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ABSTRACT:

By using governing differential equation and the Rayleigh-Ritz method of minimizing the total
potential energy of a thermoelastic structural system of isotropic thermoelastic thin plates, thermal
buckling equations were established for rectangular plate with different fixing edge conditions and
with different aspect ratio. The strain energy stored in a plate element due to bending, mid-plane
thermal force and thermal bending was obtained. Three types of thermal distribution have been
considered these are: uniform temperature, linear distribution and non-linear thermal distribution across
thickness. It is observed that the buckling strength enhanced considerably by additional clamping of
edges. Also, the thermal buckling temperatures and thermal buckling load have lowest values at first
mode of buckling for all types of ends condition and with all values of aspect ratios.
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INTRODUCTION:

Thermoelastic buckling of beam-plates
and plates has long been of vivid interest to
researchers. Perfectly isotropic beams and
plates, which are fixed from motion in their
plane, are found to exhibit bifurcation buckling
at a critical temperature when they are exposed
to a homogeneous temperature field (i.e., the
plate will remain flat during increasing
temperature until a critical temperature is
reached at which point the magnitude of
transverse deflection becomes indeterminate
[Shariat, & Eslami 2006]

When a plate is compressed  in its
midplane, it becomes unstable and begins to
buckle at ascertain critical value of the in-plane
force. Buckling of plates is qualitatively similar
to column buckling [Chen& Virgin 2006].
However; a buckling analysis  of the former
case is not performed as readily as for the latter.
Plate-buckling  solutions usually involve
considerable difficulty and subtlety [Matsunaga
2006] and the condition that result in the lowest
eigenvalue, or the actual buckling load, are not
at all obvious in many situations. This is
especially true in plates having other than
simply supported edges.

For a plate, the in-plane load that results
in an elastic instability, as in the case of a
beam-column, is independent of the lateral
loading. Thin plates or sheets, although quite
capable of carrying tensile loadings, are poor in
resisting compression. Usually, buckling or
wrinkling phenomena observed in compressed
plates (and shells) takes place rather suddenly
and are very dangerous. However, a change in
temperature may also induce instability of a
thin Structure, such as bifurcation buckling,
snap-through buckling, or ‘just’ unacceptable
large out-of-plane deflections of the structure
[ Timoshenko & Krieger 1959]. The present
work takes theoretical approach to determine
the buckling temperature and buckling mode
for a flat, rectangular plate with various types
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of thermal loads and edge conditions, buckling
eigenvalue problem

ANALYTICAL STUDY:

The plate analyzed usually has been
assumed to be composed of a single
homogeneous and isotropic material with shape
and dimensions as in Fig. (1) [Ko 95].
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Fig. (1) Schematic Diagram of Thin Plate

Thermal Distribuation Types:
Three types of thermal distribution on

plate have been considered
A- Uniform heating of plate ,the whole plate
been warmed up to specificic temperature then
AT =Tc
B- Linear temperature distribution across the
plate thickness h then
AT =T, + 2T, 1)

C-Temperature field across the plate
thickness is assumed in nonlinear form as
AT =T,, + 2T, +2°T,, 2)

Boundary Conditions:

General closed — form solutions are
given of a thermoelastiuc rectangular plate
with different aspect ratio (a/b) and various
elementary boundary conditions on each of the
four edges. appendix A collect some important
combinations of end boundary conditions. [Let
the plate be placed in a coordinate system with
the origin at it center and the edge width (a) be




Number 5
parallel to x — axis and and the edge width (b)
be parallel to y as in Fig. (1)

Strain Energy Methods:

As an alternative to the equilibrium
methods, the analysis of deformation and stress
in an elastic body can be accomplished by
employing energy methods. These two
techniques are respectively, the newtonian and
lagrangian approaches to mechanics. The latter
is predicted upon the fact that the governing
equation of a deformed elastic body is derivable
by minimizing the energy associated with
deformation and loading. Applications of
energy methods are effective in situations
involving irregular shapes, non-uniform loads,
variable cross sections, and anisotropic
materials [ Langhaar 1962]. We shall begin our
discussion of energy techniques by treating the
case of loaded thin plates. The strain energy
stored in an elastic body, for a general state of

stress,
I1, :%Iy (0,8, 10,6, 40,6, +T V0 +T,75 +ryzyyz)dxdydz . iS
given
by [Lee 2002]
()

