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ABSTRACT 

 
The present work divided into two parts, first the experimental side which included the 

measuring of the first natural frequency for the notched and unnotched cantilever composite beams 
which consisted of four symmetrical layers and made of Kevlar- epoxy reinforced. A numerical 
study covers the effect of notches on the natural frequencies of the same specimen used in the 
experimental part. The mathematical model for the beam contains two open edges on the upper 
surface. The effect of the location of cracks relative to the restricted end, depth of cracks, volume 
fraction of fibers and orientation of the fiber on the natural frequencies are explored. The results 
were calculated using the known engineering program (ANSYS), the results obtained has been 
compared with those calculated analytically by (Sierakowski RL.), which have expressed the closest 
well also the comparison between the experimental results with that calculated by (ANSYS) has 
very well. The study shows that the highest difference in frequencies occur when the value of the 
fiber orientation equal to 0odegree, the effect of location of the cracks decrease when the cracks 
moving toward the free end and also shows that an increase of the depth of the cracks leads to a 
decrease in the values of natural frequencies. 

 
  
 

  :الخلاصة
 محѧززة  لعتبة ناتئة من الألواح المرآبة الى جزئين ، الأول الجانب العملي والذي يتضمن قياس التردد الطبيعي الاول         البحث يقسم  

عدديѧة تبѧين تѧأثير الحѧزوز      الاسѧة درال  (Kevlar- epoxy).  مؤلفة من أربعة طبقات متنѧاظرة مѧصنوعة مѧن مѧادة    و غير محززة
 النموذج الرياضي للعتبة يحتѧوي علѧى شѧقيق علѧى الѧسطح              . الجانب العملي   المستخدم في    النموذج  لنفس ةعلى الترددات الطبيعي  

لياف وآذلك زاوية الليف علѧى  للأتم بحث تأثير موقع الحزوز با النسبة الى النهاية المقيدة،  تأثير العمق، الكسر ألحجمي            . العلوي
، أن النتѧائج المحѧسوبة تمѧت مقارنتهѧا       (ANSYS) البرنѧامج الهندسѧي المعѧروف   تم حساب النتائج باستخدام. الترددات الطبيعية

 و آذلك المقارنة بين النتائج العمليѧة و  والتي أبدت تقارباً جيدا  (.Sierakowski RL) مع تلك المحسوبة بالطريقة التحليلية لـ 
  الليѧف  اتجѧاه لاف في الترددات يحدث عندما تكون زاويѧة أن البحث يظهر أن أعظم اخت. ً آانت جيدة ايضاً جتلك المحسوبة بالبرنام  

 وز باتجاه النهاية الحرة للعتبة و آذلك تظهر الدراسة أن زيادة عمق الحز           وز يقل بتحرك الحز   وز وأن تأثير موقع الحز    0oمساوية  
 .يؤدي إلى النقصان في قيم الترددات الطبيعية
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1. INTRODUCTION 

During operation, all structures are 
subjected to degenerative effects that may 
cause initiation of structural defects such as 
cracks which, as time progresses, lead to the 
catastrophic failure or breakdown of the 
structure. Thus, the importance of inspection 
in the quality assurance of manufactured 
products is well understood. Cracks or other 
defects in a structural element influence its 
dynamical behavior and change its stiffness 
and damping properties. Consequently, the 
natural frequencies of the structure contain 
information about the location and 
dimensions of the damage. 

The first group of studies have been 
performed for long times and the most 
concepts related to the crack detection have 
been well established from mathematical 
theory (Chondros TG,1998) to impact echo 
method(Cam E,2005, Ratcliffe CP1997) . 
When a structure suffers from damages, its 
dynamic properties can change, especially, 
crack damage can cause a stiffness reduction, 
with an inherent reduction in natural 
frequencies, an increase in modal damping, 
and a change of the mode shapes. 
Consequently, there would also be a change 
in the dynamic response of the structure 
(Matveev VV, 2002 Kim M-B,2005). 
        Over the past decade, several 

techniques have been explored for detecting 
and monitoring of the defects in the 
composite materials. (Adams RD,1978)  
showed that any defect in fibre-reinforced 
plastics could be detected by reduction in 
natural frequencies and increase in damping. 
(Nikpour K, Dimarogonas AD,1988 ) 
studied the variation of the mixed term in the 
energy release rate for various angles of 
inclination of the material axes of symmetry 
and they derived the local compliance matrix 
of a prismatic beam with a central crack. 
(Nikpour K,1990) studied the buckling of 

cracked composite columns and showed that 
the instability increases with the column 
slenderness and the crack depth. (Oral 

