A set of
statistical tests for randomness is described in this
paragraph. The National Institute of Standards
and Technology (NIST) believe that these
procedures are useful in detecting deviations of a

binary sequence from randomness. Various
statistical tests can be applied to a sequence in
attempt to compare and evaluate the sequence to a
truly random sequence. Randomness is a
probabilistic property; that is, the properties of a
random sequence can be characterized and
described in terms of probability. The likely
outcome of statistical tests, when applied to a
truly random sequence, is known a prior and can
be described in probabilistic terms. There are an
infinite number of possible statistical tests, each
assessing the presence or absence of a “pattern”
which, if detected, would indicate that the
sequence is nonrandom. Because there are so
many tests for judging whether a sequence is
random or not, no specific finite set of tests is
deemed “complete.” In addition, the results of
statistical testing must be interpreted with some
care and caution to avoid incorrect conclusions
about a specific generator and the purpose of each
test is given [Andrew et al, 2008][Andrew and
Walter, 2003]:

3.1. Frequency (Monobit) Test

The focus of the test is the proportion of zeroes
and ones for the entire sequence. The purpose of
this test is to determine whether the number of
ones and zeros in a sequence are approximately
the same as would be expected for a truly random
sequence [Andrew et al, 2008].

3.2. Frequency Test within a Block

The focus of the test is the proportion of one's
within M-bit blocks. The purpose of this test is to
determine whether the frequency of ones in an M-
bit block is approximately M/2, as would be
expected under an assumption of randomness
[Andrew et al, 2008].

3.3. Runs Test

The focus of this test is the total number of runs in
the sequence, where a run is an uninterrupted
sequence of identical bits. A run of length k
consists of exactly k identical bits and is bounded
before and after with a bit of the opposite value.
The purpose of the runs test is to determine
whether the number of runs of ones and zeros of
various lengths is as expected for a random
sequence. In particular, this test determines
whether the oscillation between such zeros and
ones is too fast or too slow [Andrew et al, 2008].

3.4. Test for the Longest Run of Ones in
a Block

The focus of the test is the longest run of ones
within M-bit blocks. The purpose of this test is to

Dr. Firas Ali Sabir
Sadiq Habeeb Abdulhussain

Image Based Multi-Length Random Key
Generator

 489

determine whether the length of the longest run of
ones within the tested sequence is consistent with
the length of the longest run of ones that would be
expected in a random sequence [Andrew et al,
2008].

3.5. Discrete Fourier Transform
(Spectral) Test

The focus of this test is the peak heights in the
Discrete Fourier Transform of the sequence. The
purpose of this test is to detect periodic features
(i.e., repetitive patterns that are near each other) in
the tested sequence that would indicate a
deviation from the assumption of randomness.
The intention is to detect whether the number of
peaks exceeding the 95 % threshold is
significantly different than 5 % [Andrew et al,
2008].

3.6. Serial Test

The focus of this test is the frequency of all
possible overlapping m-bit patterns across the
entire sequence. The purpose of this test is to
determine whether the number of occurrences of
the 2m m-bit overlapping patterns is
approximately the same as would be expected for
a random sequence. Random sequences have
uniformity; that is, every m-bit pattern has the
same chance of appearing as every other m-bit
pattern [Andrew et al, 2008].

3.7. Approximate Entropy Test

The focus of this test is the frequency of all
possible overlapping m-bit patterns across the
entire sequence. The purpose of the test is to
compare the frequency of overlapping blocks of
two consecutive/adjacent lengths (m and m+1)
against the expected result for a random sequence
[Andrew et al, 2008].

3.8. Cumulative Sums (Cusum) Test

The focus of this test is the maximal excursion
(from zero) of the random walk defined by the
cumulative sum of adjusted (-1, +1) digits in the
sequence. The purpose of the test is to determine
whether the cumulative sum of the partial
sequences occurring in the tested sequence is too
large or too small relative to the expected
behavior of that cumulative sum for random
sequences. This cumulative sum may be
considered as a random walk. For a random
sequence, the excursions of the random walk
should be near zero. For certain types of non-
random sequences, the excursions of this random

walk from zero will be large [Andrew et al,
2008].

4. RANDOM HYPOTHESIS TESTING

A statistical test is formulated to test a specific
null hypothesis (H0). For the purpose of this
study, the null hypothesis under test is that the
sequence being tested is random against the
alternative hypothesis (H1) for which the
sequence is not random [Andrew et al, 2008][Nur
and Sharin, 2010][Nur et al, 2010].