Integration extends over the entire body volume.
Based upon the assumptions of thin plates
O Yx1 Yy, Can be omitted. Thus, introducing
Hook's law, the above expression reduces to the
1 followi
=5 [[{(c? +o] ~2vo,0,) I E+7}, 1G)}dxdydz  ng form
' involvi

ng only stresses and elastic constants:

(4)
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For a plate of uniform thickness, Eq. (4) may be
written in terms of deflection w  as follows

1 o'w  o'w Pwotw (otw)
m. =5l D{(aﬁ+@/j ‘2(”’sz W_(axay] }"Xdy
(5)

Where A is the area of the plate surface .The
strain energy associated with in plane forces is
given by

m,--1 Q{N@j . N@y@ +2ny(g~g)@ﬂdxdy

(6)
Also the strain energy of thermal moments will
have the form

VV VV
R ]

(7)
The total potential energy will equal to
1_Istrain :Hb +1_[N +HM
The
o*w o*w o*w
ox2 oy? _(axay
curvature of the deformed surface and for the
plate with general three types of ends
conditions will have been studied; all edges are
simply supported, all edges are clamped and
two opposite edges are simply supported and
the another's are clamped, then the Gaussian

curvature becomes zero[ Bhat 1985] . As a
result the bending strain energy expression

simplified to
o*w)’
d
asz }GX Y

1 0?
M, = Eg D{( 6x\21
Where p__EN°

Eh
12(1-0%)

(8)

expression

2
] represents the Gaussian

here the quantities

h/2
N, =aE [(AT)dz

-h/2
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M, = oF hjz(AT)zdz ©)

-h/2

Are termed the thermal stress resultants.

Uniform Heating of Plate:

The whole plate been warmed up to
specificic temperature then AT =Tc then

there is no thermal moments developed in plate
I1,, =0 then the total strain will become

1_[stra\in = 1_Ib + 1_IN
Assuming all edges are restrained then

N =0 (10)

In Ritz method we minimize the Eq. (8) with
respect to the arbitrary parameter w; i.e.

wix,y) =3 AX (Y, ()

-1 j=1

Assuming al_Istrain — 0 (ll)
oA,

Substituting w(X, y) into Ritz formula with in

plane thermal force of Eq. (11) then

Dﬁ ((XM)2Y2 42X XYY + X 2 (Y")? Jdxdy
Zm: 2 00
k=]

1|, N,
1-v)

Aij:0

T_T((X')ZY2+X20(’)2) dxdy
(12)

Assume that A; = Othen

ab
(17V)D”((X”)2Y2 +2XXYY + X2(Y")? )dxdy
N =— 00

ter

jj((x')zvz+x2(v')2)dxdy
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(13)
In terms of temperature critical thermal

buckling temperature Tc,,

Tc, =

cr

ab
h2 [ [((X")Y 2 +2X"XY™Y + X?(Y")? )dxdy
00

12(1+v)aj:'i'((x 72Y 2 + X 2(Y")? Jdxdy
(14)
If edges at x=0, a are restrained and edges at
y=0, b are unrestrained .Then Eq. (8) will have

the form

(15)

Assume the same w(x, y) as in Egs. (11) taking
the same procedure of the previous example
then the critical thermal buckling force will

introduce as

(1fv)D_a[j.((X")2Y2 +2X"XYY + X2(Y")? )dxdy

[

tor =

((x"2Y? Jxdy

ot—yc

(16)

In terms of critical buckling temperature

ab
hZH((X”)ZYZ F2X"XYN + X2(Y")? )dxdy
Tc. = 00

cr —

1201+ v)aﬁ((X’)ZYz)dxdy

(17)
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Linear Temperature Distribution :

