e, . :
L Number] Volume 12 March 2006 Journal of Enginecring

IMPLEMENTATION OF FPGA-BASED RISC FOR LNS
ARITHMETIC
BY SOFTWARE & HARDWARE

Asst. Lectorer N, H. Abbas
Dept. of Elect. College of Eng. — University of Baghdad
Baghdad- Irag

TRACT
Programmable Gate Arrays (FPGAs) have some difficulty with the implementation of
2g-point operations. In particular, devoting the large number of slices needed by floating-point
oliers prohibits incorporating floating point into smaller, less expensive FPGAs. An
stive 1s the Logarithmic Number System (LNS), where multiplication and division are casy
ast. LNS also h: s the advantage of lower power consumption than fixed point. The problem

3 has been the implementation of addition. There are many price/performance tradeoffs in
%5 design space between pure software and specialised-high-speed hardware, This paper
gcs on a compromise between these extremes. and on a small RISC core design (loosely
#=d by the popular ARM processor) in which only 4 percent additional investment in FPGA
rces beyond that required for the integer RISC core more than doubles the speed of LNS
1 compared to a pure software approach. This approach shares resources in the data path of

Bon-1L NS parts of the RISC so that the only significant cost is the decoding and control for the
istruction. The preliminary experiments sugpest modest LNS-FPGA implementations, like

Bconthms under consideration, are more cost effective than pure software and can be as cost

® as more expensive LNS-FPGA implementations that attempt to maximise spesd,

AR

= =il] - 1 . " ™ b n 1 -] o -
Adilal dladl Cldee Bubly el ans bive | FPGAs) Jaall dae g 45 Zls 5

R || . T TR R B 1 L 5 = i 1. - i T - R ol] s
e Tt 3 e § Aol Aol agd H_—;__;_I_;-.-.-.-:]- et -‘F'I! :_'| Jead] sk N0 ,_.'-'_J-';;_ (R LN
S) ot ol aaall Jls o &) s ddlS W hal N Jlaall Aoy dd g 2ilud 2 all

_.’A ._5'_,!—"':' padla 4] {]\"‘h"\} Jnr_.__g‘.'- gl

-

| 2ol allas AL gt g A ggaay lal Aasaall g o pall Zia
| ' ' 12 | o i g < T m LR R fme g o r Ep s
- — ..:I“ - {Jl"'-"‘\:' l':,-qé;:__:'.i- _l;...“ samll Gli5g et a8 el | ﬂ‘._;i..:'-..n.ll- Semiliig L hida .:._.;_"iﬂ ;g_:..-_,_-|

sl 1aa 5 (LNS) ole ol 2oall 225 6 oISy el O Sl e el s aas)

— ":_;__;_'-'a_cj!_-.nnjl JI-F _JS._J_EJM' T '-'..:...__'_-..-. ;_..dl_"u. :_Ji—:‘l.ll_ﬁ f-...i-....ﬂ.jl :_.n'l_l;.l.- ."_:.:'._. Hr‘n_"u.r_'l_'
| s ARM pllae e 8250 Jaad ol a4 paall RISC core (e cuds

3 L0 : 2 [R [A | R . b a ol e A S 3 A 0L] 2= |
RISC core araal] 45 glaadl e ol e Al w0 F pdleas 4 il 4% el

2ip . lea mald g 30 gl e A0 jlie (LNS) e flll 2ol Gl o pead Lie Ll A

127

IMPLEMENTATION OF FPGA-BASED RISC FOR LNS
ARITHMETIC
_BY SOFITWAHRE & HARDWARE

M. M. Abhas

RISC -..F'“:"-..:'-LE'.’L:'I 2]l ,a::n;__g.q.r-__;a__:.n..i_..'._'...ﬂ jﬂ_}:a_‘;_;_"_..a.n.ll!_lj.i:._'}._ﬂ.a 'n.‘;_:d_*.._:,.._a_'..'_'ni_a'_'_r:,'_m
st i o by boial S i dage KD
u_l_jn.q.-:fn_lnj-"..i.nﬂ.l- ._L‘JL.nl"lpLéﬁ,..,..:.." Fﬂuﬂl}“ﬁjﬁduﬁ}ﬂ‘l -“I

el a8l Al Y1 o LNS, A

KEY WORDS

Addition, ARM, Interpolation, Logarithmic Number System, Low-power Arithmetic, RIS
Verilog.

INTRODUCTION

The Logarithmic Number System {(LNS) uses inexpensive hardware for multiplication: an adss

[Pal 2000]. This is possible because the sum of logarithms is the logarithm of the prod
log(x)Hogly=logix v). LNS can be more cost effective and less power-hungry than fixed-
floating-point for multiply-intensive signal-processing applications, including sound and sc
computations (constrained by the limited resources of portable communication devices like W&
phones) where moderate accuracy is acceptable [Kadlec].

However, r-ultiplication is not the only arithmetic operation such multimedia applications rega
Fhere 1s usuvally about an equal mix of addition and multiplication. One approach would be
convert to the logarithmic format only for multiplication, and convert back to conventional fis
point for the summation [Pan 1999]. This has two drawbacks: two conversions, each requiring
look-up table (LUT), are required at each multiplication, and the resulting
representations often requires more bits (and correspondingly more power for transmission
fact, logarithmically-based formats, such as p-law encoding, have been used in telecommunicas
tor decades because of the compression they afford compared to fixed-point methods like PCM
For the multimedia and signal-processing applications are interested in, the number of input
given to an algorithm is much smaller than the number of additions and multiplications perfos
on these values. For example, it might have O{n™") computations for O{n) inpuis and oulp
Phus, it is desirable from a power-consumption standpoint to keep data in the more compres
logarithmic format during addition as well as during multiplication, and only convert to fixed-pe
at the end of the computation.

