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ABSTRACT: 

By using governing differential equation and the Rayleigh-Ritz method of minimizing the total 

potential energy of a thermoelastic structural system of isotropic thermoelastic thin plates, thermal 

buckling equations were established for rectangular plate with   different fixing edge conditions and 

with different aspect ratio. The strain energy stored in a plate element due to bending, mid-plane 

thermal force and thermal bending was obtained. Three types of thermal distribution have been 

considered these are: uniform temperature, linear distribution and non-linear thermal distribution across 

thickness. It is observed that the buckling strength enhanced considerably by additional clamping of 

edges. Also, the thermal buckling temperatures and thermal buckling load have lowest values at first 

mode of buckling for all types of ends condition and with all values of aspect ratios. 
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 الخلاصة :

  رحس نخفض انطاقت انكايُت حى اسخحذاد يؼادلاث خاصت-وطرَقت رَهٍ  انخفاضهُت انرئُسُت انخاصت انًؼادلاث باسخخذاو

 إَجادحى    د.يغ يخخهف َسب الأبؼا يخضًُت يخخهف حالاث انُهاَاثانرقُقت  انًخجاَست بالاَبؼاج انحرارٌ انخاص بانصفائح انًسخطُهت

 بالإضافت فٍ انًسخىٌ انىسطٍ نهصفُحوانؼسوو انحرارَت  يخسوَت  انُاحجت يٍ الاَحُاء فٍ ػُصر انصفُحت وانقىطاقت الاَفؼال انً

وحىزَغ  يُخظًت,:درجت حرارة وهٍيخخهفت يٍ انخىزَغ انحرارٌ  أَىاعحى اػخًاد ثلاثت . انخاصت بالاَبؼاج انقهق انحرارةدرجت  إنً

  كًا أٌيقاويت الاَبؼاج حسداد يغ حثبُج انُهاَاث  أٌ نىحظ .ت حرارة لا خطُت ػبر انسًكَغ درجػبر انسًك وحىزدرجت حرارة خطُت 

 . دَسب الأبؼاثبُج انُهاَاث ويغ كم حنطىر الأول نلاَبؼاج نكم أَىاع قىي الاَبؼاج انحرارٌ حًهك اقم قُى نها فٍ ا
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INTRODUCTION: 

Thermoelastic buckling of beam-plates 

and plates has long been of vivid interest to 

researchers. Perfectly isotropic beams and 

plates, which are fixed from motion in their 

plane, are found to exhibit bifurcation buckling 

at a critical temperature when they are exposed 

to a homogeneous temperature field (i.e., the 

plate will remain flat during increasing 

temperature until a critical temperature is 

reached at which point the magnitude of 

transverse deflection becomes indeterminate 

[Shariat, & Eslami 2006] 

When a plate is compressed   in its 

midplane, it becomes unstable and begins to 

buckle at ascertain critical value of the in-plane 

force. Buckling of plates is qualitatively similar 

to column buckling [Chen& Virgin 2006]. 

However; a buckling analysis   of the former 

case is not performed as readily as for the latter. 

Plate-buckling solutions usually involve 

considerable difficulty and subtlety [Matsunaga 

2006] and the condition that result in the lowest 

eigenvalue, or the actual buckling load, are not 

at all obvious in many situations. This is 

especially true in plates having other than 

simply supported edges. 

For a plate, the in-plane load that results 

in an elastic instability, as in the case of a 

beam-column, is independent of the lateral 

loading. Thin plates or sheets, although quite 

capable of carrying tensile loadings, are poor in 

resisting compression. Usually, buckling or 

wrinkling phenomena observed in compressed 

plates (and shells) takes place rather suddenly 

and are very dangerous.  However, a change in 

temperature may also induce instability of a 

thin Structure, such as bifurcation buckling, 

snap-through buckling, or 'just' unacceptable 

large out-of-plane deflections of the structure                    

[ Timoshenko & Krieger 1959]. The present 

work takes   theoretical   approach to determine 

the buckling temperature and buckling mode 

for a flat, rectangular plate with various types 

of thermal loads and edge conditions, buckling 

eigenvalue problem  

ANALYTICAL STUDY: 
      The plate analyzed usually has been 

assumed to be composed of a single 

homogeneous and isotropic material with shape 

and dimensions as in Fig. (1) [Ko 95]. 