Assume the temperature across the
plate  thickness h  have the form
AT =T, +2zT,, .In Ritz method we

minimize the Eqg. (8) with respect to the
arbitrary parameter w,,

or, ot  drl,

=0
on;  OA,  OA
(18)
Assuming all edges are restrained taking the
form of deflection as in Eg. (11) and

substituting w(x, y) into Ritz formula with in
plane thermal force and thermal moments then
Eq. (18) will be

. Dj ((X™)2Y2 42X XY™ + X 2(Y")? Jxdy
ZZ; ’

k=1 j

o~—.:r

N, A

-v)

+2121(1 V)M(x"mxv")dxdy =0

o1 o

jj (X7 2Y2 4+ X2(Y)?) dxdy

(19)

Finding A; from Eq. (19)

A] =
M‘H(X”Y+XY”)d><dy
(@=v)DJ [(X")2Y2+20X000Y + X2(Y")? Jaxdy + N, [ (X )Y 24 X (1)* Py
(20)
Then the deflection
w(x, y)=
ab

. M, 00 + XYy
Y3 00 XY,

1j=1

i=Lj=

-V Dﬁ Y4 2XXYY + X2 (V) )dxdy+N[i]’. Y2+ XY )dxdy
00 00

(21)
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In terms of temperatures substituting Egs. (9) in
(21) then

ab
oBNT, [ (XY + XY ")y
00 }X.Yv
2

i

1] Dﬁ YL 2X XYY + X )dxdymEthjj Y2+ X2V iy |
: . (22)
From Egs. (21)& (22), the deflection w (X, Yy)
tends to infinity when  the critical thermal
forces and critical thermal buckling temperature

satisfy the following condition:

@-)D[ [((X")2Y2 +2X"XY"Y + X ?(Y")? Jdxdy

Ntcr =-
”((X')ZYZ + X2 (Y")? Jdxdy

(23)

Torer =

h2 [ [[((x"2Y? +2X XYY + X 2(¥")? )dxdy]

12@+ e [ [((X)?Y? + X (¥ )? )dxdy
(24)
Assume the same w(x, y) as in Egs. (11)
Substituting it into Ritz formula with in plane
thermal force and thermal moments with edges
at (x=0, a) are restrained and edges at (y=0, b)

are unrestrained then Eq. (19) will be

j._T ((X")2Y 2 +2X XY™ + X 2(Y ")? Jdxdy
g3 o N
J II((X’)2Y2) dxdy
+Zi":1(1 v -‘:Z(X"Y““XY”)dxdy:o
(25)
then
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Aij =
Mt”(X"Y+XY”)dxdy

@-)D[ [((X2Y 2 + 25007 + X 2(¥")? ey + N, [ [ ((X")2 2 pixdy

(26)
Then the deflection
w(x,y)=
. M,ﬁ XY + XY ")dxdy
- : iy

i=l j D

"\

'T VY2 42X XYY + X2(Y") )dxdy+Nlj‘j )2y )dxdy
0 00

(27)

In terms of temperatures substituting Eq. (7) in
Eq. (25) then

wW(x,y)=
o aEhﬂTl,ﬁ(xw + XY ")dxdy
722{ 00

SR - v)Dji ((Xm2v 7w 2x )Yy + XZ(Y”)Z)dxdy+aEth,j'T ((x2v? Jaxdy }
(28)

the critical thermal

x;

From Egs. (26) & (27),
forces and critical thermal buckling temperature

as the deflection tends to infinity will develop

as
N =
@A—VD[ [((X")2Y2 +2X"XY"Y + X 2(Y")? Jdxdy
J (XY 2 )dxdy
(29)
T, =

Olcr

h2 [ [((X™)2Y 2 +2X XYY + X 2(Y")? Jdxdy

12@+ Ve [ [((X)2Y 2 )dxdy
(30)

Non- Linear Temperature Distribution :
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Temperature field across the plate
thickness is assumed in nonlinear form as in
Eq.(2)