The problem is that LNS addition also requires LUTs [Kadlec, Waz 1995], Yet FPGAs, the ces
component in reconfigurable computing, are rich in LUTs [Sto 1988]. Three ways to implems
LNS are listed by increasing speed (and cost):

1- Sofiware running on LUT-based RISC:

2- Hybrd software with some LUT-based hardware dedicated to LNS; and

3= LUT-based hardware dedicated to LNS [Kadlec).

This paper will discuss such FPGA design alternatives using LNS arithmetic. For design
between these alternatives, it synthesize the FPGA aspects of the design from a high-level (C-
notation, known as implicit-style Verilog, using a tool called VITO [Am 1997] 1o crea
hardware state machines automatically,

It is investigate in this paper the implementation of a conventional CPU inside the FPGA toge
with some unconventional hardware for LNS. This paper describes using an FPGA to implem
RISC core inspired by a subset of the Advanced RISC Machine's ARM microprocessor [=
Rather than simply emulating the ARM, this core is intended to be a platform for an expers
measuring the cost-¢ffectiveness of LNS arithmetic. Thus, it named this project the ARM W
alike Experiment (AWE) The ARM has been the subject of other academic-design experims
[Woo 1997] and has compiler tools available; also ARM is popular in many multimedia systes

fixed-pa

128

s LNS - FPGES

p appli
space for
what othe
tor the Vi
poard has
external 1
convenlion
siEni fican
sossihle w
AWE recc
Sexibility
the only ¢
e COmmig
e ARM ;|
REQUeNCe .
wtion for
struction
D One usir
Sstructions
ogarithmic
Lhe essent
Epresentati
§ CONVEITEC
=d user, a
Bvelving ol
i deal with
:r::irahl:__]

1 Aug, |
positive val
STicult par

Crbtain z

= Approxin
= Obtain y -
I8¢ benefit
Eree Jookup
Ewo facts
Erlications
BETOry log
OIS MEDn®
111 F-. 'II'[']F-
NET DNE Mg
B L0 appro
e 517 of th
d x50 tha

B 5 -
-~ '\-.I'___I =

ernolation
Ete size thar

 iagla?

J_!MH_“' Number 1 Yolume 12 March 2006 Journal of Engineering

chip applications where LNS may be useful. Such applications typically need a large memor 3
space for software and data, and thus must assume the logarithm tables required by 1 NS can fill in
what otherwise might be wasted space in a large fixed-size memory chip. AWE is presently targeted
for the Virtex-300-FPG A-based VW-300 board from Virtual € omputer Corporation. This excellent
board has a 1MBx16 external RAM. Since LNS tables occupy an insignificant fraction of this
external memory, relatively modest FPGA resources yield numeric speed-i ip compared to
conventional techniques. Putting tables onto the FPGA instead accelerates operations further but ;
'-|L| ificant-I UT cost. Thus, LNS offers a range of tradeoffs for
possible with conventional arithmetic technigues.

.'.1.,-]: reconfigures the meaning of some instructions to assist with LNS '|"|" ementation. Some

reConk |_£l|||.||“'.'_' -\..I.|I1'I'!'!I_|.I:-|_|__ not

lexibility appeared because the processor is implementing only as the configuration of an FPGA

h- only constraint is that the instructions under consideration reconfigure should not be ones that

are commonly generated by the compiler, For example, the Add-with-(arry (ALX) instruction of
¢ ARM instruction set is infrequently used

It is possible to replace the "L'"Jl’ i;*.-;‘mu._':iu;: with a

_i sequence of a few other instructions in the rare instances in which ADC is required. Thus, one

§ option for introducing LNS into our system would be to reconfigure the opeode of the ADC

struction to implement logarithmic multiplication, reducing signed LNS mult iply from five cycles

0 one using insignificant FPGA resources. The ARM instruction st also includes COPrOCEsSOl

nstructions, and it will focus on whether it is cost effective to reconfigure this opeode to implement
garithmic addition.

; The essential idea with LNS is to convert values into logarithms once and keep them in this

I Pese ntation th WL howt the entire com putation

For example, when a positi '-.|_' value X is input,
5 converted (mo

-.'IL (). 1 use ~.-.||"||LI| |-.1u..[=1. for variables that describe values [l= recived |*'-L the
end user, and lower case for the LNS representation. LN$ multiplication and division are e asy,
1 nvolving only the addition or subtraction of the logarithmic representation, with some Sp

' deal with signs and on -_|1"|m-.

ecial cases
(These cases are why reconfiguring the ADC instruction may b

C
% desirable.) These special cases are ignored since they have been covered ;_'Im_".wh:_ &
1 Aug. 1992, King l'J’I| Given the LNS representations, x = logs() and y logs(}) of the
% positive values, Y and ¥, the representation of the product can be formed simply as x + y, ||5._-
R difficult part of LNS is the implementation of addition. LNS addition involves the followi ing steps:
2 1- OMainz = v - x. whi ~_|1 COrres 'I'.'ll--h o logs(Z) = logy(¥/ X
1 l ApproXimate saz) = logs(] + ke .'u.I-h'..'l1.'.'-1'|'-.'w_’".~:|‘.-_‘.~. o logy(1+2) sl 1+ ¥V 72 X0,
23 Obtain ¥ =x + spiz), which corresponds to logo(X (1+ ¥/ X)) = logs(X + F).
The Iw-mllt of this algorithm is that it onlv needs m.. lookup 1ru1|. i --1~I|_- (step 2), instead of the
iree loo |-.l||“= {or the more natural approach, logdX + 1) logs(b+ b,
Piwo facts affected early LNS '.11‘__'.1||.'||'-:||'m|u1~. [King 1971]: 1) practical results for many
rlications can be achieved using low-precision LNS, and 2) prices were low enough that direct
memory lookup could approximate sg(z) for such low-precision systems. Since its memory
mquiremenss grow exponentially with word ler 1gth, high precision cannot be obtained with direct-
memory implementation
Wrver one hundred papers [xIns] have described variations on LNS techniques, with many showing
W to approximate s5(z) at lower cost than direct lookup. The most common improvement is that
Be size of the s, table can be cut in half _h.ll:'__{ ".-'-'"E {withoul _El'jy,_-ig_'“:l ACCUTACY) ';1_-. 'i|'_;,_--'.;_'|_'_;|_|":.-i|-‘;_-
g and x 50 that z is positive because sy(-2) + z = s2). Since
i 5z) = 2
.; z— o
Mus si(z) = z for large z, the entire domain of z need not be tabulated [Tay 1988]). Also
Jmterpolation [Am junel992, Lew 1990, Lew 1994 | can increase precision possible with smaller
_Bable size than direct lookup.