For each statistical test, a set of p-values
(corresponding to the set of sequences) is
produced. For a fixed significant level, a certain
percentage of p-values are expected to indicate
failure. For example, if the significant level is
chosen to be 0.01 (i.e. α=0.01), then about 1% of
the sequences are expected to fail. A sequence
passes a statistical test whenever the p-values ≥ α
and fails otherwise [Wong et al, 2009][Nur and
Sharin, 2010][Nur et al, 2010].

The parameter denotes the significance level that
determines the critical region of acceptance and
rejection. NIST recommended that α be in the
range (0.001, 0.01) [Andrew et al, 2008][Nur and
Sharin, 2010][Nur et al, 2010][Wong et al, 2009].

Only 8 tests are particularly suitable for practical
cryptographic keys size here. The selected NIST
random tests for short keys are listed in the Table
(1). This set of random test shall be called upon to
check on the validity of short random for
proposed method. The 8 selected tests are
basically relies heavily on the randomness of the
binary sequence. Fig. (2) shows the hierarchy of
the tests. Once a particular block key set fails one
test it is considered non-random and will certainly
fail the next test in lower hierarchy [Wong et al,
2009][Nur and Sharin, 2010].

Additional numerical experiments should be
conducted on different samples of the generator to
determine whether the phenomenon was a
statistical anomaly or a clear evidence of non-
randomness.

For the interpretation of test results, NIST adopts
following two approaches, the examination of the
proportion of success-sequences (Success Rate).
The range of acceptable proportions is determined
using the confidence interval defined as
[Charmaine, 2005][Andrew et al, 2008][Juan,
1999][R. B. P. Dept., 2003]:

Journal of Engineering Volume 17 June 2011 Number 3

 490

n
PPPValueP)1(3

''
'' −

=− m

…(3)

Where p' = 1-α, and n is the sample size.

If the proportion falls outside of this interval, then
there is evidence that the data is nonrandom.

5. PROPOSED ALGORITHM

The idea of proposed model which is shown in
Fig. (3) is to generate multi length random binary
sequences suitable for use in cryptography and
other applications. The seeds of the proposed
model are selective images and the date. In this
model four lengths of key are possible to be
generated which are 128, 256, 512, and 1024 bits.
Visual Basic 6.0 is used for model
implementation. The function of blocks is
illustrated in the coming paragraphs.

5.1 Input : In this block the end user enters date
or could use the auto dating option which leads to
current date. User also should enter number of
bits to be taken from the selected pixel (1, 2, 4 or
8) in order to specify the key length.

5.2 Generating X,Y,S: In this phase, three
carefully selected equations are used to obtain
one-to-one system that there are no duplicate
in(X,Y,S) values within a year. These values are
then used as initial value (X0, Y0, S0) of the seven
bit PN- generator (7 Xor 6 for maximum-length
LFSR [Peter, 1996]) resulting in 127 different
states. The PN generator denoted by (S) is used to
select one of the 43 generated images for each
state according to the equation [Integer(S/3) +1]
and also it has been used to determine which byte
to be deal with (Red, Green, or Blue). This is
done through the use of the following equation
[Round(S/3 – Image Number)*3+3] which must
give [0, 1 or 2] indicating red, green or blue
respectively.

The other PN generators marked (X and Y) are
used to coordinate the pixel position by
intersecting the x-axis and y-axis on the selected
image. This process goes on for all states of PN
generator resulting in 127 pixels randomly
generated.

5.3 Main Module: The inputs to this phase are
127 bytes which are randomly chosen and number
of bits (LSBs) to be taken from these bytes which
is determined by user to specify how long the key
is. The keys are then padded according to certain
rules to reach predefined key lengths. The

resulting keys are then examined by NIST test to
evaluate its randomness and to check whether it is
valid for cryptographic application or not.

6. RESULTS AND DISCUSSION
As previously mentioned, the proposed algorithm
generates multi-length keys. These keys are
examined for randomness issue under the NIST
tests. The obtained results for 10 key sequences of
different lengths are shown in Tables (2, 3, 4, and
5) as all p-values of the test are larger than
required value (α=0.01) in order to reject the null
hypothesis as random sequence.

Fig. (4, 5, 6, and 7) show the average value for
128, 256, 512 and 1024 bits key length
respectively the tests with 10 generated sequences
pass the threshold value (α)[Nur and Sharin,
2010].