 

 

 

 
 

 

 

 

 

 

 

Fig. (1) Schematic Diagram of Thin Plate 

                                                                  

Thermal Distribuation Types: 

Three types of thermal distribution on 

plate have been considered 
A- Uniform heating of plate ,the whole plate 

been warmed up to specificic temperature then  

TcT   

B- Linear temperature distribution across the 

plate thickness h  then   

ll zTTT 10                                                 (1)                                                                                       

       C-Temperature field across the plate 

thickness is assumed in nonlinear form as                              

nnn TzzTTT 2

2

10                                    (2)                                                                            

 
Boundary Conditions: 

General closed – form solutions are 

given   of a thermoelastiuc rectangular  plate 

with different aspect ratio (a/b) and various 

elementary boundary conditions on each of the 

four edges.  appendix A collect some important 

combinations of end boundary conditions. [Let 

the plate be placed in a coordinate system with 

the origin at it center and the edge width (a) be 

b 
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parallel to x – axis and and the edge width (b) 

be parallel to y as in Fig. (1) 

 
 

 

Strain Energy Methods:     
As an alternative to the equilibrium 

methods, the analysis of deformation and stress 

in an elastic body can be accomplished by 

employing energy methods. These two 

techniques are respectively, the newtonian and 

lagrangian approaches to mechanics. The latter 

is predicted upon the fact that the governing 

equation of a deformed elastic body is derivable 

by minimizing the energy associated with 

deformation and loading. Applications of 

energy methods are effective in situations 

involving irregular shapes, non-uniform loads, 

variable cross sections, and anisotropic 

materials [ Langhaar 1962]. We shall begin our 

discussion of energy techniques by treating the 

case of loaded thin plates. The strain energy 

stored in an elastic body, for a general state of 

stress, 

is 

given 

by [Lee 2002]    

                                                                           

      (3) 

 

Integration extends over the entire body volume. 

Based upon the assumptions of thin plates  

yzxzx  ,,  can be omitted. Thus, introducing 

Hook's law, the above expression reduces to the 

followi

ng form 

involvi

ng only stresses and elastic constants: 

 

             

       (4) 

 

 

For a plate of uniform thickness, Eq. (4) may be 

written in terms of deflection w   as follows   
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                                                                      (5)                                                                                 

Where A is the area of the plate surface .The 

strain energy associated with in plane forces is 

given by 
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Also the strain energy of thermal moments will 

have the form 
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y
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                                                                       (7) 

The total potential energy will equal to 

MNbstrain                                      (8) 

The expression 
2

2
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x

w represents the Gaussian 

curvature of the deformed surface and for the 

plate with   general three types of ends 

conditions will have been studied; all edges are 

simply supported, all edges are clamped and 

two opposite edges are simply supported and 

the another's are clamped, then the Gaussian 

curvature becomes zero[ Bhat 1985] . As a 

result the bending strain energy expression 

simplified to  
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3
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





2/

2/

)(

h

h

t zdzTEM                                        (9)      

Are termed the thermal stress resultants. 

 

Uniform Heating of Plate:  

The whole plate been warmed up to 

specificic temperature then  TcT   then 

there is no thermal moments developed in plate  

0M
     then the total strain will become 

Nbstrain                                                                             
Assuming all edges are restrained then  
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   0xyN                                                  (10) 

                                                                               

In Ritz method we minimize the Eq. (8) with 

respect to the arbitrary parameter ijw i.e. 