S,1991) developed a shear flexible finite 
element for non-uniform laminated composite 
beams. He tested the performance of the 
element with isotropic and composite 
materials, constant and variable cross-
sections, and straight and curved geometries.  
In the last years, the effort is focused on the 

vibration analysis of structural members using 
breathing crack models to simulate real 
fatigue cracks. Several researchers have 
studied the problem of beams having a 
breathing crack by employing different 
approaches. In that (Saavedra PN,2001)  
proposed a new modeling approach for 
cracked beam structures. They used finite 
elements for the beam, while for the cracked 
element a new finite element matrix based on 
an energy density function was employed. 
Recently, (Sinha JK,2002) developed an 
alternative finite element  approach, where the 
phase relationship between the first and 
second response components is simulated 
correctly. (Pugno N,2000) studied the 
dynamic response of a beam with several 
breathing cracks subjected to harmonic 
excitation. Assuming that cracks open and 
close continuously and using finite elements 
to model the beam, a system of non-line a 
algebraic equations was obtained and solved 
by numerical integration. 
Recently, (Song O,2003) investigated the 

dynamics of anisotropic composite 
cantilevers. They presented an exact solution 
methodology utilising Laplace traform 
technique to study the bending free vibration 
of cantilever composite beams with multiple 
open cracks.  

The present search presented numerical 
and experimental study for the effect of the 
cracks on the natural frequencies of cantilever 
composite beams. The lamination angle of the 
fiber, volume fraction of fibers and the 
location of notches relative constrain end are 
studied. 
 
2. MATHMATICAL MODEL 

 
  The model chosen is a cantilever 

composite beam of uniform cross-section area 
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A, having two open – edge transverse cracks 
at a variable positions 1L  and 2L .  The width , 
length and height of the beam are B, L and H , 
respectively as shown in Fig.(1).The beam 
consist of four symmetric layers. 
 
2.1. The Stiffness Matrix For Crack 

According to the St. Venant's principle, 
the stress field is influenced only in the region 
near to the crack. The additional strain energy 
due to crack leads to flexibility coefficients 
expressed by stress intensity factors derived 
by means of Castigliano's theorem in the 
linear elastic range. The compliance 
coefficients Cij induced by crack are derived 
from the strain energy release rate, J, 
developed( Tada H, Paris PC, 1985)theory. J 
can be given as:  
 

( )
A
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∂
∂
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,

                                           (1) 

                                                                                                           
Where A is the area of the crack section, Pi 
are the corresponding loads, U is the strain 
energy of the beam due to crack and can be 
expressed as (Nikpour K, Dimarogonas 
AD,1988 ) : 
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Where KI and KII are the stress intensity 
factors for fracture modes of I and II. D1, D12 
and D2 are the coefficients depending on the 
materials parameters(Nikpour K, 
Dimarogonas AD,1988 ) :  
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( )211112 Im ssbD =                                (4)                     
 

( )21112 Im5.0 ssbD +=                         (5)                     
 
The coefficients s1, s2 are complex 

constant and       are constant. The mode I and 
II stress intensity factors, KI and KII, for a 
composite beam with a crack are expressed as 
(Nikpour K,1990). 
 