129

1 M. H. Ablas ARITHMETIC
BY SOFTWARE & HARDWARE

Power consumption and battery life are important issues in the design of large FPGA syse
Recently, Palourias showed that LNS-based circuits can consume less power than a compas
fixed-point (scaled imteger) representation since, on average, the high-order bits of LNS-we
exhibit less switching activity [Pal 2000].

LNS is most naturally compared [Armn Aug.1992] against floating-point anithmetic, whies
typically larger and more accurate than fixed-point arithmetic. The goal of this project
implement LNS arithmetic on the AWE in a 32-bit format that is roughly as precise as the 32
single-precision floating-point format of the 1EEE-754 standard (23 bits of precision) ¥
considered both a sofiware LNS implementation on a version of the AWE that lacks any spe
hardware devoted to LNS, and a hardware implementation of LNS for an altermate version of
AWE that consumes only modest additional FPGA resources,

It is also considered how aggressively the designer should pursue high-speed hardware solutioss
LNS arithmetic by comparing the modest LNS hardware t0 a more sophisticated (and expens
LNS design in the literature [Kadlec] implemented in the same FPGA fanuly as our design.

AWE INSTRUCTION SET ARCHITECTURE
This section describes the non-LNS aspects of the AWE core. The AWE is a 32-bit microproes
that supports a subset of the ARM's instruction set. [t must be chose this subset to be large ens

to run the benchmark programs i were interested in and to enable faithiul emulation of those A8

instructions that it did not implement in hardware. Like the later versions of the ARM, the &
supports a full 32-bit address space. (Early versions of the ARM supported a 26-bit address s
with the processor’s state in the high bits.) The AWE has sixteen general-purpose regisiess
which R15 acts as the program counter. Unlike the ARM. the AWE does not have addis
registers used for supervisor mode, but instead saves the processor’s stale in memory
following describes the binary-compatible instructions of the AWE that behave identically 1o 4
of the ARM and describes those ARM instructions not implemented in hardware on the AWE

-

The primar> class of instructions for the AWE is the data-processing instructions. Like any 58

processor, these instructions operate on two operands with the result going into a third regisies
example,

ADD K1 R2 R3

AND R4.R5,15 ROR 2

SUB R6,RT,RELSL 7
There are 16 such AWE instructions, either involving only an addition/subtraction or a Bos
operation. The last operand can be a (possibly rotated) 8-bit immediate value or a reg
{possibly shifted/rotated a fixed distance). Unlike the ARM, the AWE does not support shifos
rotating by a varable distance, bul, as explammed below, the AWE has provisions for sof
emulation of ARM instructions not implemented in hardware
The second class of instructions on the AWE is the multiply/accumulate instruction:

MUL K1,K2. K3

MLA RI.R2.R3 R4
The latter instruction is the only AWE instruction implemented in hardware that processes
operands. Like early versions of the ARM, the AWE only multiplies unsigned 32-bis
producing only the low-order 32 bits of the product.

The third class of instructions on the AWE is for relative branch instructions:

B label

BL label
The branch-and-link instruction {BL) saves a return address in R14. The ARM lacks a halt. b8
is useful for testbenches. 1 have defined a branch back to itself (eafffffe) as the halt for the AW

130

1 Numhber 1 Yolume [2 March 200G Jowrnal of Ensineering

e final class of instructions on the AWE is the load/store instructions

LDR R1,[R2,4]
STR R3,[R4],-4
e AWE supports pre- and post-increment and decrement modification of the index register by an

gned 12-bit constant. The AWE also supports pre-indexed addressing without modification of

’ ndexed register, Unlike the ARM. the AWE does not support modification of the index register
another register

£ AWE supports conditional execution of instructions, based on four bits of the programi-status
Ester {negative, zero, carry and overflow). These bits are optionally set by data processing or
iply instructions, The sixteen conditions supported include signed and unsipned inequality.
pi I A s .]
S AW E does not support multi-register wransfer, swap or supervisor mode instructions. The non-

3 version of the AWE does not support the coprocessor instructions and raises an exception if

il il
zram attempts to execute such an instruction.
Eough the AWE does not support special supervisor mode instructions, it does have a primitive

visor mode used for unimplemented instruction traps and external mterrupts, The way in

B the "."n"|'| -:|_||1|_'|"v.::-1'-l' II'||.|-.|,‘: Processcs :illl.'l'!'i.li‘lx i:~ |_x:-|t'||‘_-'_|_'|_._'._'. Lfil'li._'l'l;nl_ !'_'||||'. the WA '!'..._'
M osupervisor modes process interrupis.