           )()(),(
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Substituting w(x, y) into Ritz formula with in 

plane thermal force of Eq. (11) then   
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Assume that 0ijA then  
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                                                         (13) 

In terms of temperature critical thermal 

buckling temperature crTc    
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                                                                                 (14) 

If edges at x=0, a are restrained and edges at 

y=0, b are unrestrained .Then Eq. (8) will have 

the form 
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                                                                   (15) 

Assume the same w(x, y) as in Eqs. (11) taking 

the same procedure of the previous example 

then the critical thermal buckling force will   

introduce as   
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In terms of critical buckling temperature 
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Linear Temperature Distribution : 
  Assume the temperature  across the 

plate thickness h  have the form  

ll zTTT 10   .In Ritz method we 

minimize the Eq. (8) with respect to the 

arbitrary parameter mnw  
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  Assuming all edges are restrained taking the 

form of deflection as in Eq. (11) and 

substituting w(x, y) into Ritz formula with in 

plane thermal force and thermal moments then 

Eq. (18) will be 
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Finding ijA from Eq. (19) 
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Then the deflection  



   
 ji

m

i

n

j
a b a b

t

a b

t

YX

dxdyYXYXNdxdyYXYYXXYXDv

dxdyYXYXM

yxw


   

 

 








1 1

0 0 0 0

22222222

0 0

)()()(2)()1(

)(

),(

        

                                                                  (21) 

In terms of temperatures substituting Eqs. (9) in 

(21) then 
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From Eqs. (21)& (22), the deflection w (x, y) 

tends to infinity when   the critical thermal 

forces and critical thermal buckling temperature 

satisfy the following condition: 
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Assume the same w(x, y) as in Eqs. (11) 

Substituting it into Ritz formula with in plane 

thermal force and thermal moments with edges 

at (x=0, a) are restrained and edges at (y=0, b) 

are unrestrained then Eq. (19) will be 
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then  
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Then the deflection  
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In terms of temperatures substituting Eq. (7) in 

Eq. (25) then 
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l

a b

l

YX

dxdyYXEhTdxdyYXYYXXYXDv

dxdyYXYXTEh

yxw


   

 

 








1 1

0 0 0 0

22

0

2222

0 0

1

3

)()(2)()1(12

)(

),(





                                                                     (28) 

From Eqs. (26) & (27),   the critical thermal 

forces and critical thermal buckling temperature 

as the deflection tends to infinity will develop 

as 

 

  

 









dxdyYX

dxdyYXYYXXYXDv

Ntcr

22

2222

)(

)(2)()1(

                                                                    (29)    

 

  

 









dxdyYXv

dxdyYXYYXXYXh

T lcr

22

22222

0

)()1(12

)(2)(



                                                                 (30) 

 

Non- Linear Temperature Distribution : 

 Temperature field across the plate 

thickness is assumed in nonlinear form as in 

Eq.(2)                               

nnn TzzTTT 2

2

10   

The total strain energy and Ritz formulas in 

terms of in plane thermal forces and thermal 

moment will have the same form as in case of  

linear temperature distribution Eqs.(20),(21) 

and(22). But they different when taking the 

thermal forces and moments as a functions of 

temperatures, therefore, when all edges are 

restrained then the deflection in terms of 

temperatures will be  


     

 ji

m

i

n

j
a b a b

nn

a b

n

YX

dxdyYXYXThTEhdxdyYXYYXXYXDv

dxdyYXYXTEh

yxw


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 

  







1 1

0 0 0 0

2222

2

2

0

2222

0 0

1

3

)()()12/()(2)()1(12

)(

),(





                                                                      (31)                                                                                                                                                                                                                             

Then the deflection tends to infinity when  the 

critical thermal buckling temperature have this 

magnitude   

 
 

  

 


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
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dxdyYXYXv

dxdyYXYYXXYXh

ThT crnn

2222

22222

2

2

0

)()()1(12

)(2)(

)12/(



                            

                                                                   (32) 

Again when edge at(x=0, a) are restrained and 

edges at (y=0, b) are unrestrained then Eq. (31) 

will be 
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
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                                                                  (33) 

And the critical thermal buckling temperature 

will be 

 

  

 




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dxdyYXYYXXYXh

ThT crnn

22
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)()1(12

)(2)(

)12/(
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                                                                  (34) 

 