AT =T,, + 2T, +2°T,,

The total strain energy and Ritz formulas in
terms of in plane thermal forces and thermal
moment will have the same form as in case of
linear temperature distribution Egs.(20),(21)
and(22). But they different when taking the
thermal forces and moments as a functions of
temperatures, therefore, when all edges are
restrained then the deflection in terms of
temperatures will be

w(x,y) =

aENT, ” (XY + XY ")ddy

_21; 12{ ( Djj VY24 2XXYY + X2 :):xdy+aEh(I'0"+h2Tz /12]} Y24 XYY Jdy }
” @

Then the deflection tends to infinity when the

critical thermal buckling temperature have this

magnitude

(Ton +h?T,, /12), =

hzj‘j((x MY 2 42X XYY + X 2 (Y ")? )dxdy

12@+W)e [ [((XD2Y 2 + X 2(Y )2 Jdxdy
(32)

Again when edge at(x=0, a) are restrained and
edges at (y=0, b) are unrestrained then Eq. (31)

will be
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w(x,y)=
ab

aEN°T, [ [(X'Y + XY "y
00
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(33)

And the critical thermal buckling temperature

will be
(Ton + hZTzn /112), =

h2 [ [((X")2Y 2 +2X XYY + X 2(Y")? Jdxdy

12@+v)e [ [((X)2Y 2 Jdxdy

(34)

Thermal Buckling  Temperature for

Uniform Temperature :

Uniform heating of plate have been
considerd ,the whole plate been warmed up to

specificic temperature then AT =Tc . The

corresponding strain components are identically
zero all over the domain. Then, the resultant

forces are given as

_1—1)

N, =0 N, =aEhT

M, =0 (35)

Substituting X;and Y; from Eq. (11) with help

of appendix C the critical thermal buckling
temperature for SSSS ends condition with
edges at (x=0, a) are restrained and edges at
y=0,b are unrestrained will be:

Dz*(@1—Vv)(Mm? +r?n?)?

Ter(m.m) = Eahm?a?

12{ (l—v)Dﬁ((X”)zYz+2X’XY”Y+X2(Y”)2)dxdy+aEh(rﬂﬂ +h2T2"/12)ﬁ((X')ZYZ)dxdy }

XY,

i
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(36)
For CCCC ends condition with edges at (x=0,

a) are restrained and edges at y=0,b are

unrestrained the critical thermal buckling
temperature as

Tc, = h(c +2r°a, +r'a;)

12(1+v)a’a}
37)

For CSCS ends condition with edges at (x=0, a)
are restrained and edges at y=0,b are
unrestrained the critical thermal buckling
temperature will be

Tc, = h2(B' +2r’B, +r'p;) (38)

12(1+v)a’ B’

Thermal Buckling Temperature for Linear

Temperature Distribution :

Assume the temperature across the
plate thickness h have the form as in Eq.(1)

AT =T, +zT, So that

Nt = aEh(TOn + hzTZn /12) and
M, = aEh’T, (39)
12

Substituting X;and Y; from Eg. (11) with the

help of appendix C. For SSSS ends condition
when edges at (x=0, a) are restrained and edges
at (y=0, b) are unrestrained the critical thermal
buckling temperature will be
_ h*z?(m? +n?r?)?

= 40
TOIcr (m, n) 12(1+V)am2a2 ( )
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For CCCC with edges at (x=0, a) are restrained

and edges at (y=0, b) are unrestrained

2 4 2 4 4
T0|Cr — h (0[1 +2r 0224—! 6‘(3) (41)
12(1+v)a“a,

And for CSCS with edges at (x=0, a) are

restrained and edges at (y=0, b) are

unrestrained

T R(B 2B, B “2)
oler 12(1+v)al 32

Thermal Buckling Temperature For Non -

Linear Temperature Distribution :

Assume the temperature across the plate
thickness h have the formas in Eq.(2)
AT =T, +2T,, +2°T,, SO that

N, = aEh(T,, +h°T,, /12) and

M, = OCEh?'Tln (43)
12

Substituting X;and Y; from Eg. (11) with the

help of appendix C. with edges at(x=0, a) are
restrained and edges at (y=0, b) are

unrestrained
For SSSS

(TOn + h2T2n /12)cr =

Dz*(@—v)(m* +r’n?)® (44)
Eahm?a?
For CCCC
(T, +0°T,, /112),, =
h?(e) +2r°a, +r'a)) (45)

12(L+v)a’a
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And For CSCS
(T, +h?T,, 112),, =

h*(B +2r° B, +r*B;) (46)
12(1+v)a’B?