1 ARM, an interrupt causes a subset of the registers 1o be switched for a bank of SUPEryiso
sEesicrs, For "FIQ" “aterrupts, RE-R14 are switched, with R14 containing the return address. In
]

1]

ther four interrupt modes, R13-R14 are switched., So. in total, there are 16+ 14-3
13-=1}]

A | 31 ARM registers, of which only 16 are available 10 the software at any instani

] 4
LI w

this makes the ARM well suited for context switching, the complexity of this scheme
hes the hardware realisation of this on an FPGA undesirable

ead. the AWE uses a minimalist technique borrowed from the classically ¢legamt PDP-8
1971]. On that machine, an interrupt causes the return address to be saved at a fixed location

memory and execution te proceed from the location following the return address with the

rupt flag disabled. Interrupts can only oceur when the interrupt flag is enabled. The interrupl

provides a semaphore that controls writing to that fixed location. The PDP-8 returns from thie
Tupt service routine by turning the interrupt flag back on and doing an indirec jump through
xed lo-ation in memory,
e AWE, an interrupt causes the program counter, R15, to be saved at a fixed location in
ory and execution to proceed from the [ollowing location. Because the AWE implementation
elimed, the value of the R15 at that moment is somewhal offset from the correct return adddness,
correct address can be computed from the information saved in memory. The AW
iclion set includes load instructions with relative addressing (pre-indexed R15 without
fification). When R15 is loaded by such an instruction, the effect is identical 1o g jump indirect.
example, if the following AWE code is located so that the label URILS is at the address where
rdware saves the user's R15 and ISR is the label where the hardware resumes
ceplion:
- saved user R14
' AWE saves user R15 here
SIR R14,[R15.-16] :save user R14 in UR 14
LOR R14,[R15.-16] ;get URLS into R14
BB R14.R14,12 ;adjust ret addr for pipe

-

BTR R14,[R15,-24] ;ret addr 1o UR15

execylion after

LDR R14,[R15.-32] :restore UR 14 into 1114
RUR R15.7R15.-32] indirect jump to UR 15
LDE R15 supervisor of]

131

IMPLEMENTATION OF FPGA-BASED RISC FOR Lhs oy
M. HL Alslins ARITHMETIC
_ BY SOFTWARE & HARDWARE = it

Exccution proceeds at the label ISR: the interrupt will be processed: and the user's R14 w =re multiy
saved by the software in UR14. Of course, a realistic service routine would have more details ":""‘”"”"
place mdicated by the ellipsis (which must be empty for the offsets to be correct here), To eve Frucr ang
user's state 1s restored {in this case, just the restoration of UR14 into R14 is shown). The fins & machi
o resume execution of the user's code is the LDR R135. The AWE has a feature of the LDE o
mstruction not present on the ARM: the LDR R15 instruction tums Hu|:-_|~"='-.~r mode off o i :i"":m"'
AWE. This feature causes no problems with a user-mode program having an LDR R15 insis s g
This feature does mean that LDR R135 can only be used in AWE supervisor mode for the purp ¢
returming to AWE user mode, as shown above, _“ A\RE |
Because this return address scheme is non-reentrant. AWE interrupts (and unimplems L srpol
instruction traps) can only oceur in user mode. All supervisor sofiware must be restricted ' e
instructions supported by the hardware. In order 1o support ARM supervisor mode soft ek
should be possible to write a small kernel that runs ARM supervisor modes under AWE uses E that 0
. - 1114
VERILOG CODING i 1599
The design was done in the implicit style of Verilog [Am 1999], which allows Easy ¢
register transfers in an Algorithmic State Machine (ASM). It has a register file with two re s SEVeTa
and one write port. The register file is simply declared as regj31:00e[15:0]. At presen ECuracy |
chosen a pipeline depth of 3 stages {instruction fetch, instruction decode, execution) as was & BOCUracs

early versions of the ARM . For example. the execution stage for the following:
ji L L

ADD R1,R2 B3

SUB R4.R1,1 ?

'.ull cause the Verilog non-blecking assignment, 1] <= "NCLK r[2]+[3]. to execute ir Il
LI'-l'.J'I!- J'l:_ and !'l. | in the same L.}LlL that :]'lx_ ~.|_||'|_: 15 written back inio 11 |:|_ IThen

L‘fﬂ"t' {(when r[1] contains the sum) the non-blocking assignment r[4] <= NCLK r]1]-1 S R2R2]

again causing two reads and one write. 1t is may decide to increase the |‘|||‘||_|||'-|_ depth =
increase the clock frequency. but my initial experiments suggest that a depth of 3 5 L1!_',_'-
val least 2Z5MHz. (The B instruction is natural [Am 1999) for a pipeline depth of 3, a

cf
versions of the ARM, such as the St CHIZ AT ["'.-1I.'|"'|] SRR T |, wenl b a |‘.-...|._"_||r'||_ -_I;_r:-l‘!] of 5
operate above 200MHz.) < R71
I'he starting point for our design of the AWE was the tiny textbook exan iple of an AR K2 R
[Arn 1999]. That example was intended 1o be an illustration of the concepts of pi F'L| ned =1 R6.R3R
"|I' it I.'u'll‘. AUpports ADD. SUB, MOV and B mstructions and the W bit in the Pl] :'fl-__
register. That example does not implement the logical, compare, shifi, load, store RA).
subprogram instructions. That example assumes that the program counter is physically = 4. R4.R5
register file and that the ARM could be regarded as a Harvard architecture, The RE.R4.R:
multiply and subprogram instructions use multi-cycle implementation on the AWE (a K R5.R¢
ARM) My reconfiguied LNS instruction also uses a multi- -cyele implementation. RORI R