Thermal Buckling Temperature for  

Uniform Temperature :  

Uniform heating of plate have been 

considerd ,the whole plate been warmed up to 

specificic temperature then  TcT  . The 

corresponding strain components are identically 

zero all over the domain. Then, the resultant 

forces are given as  

   



1

t
yx

N
NN            ,    

0xyN   
ct EhTN         

  0tM                                                       (35) 

Substituting iX and jY  from Eq. (11) with help 

of appendix C the critical thermal buckling 

temperature for SSSS ends condition with 

edges at (x=0, a) are restrained and edges at 

y=0,b are unrestrained will be: 

22

22222 ))(1(
),(

ahmE

nrmvD
nmTccr



 
                    

                                                                  (36)                        

For CCCC ends condition with edges at (x=0, 

a) are restrained and edges at y=0,b are 

unrestrained the critical thermal buckling 

temperature as  

             crTc
2

1

2

4

3

4

2

24

1

2

)1(12

)2(




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rrh



                    

                                                                   (37) 

For CSCS ends condition with edges at (x=0, a) 

are restrained and edges at y=0,b are 

unrestrained the critical thermal buckling 

temperature will be  

             crTc
2

1

2

4

3

4

2

24

1

2

)1(12

)2(




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rrh



              (38) 

 

Thermal Buckling Temperature for  Linear 

Temperature Distribution : 

  Assume the temperature  across the 

plate thickness h  have the form as in Eq.(1)                                                        

ll zTTT 10    So that  

 )12/( 2

2

0 nnt ThTEhN       and 

      
12

1

3

n
t

TEh
M


                                         (39) 

Substituting iX and jY  from Eq. (11) with the 

help of appendix C. For SSSS ends condition 

when edges at (x=0, a) are restrained and edges 

at (y=0, b) are unrestrained the critical thermal 

buckling temperature will be      

22

222222

0
)1(12

)(
),(

amv

rnmh
nmT lcr








                         (40) 
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For CCCC with edges at (x=0, a) are restrained 

and edges at (y=0, b) are unrestrained   

  lcrT0 2

1

2

4

3

4

2

24

1

2

)1(12

)2(




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rrh



                    (41) 

And for CSCS with edges at (x=0, a) are 

restrained and edges at (y=0, b) are 

unrestrained   

lcrT0 2

1
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4
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4

2
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                      (42) 

 

Thermal Buckling Temperature For  Non - 

Linear Temperature Distribution : 

 Assume the temperature  across the plate 

thickness h  have the formas in Eq.(2)   

nnn TzzTTT 2

2

10   so that  

)12/( 2

2

0 nnt ThTEhN       and  

     
12

1

3

n
t

TEh
M


                                          (43) 

Substituting iX and jY  from Eq. (11) with the 

help of appendix C. with edges at(x=0, a) are 

restrained and edges at (y=0, b) are 

unrestrained   

     For SSSS  

     crnn ThT )12/( 2

2

0
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22222 ))(1(

ahmE

nrmvD


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  For CCCC  

 crnn ThT )12/( 2
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  And For CSCS  

   crnn ThT )12/( 2
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RESULTS AND DISCUSSIONS: 

The sample of calculations was made on 

Aluminum 1060-H18 rectangular plate which 

has the mechanical   and thermal properties 

given in appendix A respectively. Rectangular 

plate with three different aspect ratio a/b (2, 

1.5, and 1.2). And three different dimensional 

ratio        (16, 80 and 60) where ha /  and 

owing constant magnitude of a=0.12 m have 

been studied  

 

Tables (1) to (9) listed the first four 

buckling temperatures for SSSS, CCCC and 

CSCS plates which edges are restrained at x=0, 

a and unrestrained at y=0, b at different aspect 

ratios r (1.2, 1.5 and 2) and different   (16, 80 

and 60) from these results finding that the 

thermal buckling temperatures increased with 

increase the thickness to span ratio of the plates 

for all   ends conditions.  For each type of Ends 

condition   the thermal buckling temperature 

increased when the aspect ratio (r) increased for 

the same end condition. 