( ) ( )HaFYaK jijiij /ζπσ=                              ( 6)                   

 

Where iσ  is the stress for the corresponding 
facture mode,                    is the correction 
factor for the finite specimen size,  ( )ζjY  is 

the correction factor for the anisotropic 
materia(Nikpour K, Dimarogonas AD,1988 
), a is the crack depth and H is the element 
height. Castigliano's theorem [Tada H,Paris 
PC, Irwin GR.1985] implies that the 
additional displacement due to crack, 
according to the direction of the Pi, is: 
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Substitution of this energy rate J into 

Eq. (7), the relation between displacement 
and strain energy release rate J can be written 
as follows:  
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The flexibility coefficients, which are the 
functions of the crack shape and the stress 
intensity factors, can be introduced as 
follows( Tada H, Paris PC, 1985):  
 

ijb
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The compliance coefficients matrix, after 
being derived from above equation, can be 
given according to the displacement vector 

{ }θδ ,,vu=  as  
 

[ ]( )33×
= ijcC                                               (10)                                                                                                          

 
Where ijc  (i, j = 1, 2, 3) are derived by  

 
using Eqs. (1-9). 

The inverse of the compliance coefficients 
matrix, 1−C , is the stiffness matrix due to 
crack. Considering the cracked node as a 
cracked element of zero length and zero mass( 
Ratcliffe CP1997), the crack stiffness can be 
represented as equivalent compliance 
coefficients. Finally, resulting stiffness matrix 
for the crack can be given as:  
 

[ ] [ ]
[ ] [ ] ( )66

11

11

×
−−

−−

⎥
⎦

⎤
⎢
⎣

⎡

−
−

=
CC
CCK c

                         (11)                                                                                 

  

2.2. Component Mode Analysis 
The equation of motion of a mid-plane 

symmetrical composite beam is ( Vinson JR, 
1991): 

                                     
( ) ( ) ( )tfttxyAxtxyIS =∂∂+∂∂ 2244

11 /,/, ρ                                                                            
                                                                   (12) 
 
Where I, ρ , A and y (x, t) are geometrical 
moment of inertia of the beam cross-section, 
material density, cross sectional area of the 
beam and transverse deflection of the beam, 
respectively. Now, consider the 
component A1

, for undamped vibration 

analysis, Eq. (12), in matrix notation, can be 
given as: 

 
)(11111 tfqKqM AAAAA =+&&                                (13)                   

 
where M A1  and K A1

are the mass and 

stiffness matrices of the component A1
, 

respectively,qA1
 and f A1

 (t)  are the 

generalized displacement and external force 
vectors, respectively. Assuming that: 
 
{ } { } ( )βωφ += tq AAA 111 sin                                (14)                   
{ } { } ( )βωφω +−= tq AAAA 11

2
11 sin&&  

 
and substituting them into Eq. (13), one ends 
up with the Standard free vibration equation 
for the component A1

 as, 

 

1111
2
1 AAAAA KM φφω =                               (15)                    

Which gives eigen values 2
1

2
1 ,..., nAA ωω  and 

modal matrix 1Aφ  for the component A1
. 

Making the transformation 
 

111 AAA pq φ=                                               (16)                      
 
where 1AP  is the principal coordinate vector. 

By premultiplying T
A1φ  and substituting Eq. 

(16), Eq. (13) becomes: 
 
( ) ( ) )(1111111111 tfpKpM A

T
AAAA

T
AAAA

T
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                                                                  (17) 
Where 
 

[ ]mAA
T
A mM =111 φφ  

[ ]mAA
T
A KK =111 φφ                                         (18)                   

where [ mm ] and [ Km] are modal mass and 

stiffness matrices, respectively. Mass 
normalising the modal matrix by: 
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ij
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φ
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where ijψ  is mass normalized mode vector. 

By using the transformation 
 

111 AAA sq ψ=                                               (20)                                                                                                       
 
 
by premultiplying T

A1ψ  and substituting Eq. 
(20), Eq. (13) becomes 
 

)(111
2
11 tfssI A

T
AAAA ψω =+&&                            (21)                                                                                               

 
where 2

1Aω  is. a diagonal matrix comprising 
the eigenvalues of A1

. 