Like the ARM, the AWE is a Princeton architecture, with the same m emory used

programs and data. | made the implementation choice that there is only one por
memory. Becauwse of the one-port memory, LDR and STR instructions oo
(as on the ARM) take multiple cycles (one to fetch the instruction, another to calculate e
address and a third to access the data). R15 is not the actual program counter on the ARE
instructions that modify R15 (such as the LDR R15 above) cause the AWE to con

trom R15 back into a separate program coumter in an extra state that only ocel

L |

similar way, the BL instruction takes an extra cvele to save the return address i
multiply/accumulate on the AWE performs the multiply of two register operands s
inserting an appropriate ADD instruction in the pipeline o feteh the fourth onerand

e Whplen niaien s seoilar W wietocods . The fewures of the AW Vusd o

A2

Mummiber 1 Violome 12 March 2006 Jowrnal of Engineering

are multiple states to implement. The ease with which the implicit style allows design of a
dlex-state machine is an important factor. Unlike a pure multi-cyele implementation, the AWE
L enter and leave these special states aware of the contents of the pipeline, and this complicates
ite machinge considerably.
ther version of the AWE that is augpmented with an LNS-addition instruction alse uses multi
mplementations, similar in complexity to the integer multiply/accumulate. Tt was posaible o

serate s quickly into the AWE because of the convenience of the implicit style of Verilog.

TWARE IMPLEMENTATION
ear interpolation computes sg(zy) + c(zy) - 2p as an approximation for sz}, where clzp) 15 the
¢ of an interpolation line and su(z;) is obtained from a table in RAM. Here i split = into two
it components so that Z = 2y + z;, where z,; is the high portion of z used to access the table and
e that 0 < z;< A = 27") is the low portion which is multiplied by the slope. The division
=en zy and z; oceurs N bits after the radix point. It is do not considered partitioning [Bell

Am 1999], which is a more complicated form of interpelation in which A varies depending

- AR I -y .--_ T .. -y i1 I-. L - - - 1 1 --. - .I.-
= are several allernative forms of interpolation, which differ in how . (24 115 defined and in how

WCcuracy it can guarantee for the result . For example, choosing o{z) = $./(z:) gives 24 + 3
faccuracy. Instead, it will be use Lagrange interpolation, which gives 2N + 5 bits. The linear-
Fangc approach computes c(zy) as (suz b)) = Slzyd)0 AL Thus a choice of & = 9 gives 23

accuracy, which is roughly what IEEE-754 provides, leaving 23 - 9 = 14 bits for z,. (Lewis

19931 argues for better-than-floating-point accuracy, which can be achieved with laroer table

guard bits.) Here is the AWE code for the LNS addition alporitnm without ustng any NS

ic instruclions:

BS R2R2RE] R2=z=v_%
RUDMI R1LRIR2 A=y R1=y
SBMI R2.R2.0x(M) - 7=|z| !

P R2,0xcf ROR 12 ;if 7 is big
s | . skip interpolate
R4.B2 L5R 14 ;Rd4=zH=7>=14
F2 B2 R4 LSL 14 :R2=sl=z-(zH=<14)
) R6.R3.R4 LSL 2 :Ré=addr + (zH = |
n RO [R6)0x004 RS =shizH)
R R4 [R6)Lx0D0G R4 = shizH+Dn)
i R4.R4.R5 ie(zH)=(sb{zH+Dt)-shizH))/Dx
RéR4.R2 6 = e(zH)* 2]
)} RIR5,R6 LSR 14 :R2 = sbh(z)

Iy RORIR2]] I'.'I;i'll_"\-..:'.l shiz)

mung R contains x. R2 contains v and B3 contains the starting address of the sz table. the
nal instructions {ADDMI and RSBMI) put the absolute value of their difference (2) into R2
¢ smaller of the two of them into R1. The compare and branch instructions avoic
ation when z is outside of the domain in which the function needs to be tabulated lhe
12 seven instructions implement the interpolation formula. The final ADD combi 1wes the
ated approximation for si(z) with the minimum of + and y, tornung the logarithm of the sum
=d Yo On the AWE, the LDR instruction takes three eveles. and the 32-bit mnteger multiply

cycles. (In order to simplify its implementation, the AWE does not exit earlv on

cation in the way the ARM docs—the testing of the 32-bit word would slow the cvele time

133

T IMPLEMENTATION OF FPGA-BASED RISC FOR LNS ==
N. H. Abbas ARITHMETIC LE] N
BY SOFTWARE & HARDWARE

Esand register
e=r of the of
Banged for u
mse this is
E=550r and i3
& designs we

Ly Virtes

in our FPGA implementation.) The other eleven instructions are single cycle. The total time fos
[NS-addition sofiware on the AWE is 33 cvcles.

FPGA IMPLEMENTATION

An advantage of an FPGA is that its functionality can be reconfigured to optimise operations
are important for the application at hand. In this case, the LNS-addition algorithm (ine
interpolation) can be transformed from the above software into equivalent Verilog, making S

addition part of the instruction set of the AWE. This has the potential to speed up the operates
FPGA implementation allows some steps that were done sequentially in §4 to proceed in pe
For example, the summing of sy(zy) to the minimum of x and y occurs simultaneously Wit
fetching of sa(zy + A). Also, the first three instructions are reduced to one or two cycles =

hardware implementation as shown in the following implicit Verilog code:

glse if (ir1[27:24] == 4'b1111)