 

The CSCS ends condition have the lowest 

thermal  buckling temperatures and the CCCC 

ends condition have the highest thermal  

buckling temperatures and the SSSS ends 

thermal  buckling temperatures are  between as  

shown in figures (2) to (4).  

 

 The CSCS ends thermal buckling temperatures 

will tends to be close to the thermal buckling 

temperatures of SSSS ends condition when the 

values of aspect ratio (r) increase, as shown in 

figures (2) to (4). 
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Finally thermal buckling temperatures and 

thermal buckling load have lowest values at 

first mode of buckling (1, 1) for all types of 

Ends condition and with all values of aspect 

ratios (r and ). 

It is observed that the minimum value of Nt 

occur when n=1 for SSSS case. Thus, for SSSS 

rectangular plate panels will buckle into several 

half-waves (m) in the loading direction, and 

only one half-wave (n) in the transverse 

direction, when the simply supported plate 

buckles the buckling mode can only be one half 

sine wave, )/sin( by , across the span, while 

several have waves in the direction of 

(compression) restrained edges can occur thus  

2

2)1(

b

Dv
FN tcr


    

Where 2)(
m

r

r

m
F    

To ascertain the aspect ratio r at which the 

critical thermal load is a minimum we set 

0




r

N tcr  and the result will be r = m, this 

provides the following minimum value of the 

critical thermal load where F=4 at r=1,2,3 and 4 

as shown in Fig. (5), therefore no thermal 

buckling taking place when  

2

2)1(4

b

Dv
N tcr


  

The intersection point for the curves   m = 1 

and   m = 2 is    given    from  

414.1
2

2

1

1


















 r

r

r

r

r
  Similarly the 

intersection points for the curves m=2 and m=3, 

etc., can be obtained as 2.449, 3.464 etc. as 

shown in Fig. (5) these results are similar to 

mechanical buckling of SSSS plate with 

uniaxial load only mentioned in references  

[McFarland et al. 1975]. 

 

For CCCC case It is observed that the 

minimum value of Nt  occur when j=1 when 

the CCCC plate buckles the buckling mode can 

only be first mode appendix C  

 

Across the span b, while several have 

waves in the direction of compression can 

occur thus  

2

)1(

b

Dv
FN tcr


    

Where 
22

1

44

3

2

2

4

1 2

r

rr
F



 
   

To ascertain the aspect ratio r at which the 

critical thermal load is a minimum we set 

0




r

N tcr  and the result will be 12114.0 r , 

this provides the following minimum value of 

the critical thermal load where F=58.2711 at 

r=1 and 4 as shown in Fig. (6)  ,therefore no 

thermal  buckling taking place for CCCC case  

when  

2

)1(2711.58

b

Dv
N tcr


  

The intersection point for the curves i = 1 and i 

= 2 is r=1.3556 and is driven as for SSSS case.  

similarly the intersection points for the curves 

i=2 and i=3 can be obtained as r=2.0228 , and 

for curves i=3 and i=4 the intersection point 

will be at r=2.694 as shown in Fig. (6). 

 

For CSCS case It  is observed that the 

minimum value of Nt  occur when j=1 when 

the plate buckles the buckling mode can only be 

first mode, the buckling mode can only be one 

half sine wave , )/sin( by ,across the span b 

,while several have waves in the direction of 

compression can occur thus  

2

)1(

b

Dv
FNtcr


    

Where 
22

1

44

3

2

2

4

1 2

r

rr
F



 
   

To ascertain the aspect ratio r at which the 

critical thermal load is a minimum we set 

0




r

N tcr  and the result will be  /1r , this 

provides the following minimum value of the 

critical thermal load where F=71.437 at 

r=1.5056 and as shown in Fig. (7), therefore no 



THERMAL BUCKLING  OF RECTANGULAR 

PLATES WITH DIFFERENT TEMPERATURE 

DISTRIBUTION USING STRAIN ENERGY METHOD 

 

Dr.Wael R. Abdul-Majeed 

Prof. Dr. Muhsin J. Jweeg 

Ass. Prof.  Dr. Adnan N. Jameel    
 

 