RESULTS AND DISCUSSIONS:

The sample of calculations was made on
Aluminum 1060-H18 rectangular plate which
has the mechanical and thermal properties
given in appendix A respectively. Rectangular
plate with three different aspect ratio a/b (2,
1.5, and 1.2). And three different dimensional
ratio ¢ (16, 80 and 60) where ¢ =a/h and

owing constant magnitude of a=0.12 m have
been studied

Tables (1) to (9) listed the first four
buckling temperatures for SSSS, CCCC and
CSCS plates which edges are restrained at x=0,
a and unrestrained at y=0, b at different aspect
ratios r (1.2, 1.5 and 2) and different ¢ (16, 80

and 60) from these results finding that the
thermal buckling temperatures increased with
increase the thickness to span ratio of the plates
for all ends conditions. For each type of Ends
condition  the thermal buckling temperature
increased when the aspect ratio (r) increased for
the same end condition.

The CSCS ends condition have the lowest
thermal buckling temperatures and the CCCC
ends condition have the highest thermal
buckling temperatures and the SSSS ends
thermal buckling temperatures are between as
shown in figures (2) to (4).

The CSCS ends thermal buckling temperatures
will tends to be close to the thermal buckling
temperatures of SSSS ends condition when the
values of aspect ratio (r) increase, as shown in
figures (2) to (4).



Finally thermal buckling temperatures and
thermal buckling load have lowest values at
first mode of buckling (1, 1) for all types of
Ends condition and with all values of aspect
ratios (rand ¢ ).

It is observed that the minimum value of Nt
occur when n=1 for SSSS case. Thus, for SSSS
rectangular plate panels will buckle into several
half-waves (m) in the loading direction, and
only one half-wave (n) in the transverse
direction, when the simply supported plate
buckles the buckling mode can only be one half
sine wave,sin(zy/b), across the span, while

Number 5

several have waves in the direction of
(compression) restrained edges can occur thus
2
N, =F @ V)27r D
b

Where F - (™ 1y
r m

To ascertain the aspect ratio r at which the
critical thermal load is a minimum we set

Ny =0 and the result will be r = m, this

or
provides the following minimum value of the
critical thermal load where F=4 at r=1,2,3 and 4
as shown in Fig. (5), therefore no thermal
buckling taking place when
A(1l-Vv)z*D

b2

The intersection point for the curves
and m=2is given from

(Li):(hijj r=1414 Similarly the
r 1 r 2

intersection points for the curves m=2 and m=3,
etc., can be obtained as 2.449, 3.464 etc. as
shown in Fig. (5) these results are similar to
mechanical buckling of SSSS plate with
uniaxial load only mentioned in references
[McFarland et al. 1975].

N

ter

m=1

For CCCC case It is observed that the
minimum value of Nt occur when j=1 when
the CCCC plate buckles the buckling mode can
only be first mode appendix C
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Across the span b, while several have
waves in the direction of compression can
occur thus

Ntcr =F (1_b\2/)D
Where g _ & +2a,r" +agr’

2,2
o r

To ascertain the aspect ratio r at which the
critical thermal load is a minimum we set
aN'[CI’

or
this provides the following minimum value of
the critical thermal load where F=58.2711 at
r=1 and 4 as shown in Fig. (6) ,therefore no
thermal buckling taking place for CCCC case
when

N

0 and the result will be r =0.2114«,,

58.2711(1—Vv)D
o ST e
The intersection point for the curves i =1 and i
= 2 is r=1.3556 and is driven as for SSSS case.
similarly the intersection points for the curves
i=2 and i=3 can be obtained as r=2.0228 , and
for curves i=3 and i=4 the intersection point
will be at r=2.694 as shown in Fig. (6).