begin
ir2 <= "CLK{12'hf05,ir1 [19:0]}; S
NOPed SUB —same ops as LADD =
a(posedge sysclk) "ENS; L utifisatic
t<="CLK 'PC; Bp--lops
minreg <= CLK irl[3:0]; /Y i3
maxreg <= "CLK irl[19:16]./X -~
z <="CLK aluout; // X-Y e
ir2 =="CLK {12'hf06,ir2[19:0]};//R5B = = not avail
if (aluouwt[31]) /'msh from SUR L¥cies indi
begin /=X, use RSB aluout meon. The St
@i posedge sysclk) "ENS; e the inte
maxreg <="CLK irl[3:0]; /Y plus other
minreg <= CLK irl[19:16]//X wol, ar
z == "CLK aluout; //Y-X
end ewcles for
end el VLS
Here, "ENS indicates Entering a New State, irl is the instruction register for the decode stags #—A CI5
pipeline (irl[19:16] points to the register that contains X and ir1[3:0] points to the regs B 2SS
contains 1), ir2 is the instruction register for the execute stage of the pipeline (ir2[25:20] g =N-30010
which data-processing operation the AWE's ARM-compatible ALU performs: 05 is subess cost of
and 06 is reverse subtract, Y-X). aluout is the output from that ALU, and minreg and maxsss SATINE
hit pointers to registers that contain min(X, ¥) and max(X. ¥}, respectively. The above colis
SUB and RSB instructions into the instruction register to obtain z. It lakes an extra cyeie et Jes1E
roles of X and ¥ need to be interchanged in order to make z positive. Together with Va T e
shown above, it takes seven or eight cvcles outside of the multiplication for LADD o 2 Ot
Since z; only needs 14 bits, the multiply in the interpolation can stop after 14 cycles. & o sieid
wotal time for the Logarithmic-Add instruction {LADD) is either 21 or 22 ¢ycles.
Unlike the actual coprocessor instructions of the ARM, LADD on == AEISON
{coded in the coprocessor group, 1110) accesses the processors’ general-purposs = i le
(A few additional internal registers that are not accessible to the programmer, like == == ARE
maxreg, are also used.) To simplify the design of LADD, it was assumed that the dess e of [

different register than the registers that contain X or ¥, and it was alse assumed that esse

134

T

] Number 1 Volume 12 March 2006 Journal of Engineering

and registers may be used by LADD as a scratchpad. LADD chooses the one that contains the
B=r of the operands (pointed to by maxreg) as the scratchpad, leaving the minimum valye
sanged for use at the end of the logarithmic addition algorithm. (Such assumptions are possible
2use this is an FPGA-RISC implementation. where optimisations may be shared between the
peessor and its software—a luxury not possible for conventional PTOCessors,)
& designs were synthesised for the Virtua Computer Corporations’ VW-300 board, which uses
Allinx Virtex-300 FPGA. This FPGA has 3 N72 logic slices

lable 1. Comparison of Implementations
(Assuming these are placed and routed in the same V300 chin

|AWE AWE LNS/noLNS HSLA
no LNS with LNS ratio | (ALUonly) ALU +AWE
E; | 27 25 0.92 17 17
bles 53 21-22 04 | & R
s 1 27 1.4 n/'a n'a
hces | 2,471 2,560 .04 2,325 4,796
LA :_11:|:.n.|rir1n! Bl %y 83 % 1.04 759 wion't [il

p-flops ' 784 850 0g | n'a n'a

[s 31,651 3875 LO6 | n/a n'a
= | 35114 37.045 1.5 n'a s

B 2 = not available)
yeles indicate how many clock cycles are required to perform the logarithmic addition
tion. The States are the total number of states in the state machine that controls the hardware.
are the internal |I.'IHLI.'.]1 tables used as the basic component of the FPGA, A slice consists of
plus other logic and flip-flops. The equivalent gates are those reported by the Xilinx
besis tool, and should be viewed as only a hvpothetical estimate of the complexity of the
=3 cycles for the software implementation does not include one evcle to initialise R3 to contain

#cdress of the table. This cycle is not needed in the hardware implementation because, unlike a
mercial VLSI processor, an FPGA processor can be resynthesised to customise the table
Ess for a particular software program. This is one of the ads antages of the reconfigurable

sch—A CISC instruction like LADD need not be quite so complex because i can make some

fying assumptions,

LNS-addition aspect of the AWE shares mam resources with its non-LNS-aspects. The
Enal cost of implementing LNS addition is only 2,560 - 2471 = §9 slices because of this
irce sharing. These slices are mostly devoted 1o implementation of the extra siates of the

thm.

present design does not implement subtraction, Although for the same accuracy, subtraction

more of the external memory than addition'”. the algorithmic complexity of subtraction i
far to addition. It can thus estimate that at most another B9 slices would he required for

ction, yielding a total of 2,560 + 89 = 2,649 slices

IPARISON WITH OTHER LNS FPGAS

ire a few other reports in the literature of FPGA implementations for LNS arithmetic with
B the AWE might be compared. Wazlowski et al. [Waz 1995] report much more limited-
#s10n use of LNS than that propesed here in a re-configurable platform specialised for hidden-
Rov speech recognition.

135

M. H. Abhas ARITHMETIC

~ IMPLEMENTATION OF FPGA-BASED RISC FOR LN {"‘".
—
_ BY SOFTWARE & HARDWARE o

- =
=

Kadlec et al. [Kadlec] report a 32-bit LNS ALU, with comparable precision to the &
considered hiere. It is based on a design promoted by the HSLA project [col 2000], and liks i

design. has the logarithm tables residing off-chip. Kadlec synthesized this for a larger membe B

the same family of FPGAs used here, and thus can be coimpared to my design. (A more m - ijd;
version of Kadlec’s design uses Virtex-E part, and thus cannot be compared directly 1o my desg ; -._~ {.L
The available data for Kadlec's original design [Kadlec] is shown in the right column in T8 'n'“'t_:ir'-"'

above. The clock frequency is roughly two-thirds of that in my design. Kadlec appears 10
significant portion of the resources in a fast integer multiplier for quadratic interpolation, ang
given the limitations of the FPGA, 15 only able to achieve 8-cycle operation. It shoois
remembered that Kadlec only implements an ALU—there is no processor mentioned to conts
operation. A fairer comparison is one between my AWE and Kadlec’s ALU plus a proes
Sin¢e he reports no processor, let us assume that he is using a processor of the same size as the gl
LNS AWE. Since his ALU and processor stand alone from cach other, this combination sedge clk)
require 2,325 + 2,471 = 4,796 slices.