For long sequences more than 10 sequences
another tests will be taken into account which
gives an indication for sequence randomness. It
has been shown that as long as the sequence
length increases, the possibility of fail mark may
appear, so success rate test should be done to
validate sequences for use in cryptographic
application with respect to their randomness.
Table (6) clearly illustrates the success rate test
for multi-length keys according to equation (3)

⎩
⎨
⎧

==

=−

974376.0
005625.1

015624.099.0

365
01.0*99.0399.0'

m

mValueP
 …(4)

Tables (7,8 and 9) shows the proportion test for
Linear Feedback Shift Register (LFSR), Blum
Blum Shub (BBS) and Linear Congruential
Generator (LCG) respectively, and show that
these techniques fail in some of the tests. From
Table (10) its obvious that the proposed
algorithm show better results when compared
with other techniques.

7. SOFTWARE IMPLEMENTATION
The proposed method is implemented using
Visual Basic 6.0 as shown in Fig. (8) and Fig. (9).
It can be seen from these two figures the
flexibility and the reliability taken in software
design. It is very easy to the interested people in
cryptographic field use this application and
generate the random multi-length keys by

Dr. Firas Ali Sabir
Sadiq Habeeb Abdulhussain

Image Based Multi-Length Random Key
Generator

 491

specifying the input parameters by pressing
generate button and Select No. of Bits button and
then follow the procedure.

8. CONCLUSION
In this paper, a new method of key generation is
proposed and modeled depending on hashed
images and date-dependent algorithm. The
proposed method of key generation is examined
and tested for different cases and different key
lengths and compared with classical techniques
and it is well proven that this method is very
suitable for applications used in cryptography as it
has random nature and has all properties of
randomness.

9. REFERENCES

• Andrew Rukhin, et al "A Statistical Test
Suite for Random and Pseudorandom
Number Generators for Cryptographic
Applications", National Institute of
Standard and Technology, 2008.

• Andrew W, Walter A., "Hardware
comparison of seven random number
generators for smart cards", In: ITG-GI-
GMM Workshop of Test Methods and
Reliability of Circuits and Systems,
Timmendorfer Beach, pp. 55–58, 2003.

• Bruce Schneier, "Applied Cryptography",
John Wiley and Sons, 2nd Edition, 1996.

• Charmaine Kenny, "Random Number
Generators: An Evaluation and
Comparison of Random.org and Some
Commonly Used Generators" the
distributed systems group, Computer
Science Department, TCD, 2005.

• Juan Soto, "Statistical Testing of Random
Number Generators", Proceedings of the

22nd National Information Systems
Security Conference, 1999.

• Menezes A., van Oorschot P., and
Vanstone S., "Handbook of Applied
Cryptography", CRC Press, 1997.

• Nur A. Abu, and Sharin Sahib,
"Random ambience key generation live on
demand", Signal Processing Systems
(ICSPS), 2010 2nd International
Conference on 2010, Vol. 1, pp. 110-114.

• Nur A. Abu, Nanna S. Herman, and Sharin
Sahib, "An Enhancement of the statistical
test for randomness", Networking and
Information Technology (ICNIT), 2010
International Conference 2010, pp. 521-
525.

• Peter Alfke, "Efficient Shift Registers,
LFSR Counters, and Long Pseudo-
Random Sequence Generators", Xilinx
application note, 1996.

• R. B. P. Dept. "The Evaluation of
Randomness of RPG100 by Using NIST
and DIEHARD Tests". Technical report,
FDK Corporation, 2003.

• William Stallings, "Cryptography and
Network Security", Perntice Hall, Fourth
Edition, 2006.

• Wong Siaw Lang,
Nur Azman Abu, Shahrin Sahib,
"Cryptographic Key From Webcam
Image", International Journal of
Cryptology Research 2009, vol. 1, pp. 115-
127.

Fig. (1): Typical linear sequence generator using LFSR.

Code Output bn b2 b1

+

bn-1 ………

Journal of Engineering Volume 17 June 2011 Number 3

 492

Table(1). List of suitable tests for short keys.