 1056 

thermal buckling taking place for CSCS case 

when  

2

)1(437.71

b

Dv
N tcr


  

The intersection point for the curves i = 1 and i 

= 2 is r=2.228 and is driven as for SSSS case.  

similarly the intersection points for the curves 

i=2 and i=3 can be obtained as r=3.149, and for 

curves i=3 and i=4 the intersection point will be 

at r=4.229 as shown in Fig. (7) .Therefore for 

SSSS and CCCC at r=1.2 the uniaxial thermal 

compression load buckles at mode 1 and for r= 

1.5 and 2 the buckles at mode 2. In CSCS case 

the uniaxial thermal compression load buckles 

at mode 1 for r=1.2 and 1.5 and buckles at 

mode 2 for r=2 the intervals between two 

intersection points are very useful to determine 

the lowest thermal buckling mode . 

 

 

CONCLUSIONS: 
       Following the main summarized 

conclusions raised by this paper are: 

1- The buckling strength could be enhanced 

considerably by additional clamping of 

edges (i.e. from SSSS and CSCS cases to 

CCCC case) . 

2- Thermal buckling temperatures and 

thermal buckling load have lowest values 

at first mode of buckling for all types of 

ends condition and with all values of aspect 

ratios (r and ). 

3- Thermal loads on plate induced thermal 

stresses when the edges are restrained. It 

has been found that a compression stress 

will developed when the temperature are 

uniform at the direction perpendicular to 

restrained edges with no deflection but at 

non uniform temperature thermal bending 

will appear  and lateral deflection will 

occur.  

4- Thermal buckling temperature and 

thermal stresses of thermoelastic plate 

affected by dimensional aspect ratios, 

temperature distributions and boundary 

conditions. 
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Table (1) Four Lowest Critical Buckling Temperature for SSSS, Ends at x=0, a are Restrained and 

Ends at y=0, b are Unrestrained with r=1.2 

 
r=1.2 

Thermal critical temperature    crTc    C
0
 

Mode number   =16   =80   =60 

1,1 11.1783 25.1512 44.729 

2,1 13.8910 31.2548 55.5641 

3,1 22.7382 51.1609 90.9526 

4,1 35.6919 80.3068 142.7676 

 

Table (2) Four Lowest Critical Buckling Temperature for SSSS, Ends at x=0, a are Restrained and 

Ends at y=0, b are Unrestrained with r=1.5 

 
r=1.5 thermal critical temperature    crTc    C

0
 

Mode number   =16   =80   =60 

1,1 19.8319 44.6217 79.3275 

2,1 18.3357 41.2553 73.3427 

3,1 26.4034 59.4076 105.631 

4,1 39.0843 87.9397 156.3373 

    

Table (3) Four Lowest Critical Buckling Temperature for SSSS, Ends at x=0, a are Restrained and 

Ends at y=0, b are Unrestrained with r=2 

 
r=2 

Thermal critical temperature    crTc    C
0
 

Mode number   =16   =80   =60 

1,1 46.9393 105.631 187.7573 

2,1 30.0412 67.5926 16.1647 

3,1 35.2566 79.3275 141.0266 

4,1 46.9393 105.631 187.7573 
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Table (4) Four Lowest Critical Buckling Temperature for CCCC, Ends at x=0, a are Restrained and 

Ends at y=0, b are Unrestrained with r=1.2 

 

 

 

 

 

 

 

 

Table (5) Four Lowest Critical Buckling Temperature for CCCC, Ends at x=0, a are Restrained and 

Ends at y=0, b are Unrestrained with r=1.5 

 
r=1.5 Thermal critical temperature    crTc    C

0
 

Mode number   =16   =80   =60 

1,1 31.5924 71.0828 22.3694 

2,1 27.3981 61.6457 5.5924 

3,1 35.6019 80.1043 142.4076 

4,1 49.4729 7.3140 197.8916 

 

 

Table (6) Four Lowest Critical Buckling Temperature for CCCC, Ends at x=0, a are Restrained and 