For CSCS case It is observed that the
minimum value of Nt occur when j=1 when
the plate buckles the buckling mode can only be
first mode, the buckling mode can only be one
half sine wave ,sin(zy/b),across the span b
,while several have waves in the direction of
compression can occur thus

Ne =F (1—b\2/)D
Where | = A 20 + it

Bt
To ascertain the aspect ratio r at which the
critical thermal load is a minimum we set

a’;J =0 and the result will be r =, / 7, this
r

provides the following minimum value of the
critical thermal load where F=71.437 at
r=1.5056 and as shown in Fig. (7), therefore no
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thermal buckling taking place for CSCS case
when

71.437(1-v)D
N —b2
The intersection point for the curves i =1 and i
= 2 is r=2.228 and is driven as for SSSS case.
similarly the intersection points for the curves
i=2 and i=3 can be obtained as r=3.149, and for
curves i=3 and i=4 the intersection point will be
at r=4.229 as shown in Fig. (7) .Therefore for
SSSS and CCCC at r=1.2 the uniaxial thermal
compression load buckles at mode 1 and for r=
1.5 and 2 the buckles at mode 2. In CSCS case
the uniaxial thermal compression load buckles
at mode 1 for r=1.2 and 1.5 and buckles at
mode 2 for r=2 the intervals between two
intersection points are very useful to determine
the lowest thermal buckling mode .

ter

CONCLUSIONS:

Following the  main  summarized
conclusions raised by this paper are:
1- The buckling strength could be enhanced
considerably by additional clamping of
edges (i.e. from SSSS and CSCS cases to
CCCC case) .
Thermal buckling temperatures and
thermal buckling load have lowest values
at first mode of buckling for all types of
ends condition and with all values of aspect
ratios (r and ).

Thermal loads on plate induced thermal
stresses when the edges are restrained. It
has been found that a compression stress
will developed when the temperature are
uniform at the direction perpendicular to
restrained edges with no deflection but at
non uniform temperature thermal bending
will appear and lateral deflection will
occur.

Thermal buckling temperature and
thermal stresses of thermoelastic plate
affected by dimensional aspect ratios,

1056

THERMAL BUCKLING OF RECTANGULAR
PLATES WITH DIFFERENT TEMPERATURE
DISTRIBUTION USING STRAIN ENERGY METHOD

temperature distributions and boundary
conditions.
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Table (1) Four Lowest Critical Buckling Temperature for SSSS, Ends at x=0, a are Restrained and
Ends at y=0, b are Unrestrained with r=1.2

r=1.2 Thermal critical temperature  TC,, C'

Mode number @ =16 @ =80 @ =60
1,1 11.1783 25.1512 44.729
2,1 13.8910 31.2548 55.5641
3,1 22.7382 51.1609 90.9526
4,1 35.6919 80.3068 142.7676

Table (2) Four Lowest Critical Buckling Temperature for SSSS, Ends at x=0, a are Restrained and
Ends at y=0, b are Unrestrained with r=1.5

r=1.5 thermal critical temperature  TC_, c’

Mode number @ =16 @ =80 @ =60
11 19.8319 44.6217 79.3275
2,1 18.3357 41.2553 73.3427
31 26.4034 59.4076 105.631
41 39.0843 87.9397 156.3373

Table (3) Four Lowest Critical Buckling Temperature for SSSS, Ends at x=0, a are Restrained and
Ends at y=0, b are Unrestrained with r=2

r=2 Thermal critical temperature  TC,, c’

Mode number @ =16 @ =80 @ =60
11 46.9393 105.631 187.7573
2,1 30.0412 67.5926 16.1647
31 35.2566 79.3275 141.0266
4,1 46.9393 105.631 187.7573
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Table (4) Four Lowest Critical Buckling Temperature for CCCC, Ends at x=0, a are Restrained and

THERMAL BUCKLING OF RECTANGULAR
PLATES WITH DIFFERENT TEMPERATURE
DISTRIBUTION USING STRAIN ENERGY METHOD

Ends at y=0, b are Unrestrained with r=1.2

r=1.2 Thermal critical temperature  TcC, c’

Mode number @ =16 @ =80 @ =60
11 16.7869 37.7706 67.1477
2,1 19.9588 44.9072 79.8350
3,1 30.1467 67.8300 16.5866
4,1 44.7944 100.7875 179.1777