Test Code Statistical Test Test Parameters
1 Frequency Test No Parameter
2 Block Frequency M=8
3a Cumulative Sum (Forward) No Parameter
3b Cumulative Sum (Backward) No Parameter
4 Runs No Parameter
5 Longest Run of Ones M=8
6 Spectral DFT No Parameter
7 Approximate Entropy m=7
8a Serial P-Value1 m=7
8b Serial P-Value2 m=7

Fig. (2). The hierarchy of Random tests

Fig. (3) The proposed Model

Equations
to calculate

X0,Y0,S0
Without

Duplication

Input Date

X,Y,S

7-bit PN Generator(X)

7-bit PN Generator(Y)

7-bit PN Generator(S)

Images Database
to store 43 images

Hash
Function

Images

Main
Module

Output Key

NIST Test

No. of Bits

Dr. Firas Ali Sabir
Sadiq Habeeb Abdulhussain

Image Based Multi-Length Random Key
Generator

 493

Table (2) 128 bit Key p-values for 10 sequence test result

Test / Sequence 1 2 3 4 5 6 7 8 9 10
Frequency 0.3768 1.0000 0.8597 0.4795 0.7237 0.0339 0.2159 0.2159 0.0771 0.5959
Block Frequency 0.3540 0.8095 0.2436 0.7440 0.1432 0.0110 0.5615 0.8392 0.1432 0.1010
Cusum (Forward) 0.0841 0.9842 0.8188 0.5748 0.7375 0.0543 0.3697 0.3697 0.1037 0.8188
Cusum (Backward) 0.4999 0.9842 0.8920 0.6548 0.8920 0.0207 0.3146 0.4314 0.1542 0.4999
Runs 0.9137 0.3768 0.7257 0.4507 0.6032 0.8189 0.3939 0.8252 0.9368 0.7418
Longest Run 0.5837 0.0788 0.7632 0.4360 0.4749 0.0371 0.8569 0.1068 0.3374 0.9936
Spectral DFT 0.5164 0.5164 0.5164 0.5164 0.5164 0.5164 0.3304 0.1443 0.0231 0.5164
Approx. Entropy 0.9456 0.9445 0.9623 0.8460 0.9025 0.7680 0.6176 0.7601 0.9155 0.6912
Serial 1 0.1121 0.7202 0.3427 0.2063 0.1636 0.0149 0.5119 0.1841 0.0743 0.3745
Serial 2 0.0382 0.9513 0.3944 0.7411 0.6192 0.2490 0.6694 0.2867 0.5937 0.0278
Minimum 0.0382 0.0788 0.2436 0.2063 0.1432 0.0110 0.2159 0.1068 0.0231 0.0278
Maximum 0.9456 1.0000 0.9623 0.8460 0.9025 0.8189 0.8569 0.8392 0.9368 0.9936

Table (3) 256 bit Key p-values for 10 sequence test result

Test / Sequence 1 2 3 4 5 6 7 8 9 10
Frequency 0.5320 0.3816 0.7077 0.4533 0.7077 0.8026 0.2606 0.0801 0.8026 0.4533
Block Frequency 0.6939 0.7853 0.5425 0.2867 0.4917 0.9862 0.2674 0.5170 0.9074 0.1565
Cusum (Forward) 0.5731 0.5197 0.9459 0.5731 0.6872 0.9980 0.2363 0.0415 0.8580 0.6292
Cusum (Backward) 0.9459 0.4693 0.8035 0.8035 0.7458 0.9064 0.2083 0.1216 0.9908 0.2672
Runs 0.1268 0.2800 0.6107 0.3336 0.3213 0.1678 0.0113 0.2804 0.0794 0.9719
Longest Run 0.7165 0.5793 0.1040 0.5855 0.8809 0.0260 0.8077 0.3157 0.9560 0.8894
Spectral DFT 0.3588 0.0512 0.0512 0.8185 0.3588 0.3588 0.8185 0.1359 0.4220 0.4220
Approx. Entropy 0.1871 0.2364 0.0447 0.0330 0.0280 0.0921 0.1294 0.0255 0.1405 0.4462
Serial 1 0.5731 0.5197 0.9459 0.5731 0.6872 0.9980 0.2363 0.0415 0.8580 0.6292
Serial 2 0.9459 0.4693 0.8035 0.8035 0.7458 0.9064 0.2083 0.1216 0.9908 0.2672
Minimum 0.1268 0.0512 0.0447 0.0330 0.0280 0.0260 0.0113 0.0255 0.0794 0.1565
Maximum 0.9459 0.7853 0.9459 0.8185 0.8809 0.9980 0.8185 0.5170 0.9908 0.9719