Ends at y=0, b are Unrestrained with r=2 

 
r=2 Thermal critical temperature    crTc    C

0
 

Mode No.   =16   =80   =60 

1,1 82.6470 185.9558 330.5882 

2,1 50.3865 9.3697 201.5461 

3,1 50.9164 10.5619 203.6655 

4,1 61.7152 34.8592 246.8608 

 

Table (7) Four Lowest Critical Buckling Temperature for CSCS, Ends at x=0, a are Restrained and 

Ends at y=0, b are Unrestrained with r=1.2 

 
r=1.2 Thermal critical temperature    crTc    C

0
 

Mode number   =16   =80   =60 

1,1 8.9465 20.257 35.7861 

2,1 16.3882 36.8734 65.5528 

3,1 27.7419 62.4194 6.9678 

4,1 42.8555 96.4249 171.4221 

 

 

 

 

 

r=1.2 Thermal critical temperature    
crTc    C

0
 

Mode number   =16   =80   =60 

1,1 16.7869 37.7706 67.1477 

2,1 19.9588 44.9072 79.8350 

3,1 30.1467 67.8300 16.5866 

4,1 44.7944 100.7875 179.1777 
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Table (8) Four Lowest Critical Buckling Temperature for CSCS, Ends at x=0, a are Restrained and 

Ends at y=0, b are Unrestrained with r=1.5 

 
r=1.5 Thermal critical temperature    crTc    C

0
 

Mode 

number 
  =16   =80   =60 

1,1 13.0944 29.4624 52.3775 

2,1 19.5532 43.9947 78.224 

3,1 30.6885 69.0491 18.7539 

4,1 45.7440 102.9240 182.9761 

 

Table (9) Four Lowest Critical Buckling Temperature for CSCS, Ends at x=0, a are Restrained and 

Ends at y=0, b are Unrestrained with r=2 

 
r=2 Thermal critical temperature    crTc    (C

0
) 

Mode 

number 
  =16   =80   =60 

1,1 25.7665 57.9745 103.0659 

2,1 27.7370 62.4083 6.9482 

3,1 37.7411 84.9174 150.9643 

4,1 52.4000 13.8999 209.5999 
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Fig. (2) Critical Thermal Buckling Temperatures at Different End Conditions, Ends are Restrained  

only at x=0, a. with Different   Values at Constant Aspect Ratio (r=1. 2) 
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Fig. (3) Critical Thermal Buckling Temperatures at Different End Conditions, Ends are Restrained  

only at x=0, a with Different   Values at Constant Aspect Ratio (r=1. 5) 
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Fig. (4) Critical Thermal Buckling Temperatures at Different End Conditions, Ends are Restrained  

only at x=0, a with Different   Values at Constant Aspect Ratio (r=2) 
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Fig. (5) Thermal Load vs. Aspect Ratio (r) for SSSS End Conditions, Ends are Restrained only            

at x=0, a 

 

 

 
Fig. (6) Thermal Load vs. Aspect Ratio (r) for CCCC End Conditions, Ends are Restrained only          

at x=0, a. 
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Fig. (7) Thermal Load Factor vs. Aspect Ratio (r) for CSCS End Conditions, Ends are Restrained only 

at x=0, a. 

 

APPENDICES 

 

Appendix A: 

Some Combinations of End Boundary Conditions 
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Appendix B : 

 

Mechanical Properties of Aluminum 1060-H18 

Density  
 

2705 kg/m³  

Hardness, Brinell 35 

Ultimate Tensile Strength 27 MPa 

Tensile Yield Strength 20 MPa 

Elongation at Break 6 % 

Modulus of Elasticity 69 GPa 

Poisson's Ratio 0.3  

Fatigue Strength 44.8 MPa 

Machinability 30 % 

Shear Modulus 26 GPa 

Shear Strength 75.8 MPa 

Thermal Properties of Aluminum 1060-H18 

Heat Capacity 0.9 J/g °C 

Thermal Conductivity 233 W/m °C 

Coefficient of Thermal expansion       2.34e-5/°C 

Convection Coefficient    2.5 W/m² °C 

 
Appendix C: 