Table (5) Four Lowest Critical Buckling Temperature for CCCC, Ends at x=0, a are Restrained and

Ends at y=0, b are Unrestrained with r=1.5

r=15 Thermal critical temperature T, C'

Mode number @ =16 @ =80 @ =60
1,1 31.5924 71.0828 22.3694
2,1 27.3981 61.6457 5.5924
3,1 35.6019 80.1043 142.4076
4,1 49.4729 7.3140 197.8916

Table (6) Four Lowest Critical Buckling Temperature for CCCC, Ends at x=0, a are Restrained and

Ends at y=0, b are Unrestrained with r=2

=2 Thermal critical temperature  TC,, c’
Mode No. @ =16 @ =80 @ =60
11 82.6470 185.9558 330.5882
2,1 50.3865 9.3697 201.5461
31 50.9164 10.5619 203.6655
4,1 61.7152 34.8592 246.8608

Table (7) Four Lowest Critical Buckling Temperature for CSCS, Ends at x=0, a are Restrained and

Ends at y=0, b are Unrestrained with r=1.2

r=1.2 Thermal critical temperature  TC,, C'

Mode number @ =16 @ =80 @ =60
1,1 8.9465 20.257 35.7861
2,1 16.3882 36.8734 65.5528
3,1 27.7419 62.4194 6.9678
4,1 42.8555 96.4249 171.4221
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Table (8) Four Lowest Critical Buckling Temperature for CSCS, Ends at x=0, a are Restrained and
Ends at y=0, b are Unrestrained with r=1.5

Journal of Engineering

r=15 Thermal critical temperature  TC,, C'

Mode @ =16 @ =80 @ =60

number
11 13.0944 29.4624 52.3775
2,1 19.5532 43.9947 78.224
3,1 30.6885 69.0491 18.7539
4,1 45.7440 102.9240 182.9761

Table (9) Four Lowest Critical Buckling Temperature for CSCS, Ends at x=0, a are Restrained and

Ends at y=0, b are Unrestrained with r=2

r=2 Thermal critical temperature  TC,, (C")
Mode @ =16 @ =80 @ =60
number
11 25.7665 57.9745 103.0659
2,1 27.7370 62.4083 6.9482
3,1 37.7411 84.9174 150.9643
41 52.4000 13.8999 209.5999

Ter (C)

80
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50 4

40
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10

80
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Fig. (2) Critical Thermal Buckling Temperatures at Different End Conditions, Ends are Restrained
only at x=0, a. with Different ¢ Values at Constant Aspect Ratio (r=1. 2)
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Fig. (3) Critical Thermal Buckling Temperatures at Different End Conditions, Ends are Restrained
only at x=0, a with Different ¢ Values at Constant Aspect Ratio (r=1. 5)
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Fig. (4) Critical Thermal Buckling Temperatures at Different End Conditions, Ends are Restrained
only at x=0, a with Different ¢ Values at Constant Aspect Ratio (r=2)

1060



Number 5 Volume 17 October 2011 Journal of Engineering

50

45 |-

40

35

30 -

25

20

Bukiing load factor F

Fig. (5) Thermal Load vs. Aspect Ratio (r) for SSSS End Conditions, Ends are Restrained only
atx=0, a
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Fig. (6) Thermal Load vs. Aspect Ratio (r) for CCCC End Conditions, Ends are Restrained only
at x=0, a.
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Fig. (7) Thermal Load Factor vs. Aspect Ratio (r) for CSCS End Conditions, Ends are Restrained only
at x=0, a.