Table (4) 512 bit Key p-values for 10 sequence test result

Test / Sequence 1 2 3 4 5 6 7 8 9 10
Frequency 0.3768 0.9296 0.7909 0.1116 0.2888 0.2505 0.8597 0.1573 0.0421 0.1849
Block Frequency 0.3273 0.0797 0.7666 0.3427 0.7360 0.6361 0.2063 0.0407 0.0916 0.2063
Cusum (Forward) 0.0196 0.6960 0.8188 0.8188 0.2040 0.2040 0.5748 0.8920 0.8188 0.4999
Cusum (Backward) 0.2348 0.9231 0.7375 0.8188 0.4649 0.1542 0.2438 0.8920 0.6548 0.4999
Runs 0.5756 0.3750 0.4797 0.9296 0.2848 0.3595 0.9724 0.2159 0.1582 0.1329
Longest Run 0.2471 0.7019 0.2690 0.7971 0.7815 0.8187 0.7650 0.4566 0.7111 0.1910
Spectral DFT 0.7456 0.3723 0.0885 0.7456 0.4654 0.1233 0.1233 0.1233 0.4654 0.4654
Approx. Entropy 0.5159 0.6769 0.1723 0.2719 0.4572 0.4396 0.4846 0.7793 0.7802 0.3599
Serial 1 0.0261 0.4245 0.5565 0.7740 0.8953 0.2559 0.8092 0.4416 0.3197 0.3427
Serial 2 0.0927 0.2068 0.3170 0.8935 0.8258 0.0435 0.7691 0.4792 0.4792 0.1111
Minimum 0.0196 0.0797 0.0885 0.1116 0.2040 0.0435 0.1233 0.0407 0.0421 0.1111
Maximum 0.7456 0.9296 0.8188 0.9296 0.8953 0.8187 0.9724 0.8920 0.8188 0.4999

Journal of Engineering Volume 17 June 2011 Number 3

 494

Table (5) 1024 bit Key p-values for 10 sequence test result

Test / Sequence 1 2 3 4 5 6 7 8 9 10
Frequency 0.0244 0.2880 0.4918 0.3485 0.5320 0.4165 0.2606 0.9005 1.0000 0.5320
Block Frequency 0.1319 0.2298 0.7367 0.2298 0.9625 0.1259 0.7881 0.0807 0.0585 0.0726
Cusum (Forward) 0.0108 0.2220 0.3193 0.3785 0.6580 0.3382 0.3382 0.9742 0.7458 0.4693
Cusum (Backward) 0.0351 0.3579 0.7458 0.2220 0.4941 0.3382 0.1713 0.9064 0.7458 0.3785
Runs 0.0964 0.7752 0.6274 0.9720 0.2301 0.5877 0.1567 0.2115 0.0699 0.1539
Longest Run 0.0618 0.6673 0.4714 0.8769 0.2426 0.9741 0.1676 0.9077 0.4156 0.0299
Spectral DFT 0.3296 0.6881 0.3296 0.3019 0.6881 0.3296 0.4559 0.4559 0.1871 0.1871
Approx. Entropy 0.0977 0.1775 0.0125 0.3482 0.1919 0.4139 0.2546 0.8374 0.0098 0.0448
Serial 1 0.2461 0.4034 0.4546 0.2151 0.4076 0.8753 0.2798 0.8024 0.1277 0.0586
Serial 2 0.5329 0.2722 0.1990 0.2148 0.6632 0.9631 0.5075 0.7853 0.0413 0.0501
Minimum 0.0108 0.1775 0.0125 0.2148 0.1919 0.1259 0.1567 0.0807 0.0098 0.0299
Maximum 0.5329 0.7752 0.7458 0.9720 0.9625 0.9741 0.7881 0.9742 1.0000 0.5320

Fig. (4) 128 bit Key p-values and average of p-values

Fig. (5) 256 bit Key p-values and average of p-values

Dr. Firas Ali Sabir
Sadiq Habeeb Abdulhussain

Image Based Multi-Length Random Key
Generator

 495

Fig. (6) 512 bit Key p-values and average of p-values

Fig. (7) 1024 bit Key p-values and average of p-values

Table (6) p-value proportion test for 365 (one year) sequences

Test
Code

p-value proportion
of 128 bit

p-value proportion
of 256 bit

p-value proportion
of 512 bit

p-value proportion
of 1024 bit

1 0.98904 0.99178 0.99178 1.00000
2 0.98904 0.99726 0.99178 0.98630
3a 0.98630 0.98904 0.98356 0.99726
3b 0.99178 0.99726 0.99452 0.99452
4 0.99452 0.98630 0.99726 0.99178
5 0.99452 0.98904 0.99178 0.98904
6 0.97808 0.98904 0.98904 0.98630
7 1.00000 0.97534 0.97808 0.99452
8a 0.98904 0.98356 0.99452 0.99726
8b 0.99178 0.97808 0.99726 1.00000