 
For SSSS ends condition 

xX ii sin   ,  yY jj sin  

   00   axx ww     ,      00   byy ww    ,     0
2

2

2

0

2









 

x

w

x

w axx ,     0
2

2

2

0

2









 

y

w

y

w byy  

 

 For CCCC ends condition 
       )cosh(cossinhsin xxxxX iiiiii          

           )cosh/(cos)sinh(sin aaaa iiiii            

           )cosh(cossinhsin yyyyY jjjjjj    

           )cosh/(cos)sinh(sin bbbb jjjjj    

        00   axx ww ,   00   byy ww         ,  00 







 

x

w

x

w axx ,         
0

0









 

y

w

y

w byy  

For SCSC ends condition 

)cosh(cossinhsin xxxxX iiiiii    

  )cosh/(cos)sinh(sin aaaa iiiii         ,   yY jj sin  

00   axx ww     ,      00   byy ww    ,     00 







 

x

w

x

w axx ,         0
2

2

2

0

2









 

y

w

y

w byy  

   Where ai  and bj   are the roots of the above equations 

 

The roots of SSSS ends condition are; 

q 

q 

q 
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a

m
i


    ,    

b

n
i


   

 

The roots of CCCC ends condition are; 
  

For i=1 ,      j=2,3,4,…. For i=1 ,  j=1                   

 
 

 

)2(3.12
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1
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

 i
  For i=2,3,4,…  j=1         
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









j

i

For i=2,3,4,.    j=2,3,4,….\ 

 

)2()2(

)5.0(
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3

1
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









j

i
 For i=2,3,4,.    j=2,3,4,…. 

 

The roots of CSCS ends condition are 

For i=1   , j=1, 2, 3,..       

22

112

3

1

)2(

)5.0(







j

j

i







 For i=2,3,4,…   j=1,2,3…. 

  

 

NOMENCLATURE 
 

Latin Symbols: 

A                 Area (mm
2

) 

a, b              Plate side length (mm) 

D                 Flexural rigidity of an isotropic plate (N.mm) 

E                 Modulus of elasticity of isotropic material (N/mm^2) 

G                 Shear modulus of isotropic material (N/mm^2) 

h                  Plate thickness (mm) 

i ,j                 Integer 

Mt                Thermal bending moment   (N.m) 

m,n              Integer 

Nx, Ny         Edge forces per unit length (N/m) 

Nxy              Shearing forces per unit length (N/m) 

Nt                 Thermal forces per unit length (N/m) 

r                   Dimensional  aspect ratio a/b (m/m) 

T                   Temperature (C
0

), Kinetic energy of the element (J)         

0T                  Initial reference temperature (C
0

)  

u, v, w          Displacement components in x,y,z directions 

x, y, z           Cartesian coordinates 

 

Greek Symbols: 

                              Poisson’s ratio   

zyx  ,,
           Normal stresses parallel to x, y, z axes (N/mm^2) 

3.151

73.4

2

31









)2(3.12

)5.0(

73.4

332

3

1













j

22

2

3

1

3.12

73.4







j

j






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yzxzxy  ,,            Shear stresses component xy, xz, yz plain (N/mm^2) 

zyx  ,,             Direct strain in x, y, z directions 

yzxzxy  ,,             Shear strain component 

 

strain                      Strain energy stored in complete plate (J) 

b                          Strain energy stored due to bending (J) 

N                           Strain energy stored due to mid-plane thermal forces (J)                                                                                                                                                               

M                          Strain energy stored due to thermal bending (J)                                                                                        

                          Dimensional aspect ratio side / thickness (m/m) 

                           Coefficient of thermal expansion (1/C
0

) 

w                            Deflection (mm) 

 

Abbreviations Symbols: 

CCCC             Clamped-Clamped-Clamped-Clamped 

CSCS              Clamped-Simply-Clamped-Simply 

SSSS                Simply-Simply-Simply-Simply 

  