APPENDICES

Appendix A:
Some Combinations of End Boundary Conditions

deflection mid - —plane sy mbol
deformation

restrained ‘——L__‘_,J?
Yo Z |

=
unrestrained ——%

restrained —

clamped

supported

unrestrained _—_—

restrained ——aifé

unrestrained
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Appendix B :
Mechanical Properties of Aluminum 1060-H18
Density 2705 kg/m?
Hardness, Brinell 35
Ultimate Tensile Strength 27 MPa
Tensile Yield Strength 20 MPa
Elongation at Break 6 %
Modulus of Elasticity 69 GPa
Poisson's Ratio 0.3
Fatigue Strength 44.8 MPa
Machinability 30 %
Shear Modulus 26 GPa
Shear Strength 75.8 MPa
Thermal Properties of Aluminum 1060-H18

Heat Capacity 0.9J/g°C
Thermal Conductivity 233 W/m °C
Coefficient of Thermal expansion 2.34e-5/°C
Convection Coefficient 25W/im2°C

Appendix C:

For SSSS ends condition
Xi=singx , Y;=sinuy

Wyco =Wya = 0, Wy—o = Wypp = 0, Al = o, =0 O = AL =0
ox* ox? oy? oy?
For CCCC ends condition
X; =sin 24X —sinh g, X — 1, (cos g4, X —cosh £, X)
n, = (sin g4a —sinh g4a) /(cos y4a — cosh z;a)
Y; =sin g;y —sinh z;y —n7;(cos ;y —cosh w;y)
n; = (sin u;b —sinh ;b) /(cos w;b —cosh x;b)
WX:O:WX:a:O' Wy:OZWy:b:O ’ %:%:0, a\I\Iy:OZaV\Iy:b:o
OX OX oy oy
For SCSC ends condition
X; =sin g;x—sinh g4, X —n, (oS 14, X —cosh £4X)
1, = (sin ga—sinh ga) /(cos gra—cosh @), Y =siny
WXZO = Wx:a = O , Wy:0 = Wy:b = O , % = % =0, 82Wy:0 _ 62Wy:b -0
OX OX oy? oy?

Where a and u;b are the roots of the above equations

The roots of SSSS ends condition are;
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mmz nx
Mg ATy

The roots of CCCC ends condition are;

=a,=4.7 =473
B=w =40 L AT Forizl, j=2.34,....
a,=151.3 o =(j+09)7
o, =12.30,(a, - 2)

a, =({+05)7 _ ‘ o, =(i+05)7 . .
a, =437 Fori=2,3,4,... j=1 a, = (j+05) Fori=2,34, j=2,3,4,....
a, =12.30(a, - 2) a, = oy (0 = 2)a (0t~ 2)
o, =({+05)7x
a, = (] +0.5)7Z' For I:2,3,4,. j:2,3,4,....

a, =a,(oy - 2)a,(a; —2)

The roots of CSCS ends condition are

B, =4.73 B =(+05)7
B, = ix Fori=1 ,j=1,2,3,. B, =ijr Fori=2,3,4,...
B, =12.3j°z> pr=on(ay—2)j*x*
NOMENCLATURE
Latin Symbols:
A Area (mm 2 )
a, b Plate side length (mm)
D Flexural rigidity of an isotropic plate (N.mm)
E Modulus of elasticity of isotropic material (N/mm”2)
G Shear modulus of isotropic material (N/mm~2)
h Plate thickness (mm)
i, Integer
Mt Thermal bending moment (N.m)
m,n Integer
NXx, Ny Edge forces per unit length (N/m)
Nxy Shearing forces per unit length (N/m)
Nt Thermal forces per unit length (N/m)
r Dimensional aspect ratio a/b (m/m)
T Temperature (C 0 ), Kinetic energy of the element (J)
T, Initial reference temperature (C o)
u, v, w Displacement components in x,y,z directions
X, Y, 2 Cartesian coordinates

Greek Symbols:
1% Poisson’s ratio

Normal stresses parallel to x, y, z axes (N/mm~2)
0x,0y,0,
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=
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Shear stresses component xy, xz, yz plain (N/mm~2)
Direct strain in X, y, z directions

Shear strain component

Strain energy stored in complete plate (J)

Strain energy stored due to bending (J)

Strain energy stored due to mid-plane thermal forces (J)
Strain energy stored due to thermal bending (J)
Dimensional aspect ratio side / thickness (m/m)

Coefficient of thermal expansion (1/C 0 )
Deflection (mm)

Abbreviations Symbols:

Cccc
CSCs
SSSS

Clamped-Clamped-Clamped-Clamped
Clamped-Simply-Clamped-Simply
Simply-Simply-Simply-Simply
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