The LNS AWE can achieve 25/21.5 = 1,16 MFLOPs using no more than 2,560 + 89 =

=S 0Nt

~Tedles g

ES Verilo
2 ped here)

{including the estimate for subtraction) slices. Kadlec's ALU with a processor could achieve SROETIL D
2.125 MFLOPs using no more than 4,796 slices. A reasonable figure of merit to compare

against the LNS AWE is MFLOP/slice. This is roughly 4.4-10 for either system. Thus

no more cost effective than the LNS AWE. In contrast, my non-LNS AWE with softeess

a lower figure of merit: 2107, Thus i conclude that it pays to move from sofiwas

hardware reconfiguration (which is done easily within my V300 FPGA), but thers = =

gain in developing a system as complex as Kadlec (which would require a larger. o -
FPGA).

CONCLUSIONS

In ths paper the results shown that a modest investment in FPGA resources, on top & 54
required for a minimal integer-RISC processor, allows significant improvement e

ewCie and the
=n.) Contr
e 10 be moy
“he differer

implementation of LNS arithmetic. For the particular example of 32-bit LNS, an increase
4 percent of the FPGA's resources allows a speedup of about 2.5 for legarithmic additios
improvement is possible because a significant amount of the resources required can be shas
the non-LINS RISC core. In contrast, an earlier attempt [Kadlec] to make a faster LNS ALI

at a much higher FPGA cost. Since the justification for LNS must be stated in terms of :' ”T{J |
7 5 ' s = el 2 . 'y : g 1
cffectiveness. this preliminary experiment with AWE sugpests that a faster LNS implems - :‘Hmm“
[Kadiec] is no more cost effective than an economical implementation (like mine). Sines = Ui conc

: . : ariy P : : new a:

takes half the FPGA resources (in a similar RISC-processor context), my design can be e i,
ilar o T : £ 1 g4 e W g = gq

smaller, less expensive FPGAs, such as the Virtex-300 used in our experiment. ;

Were able to conduct this experiment rapidly because of the convenience of the implici i s

| se=Sponds 1o 3

Verilog, which allows efficient multi-cycle state machines to be coded in a natural algs Sl
form. The enhanced preprocessor described in the following appendix (VITO 1.4) enables o ‘I_.J
implicit Verilog to produce a one-hot state machine that is accepted by a conventional synih

{in my case, Xilinx’s WebPack). VITO is available for download [Amn 1997]. as iz —_.{
[Xil 1999], :

datal

APPENDIX. ENHANCEMENTS TO VITO
In order to synthesize the AWE, i had to extend the semantics of my VITO preprocessor bes
previously published [Arn 1997, Arn 1999] specifications w cope with memories. As as
of this extension, let's consider something much simpler than the AWE. Here is a @
nonsensical. machine specified in implicit Verilog (the macros 'ENS and "CLK are ¢
elsewhere [Sto 1986]):

reg [31:0] a;

F
nEw_a) is tf

el
k.

&1 posedge ol

&

) MNumber 1 Yolume 12 March 2006 Jowrnal of Engineering

=g [31:0] datal, data2;
AWHYS
begin
@iposedge clk) "ENS;
a <= "CLK datal;
@{posedge clk) "ENS;
a <= " LK dataZ;
end

abels on the left cormespond to wires in a one-hot controller. The previous version (1.2) of

} creates a one-hot controller and a corresponding datapath that implements the algorithm
ified in implicit-style Verilog. Here the controller has two states, one for each

sedge clkYENS, The datapath has only the one register, a. in this example. For the above
cit Verilog source code, all versions of VITO (including the improved version 1.4
ribed here) translate this into 2 one-hot controller, with two outputs, whose names are based on
stalement numbers of the original Vernilog (54 and s6 here), as shown in Fig. (1):

|
) et
s v s W * B .0
clk 54 clk
BrELel ¢ lesan |
TR AT
T &
i'l:C_'- NC Fesct

Fig (1). A two-state one-hot controller.

asynchronous reset makes sure that the [lip flop lor the starting state contains a oné in the first
k cvcle and the other flip flop(s) contain zero(s). (An additional flip flop involved in the resct is
shown.) Control statements, such as if or while, would cause the corresponding one-hot
Eroller to be more comphicated, The outputs of the controller are used to tell the datapath what

f The difference between older versions of VITO and the new version used here is in the
path. YVITO 1.2

2d by destination).

_

generates the datapath by extracting all the non-blocking assignments

Ihese then specify continuous assignment{s) to wire{s) (whose names
¢ from the concatenation of "new_" to the destination register):
[31:0] new a;

bzn new a = sd 7 datal : s6 ? data2 : a;

§ corresponds 1o a series of two inputl multiplexors, as shown in Fig. (2).
— tutiedivar i

L —» 0 s D 0 e
i I e T
|
datal | datal 1
54 %61

Fig (2). A datapath that corresponds to Figure 1.

vire (new_a} is the () input to the destination register {whose D output is a in this case)

31:0] a;
2vs (i posedge clk)

IMPLEMENTATION OF FPGA-BASED RISC FOR LNS
ARITHMETIL
BY SOFTWARE & HARDWARE =~

M, H. Abbas

d == new_a,;