Journal of Engineering Volume 17 June 2011 Number 3

 496

Table (7) p-value proportion test for 365 (one year) sequences for LFSR

Test
Code

p-value proportion
of 128 bit

p-value proportion
of 256 bit

p-value proportion
of 512 bit

p-value proportion
of 1024 bit

1 1.00000 1.00000 1.00000 1.00000
2 1.00000 1.00000 1.00000 1.00000
3a 1.00000 1.00000 1.00000 1.00000
3b 1.00000 1.00000 1.00000 1.00000
4 1.00000 1.00000 1.00000 1.00000
5 1.00000 1.00000 1.00000 1.00000
6 0.30136 0.20273 0 0
7 0.21917 1.00000 1.00000 1.00000
8a 1.00000 1.00000 1.00000 1.00000
8b 1.00000 1.00000 1.00000 1.00000

Table (8) p-value proportion test for 365 (one year) sequences for BBS

Test
Code

p-value proportion
of 128 bit

p-value proportion
of 256 bit

p-value proportion
of 512 bit

p-value proportion
of 1024 bit

1 0.99452 1.00000 0.99452 0.98904
2 0.99178 0.98630 1.00000 0.99726
3a 0.99452 1.00000 0.99178 0.99178
3b 0.98630 1.00000 0.99452 0.98904
4 0.98630 0.98630 0.98630 0.98904
5 0.99452 0.99452 0.99726 0.98356
6 0.98630 0.99178 0.99452 0.98904
7 1.00000 0.93698 0.81369 0.92602
8a 0.98356 0.98356 0.98904 0.98082
8b 0.98904 0.98904 0.99178 0.98904

Table (9) p-value proportion test for 365 (one year) sequences for LCG

Test
Code

p-value proportion
of 128 bit

p-value proportion
of 256 bit

p-value proportion
of 512 bit

p-value proportion
of 1024 bit

1 0.98082 0.99178 0.99726 0.98630
2 0.99178 1.00000 1.00000 0.99452
3a 0.98904 0.98630 1.00000 0.98356
3b 0.98082 0.99178 0.99452 0.98356
4 0.98904 0.99178 0.98356 0.98630
5 0.99452 0.99726 0.99726 0.98082
6 0.98904 0.99452 0.99726 0.98082
7 1.00000 0.95616 0.75068 0.92602
8a 0.97260 0.97808 0.99452 0.98630
8b 0.98904 0.99452 0.99726 0.99452

Dr. Firas Ali Sabir
Sadiq Habeeb Abdulhussain

Image Based Multi-Length Random Key
Generator

 497

Table (10) the Pass / Fail for the proposed algorithm (TPA), LFSR, BBS, and LCG

Test
Code

p-value Pass/Fail
for 128 bit

p-value Pass/Fail
for 256 bit

p-value Pass/Fail
for 512 bit

p-value Pass/Fail
for 1024 bit

T
PA

L
FSR

B
B

S

L
C

G

T
PA

L
FSR

B
B

S

L
C

G

T
PA

L
FSR

B
B

S

L
C

G

T
PA

L
FSR

B
B

S

L
C

G

1 P P P P P P P P P P P P P P P P
2 P P P P P P P P P P P P P P P P
3a P P P P P P P P P P P P P P P P
3b P P P P P P P P P P P P P P P P
4 P P P P P P P P P P P P P P P P
5 P P P P P P P P P P P P P P P P
6 P F P P P F P P P F P P P F P P
7 P F P P P P F F P P F F P P F F
8a P P P F P P P P P P P P P P P P
8b P P P P P P P P P P P P P P P P

 (P = Pass) (F = Fail)

Fig. (8) 128 Bit Generation

Output Key

Hashed Image
from Database

Journal of Engineering Volume 17 June 2011 Number 3

 498

Fig. (9) 1024 Bit Generation