Although this works adequately for simple designs up 10 the complexity of accumulator-b
general-purpose compulers [Am 1999], this datapath-generation technique is not powerful ens

to handle the Venlog coding for the register file of a RISC processor in a correct fashion
example, different addresses may be used to access the register file in different states:

reg [31:0] r[15:0];
reg [31:0] datal, data2;
reg [3:0] addrl,addr2;
sl: always
§2: begin
g3 (@(posedge clk) "ENS;
s4: raddr]] == 'NCLK datal;
si: f@{posedge clk) "ENS;
gh: r[addr?] <= "NCLK data2:

g7 end

For simulation, & ditferent macro, 'WCLK, 15 required when the destination is a memory, s
rladdrl]. The first state assigns the value datal to the register whose number is specified by
The second state assigns the value datal to a different register given by addr2. For ins
situations like this occur in the coding of the AWE between data-processing and branch-an
instructions. Using VIT(1.2 with the above would generate the following erroneous code:

wire [31:0] new r{15:0];
assign new rfaddrl}=s4 ? datal : m[addrl];
assign new _rladdr2]=s6 ? data2 : m[addr2];

This is illegal since Verilog does not allow an array of wires. In order to overcome this rest
developed a new version (1.4) of VITO that penerates the datapath in a new way:

reg [31:0] r;

always (@i posedge clk)

begin

rladdrl] <= s4 7 datal : r{addr1];
rladdr2] <= s6 7 data2 : r|addr2):

end

[he semantics of the non-blocking assignment allow these separate assignments to be 2
together int:» a single always block. This coding style is compatible with the IEEE P1364
synthesis standard. and should be synthesizable by any commercial tool that accepts only
style.

REFERENCES

M. Amold, T. Bailey, and J. Cowles, (1992), Comments on ‘An architecture for addm
subtraction ol long word length numbers in the logarithmic number system, [EEE Trans
41, pp. TR6-T8E, June.

M. Arold, T. Bailey, J. Cowles, and M. Winkel. (1992), Applying features of 1EEE
sign/loganthm arithmetic, IEEE Trans. On Comput., 41, pp.1040-1050, Aug..

138

irnold and |

g5, Hth Inte

Www. verloy

Arnold, (19
pper sads

Bell and :
vew York.

_oleman.
nthmic Mic

e (971N

on. Lett. 7,

ecetal,. T

Lewis, (1€

Banthimic o

S

Lewis, (16
S LEmits, |
fanaro, el

Journal

mNOUTas and

5 2000
Bon, (ot

grammab

B on W

Enhs, (198
3 Flor

Mumber 1 Volume 12 March 2006 Journal of Engineering

Amold and 1. Shuler, (1997), A preprocessor that converts implicit style Verilog into one-hot

€515, 6th Internaticnal Verilog HDL Conference, Santa Clara, CA, pp. 38-45, March 31-April 3.
ww.verilog.vito.com for more recent versions,

mold, (1999), Verilog Digital Computer Design: Algorithms into Hardware, PTR Prentice
pper Saddle River, NJ..

dell and A. Newell. (1971), Computer Structures: Readings and Examples, ch, 3, McGraw-
New York, NY,.

~oleman, E. 1. Chester, C. 1. Softley, and J. Kadlec, (2000), Arithmetic on the European
thmic Microprocessor, IEEE Trans, Comput., 49, no. 7, pp. 702-713, July.

Be (971 | M. Kingsbury and P. Rayner, (1971), Digital Filtering Using Logarithmic Arithmetic,
ron.Lett., 7, pp.36-58, Jan
dlec et al., LNS ALU core for FPGA, hitpsSwwwoutia, cas.c2/idealist-castvilach/s1d001 htm

Lewis, (1990}, An architecture for addition and subtraction of long word length numbers in

e I\-II

ganthmic number system, IEEE Trans. Comput., 39, pp. 1325-1336, Nov..

B Lewis, (19947 Interleaved MEMIOry funection .|'||_|_'|'r'u_||:1'_;'||':-.. with -'3I_'-'!'|"§il.'-:i'.il'l|'l to accurate [LNS
metic units, IEEE Trans. Comput., 43, pp. 974-982, Aug.

Montanaro, et al., (1997 A 160-MHz, 32-b. 0.5-W CMOS BISC microprocessor, Digital
sical Journal, 9, No. 1,. See also www.intel.com/design/strong

Faliouras and T. Stouraitis, (2000), Logarithmic number system for low-power arithmetic,”

EMOS 2000: International Workshop on Power and Timing Modeling, Optimization and
Bation, Gottingen, Germany, 13-15 September, pp. 285-294,

rogrammable Logic Data Book. Xilink, San Jose, (1999), See www. support.xilinx.com for
ation on WebPack.

erantis, (1986), Logarithmic Number System Theory, Analysis, and Design, PhD Dissertation,

per=ity of Florida, Gainesville, pp. 122-124,.

Tavlor, R. Gill,). Joseph, and J. Radke, (1988), A 20 Bit logarithmic number system
Eesor, [EEE Trans. Comput., C-37. pp. 190-199,

Bazlowski, A, Smith, R. Citro, and H. Silverman, {(1995), Performing log-scale addition on a
sated memory MIMD multicomputer with reconfigurable computing capabilities, Proceedings
195 International Conference on Parallel Processing, pp. 111-211 - [11-214..

Voods, P. Day, S. B. Furber, I. D. Garside, N. C, Paver, and 8. Temple, (1997). AMULET]:

chronous ARM microprocessor, IEEE Trans. on Comput., 46, No. 4, pp. 385-398, April

SO AT COITL.

wwow K Insresearch. com.

e et al., (1999). A 32b 64-matrix parallel CMOS processor, [EEE International Solid-State
s Conference, San Francisco, pp. 15-17, Feb

3%