 
 
Consider components. A1

, A2
,…, AN

, 

Joined together by means of springs capable 
of carrying axial, shearing and bending 
effects. The kinetic and-strain energy of the 
components, in terms of principal modal 
coordinates, can be given as: 
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Where T and U are kinetic and strain energy, 
respectively. M and K in Eq. (22) are:  
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The strain energy of the connectors, in terms 
of principal modal coordinates, is:  
 
                                                                  (24)                     
 
Where Kc is the stiffness matrix of the 
cracked nodal element and can be calculated 
by using Eq. (9) ψ  in Eq. (24) can be written 
as:  
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The total strain energy of the system is, 
therefore:  
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2
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T ψψ+=                          (26)                    

 
Where K has been given by Eq. (23). The 
equation motion of the complete structure is:  
 

( ) )(tfsKcKs TT ψψψ =++&&                      (27)                   
 
Where ψ  has been given by Eq. (25), f (t) is 
the global force vector for the system. From 
Eq. (27), the eigenvalues and mode shapes of 
the cracked system can be determined. After 
solving these equations, the displacement for 
each component are calculated by using Eq. 
(20).  
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3.RESULTS AND DISCUSSION 

 
   3.1. Validation Of The Current Work 

In order to check the accuracy of the 
present method , the results found by using 
the finite element  method (ANSYS 5.4) are 
compared with the analytical solution of 
(cracked unidirectional beam), found by  
Sierakowski RL. ( Vinson JR, Sierakowski 
RL, 1991),  as shown in Fig.(1). The beam 
assumed to be made of graphite fiber 
reinforced polyamide which contains four 
notches of triangle shape. The numerical 
results show  a good agreement compared 
with analytical solution.  
3.2. Vibration Of The Laminate Beam 

The geometrical characteristics of the 
beam used in experimental and theoretical 
analysis are the length (L)= 0.75 m, height 
(H) =0.03 m and width(B)=0.03 m as shown 
in Fig.(2) . The material properties of the 
kevlar- epoxy are( kawczuk M, 1997): 

1E =221 Gpa, 
        = 23 Gpa , 

12G =8.6 Gpa,  

23G = 6.5 Gpa,  

12υ = 0.2, 

 23υ = 0.3. 
  

3.2.1 Experimental Side: 
 

Experimental work presents the 
measurement the first natural frequency of the 
Specimens shown in Fig.(2). Experimental 
configuration shown in Fig.(3), used to 
measured the natural frequency. An 
accelerometer with a mass of 3 gm attached 
on the top edge of the beam using a wax at 
distance of about of 100mm from the clamped 
end. The accelerometer is connected by an 
amplifier. The charge amplifier is analyzed by 
an FFT analyzer which enable to readout the 
peaks from the digital analyzer.Tables (1,2) 
show the effect of the fibers orientation and 

cracks size on the first natural frequency for 
the cantilever composite beams which 
contents two cracks which were located as L1 
/ L = 0.1, L2 / L = 0.25 and the volume of 
fiber (V) was 0.8. It can be clearly seen from 
table (1) that, the high decreasing in the 
natural frequency occur until angle of fiber 
50o and greater than it the change is very low. 
Table (2) shows that the  first natural 
frequency of the un notched beams equal to 
(45.2 Hz) and also shows that increasing the 
depth of the of cracks lead to decreasing in 
the value of the first natural frequency. 
 
3.2.2 Theoretical  Analysis: 

To more deeply analysis, theoretical 
analysis using the finite element (ANSYS). 
Figs.(4, 5 and 6) show the first three natural 
frequencies as a function of the fiber 
orientation (α ) for different crack ratios 
(a/H). In the model, the composite beam has 
two cracks which were located as L1 / L = 0.1, 
L2 / L = 0.25 and the volume of fiber (V) was 
0.8. It is noticeable that a decrease in the 
natural frequencies become more intensive 
with the growth of the crack depth. The most 
difference in frequencies occur when the 
value of the fiber (α ) is 0o. When the value 
of the angle of fiber is greater than 55o, the 
effects of the cracks on the frequencies 
decrease. This can be explained as the 
flexibility due to crack is negligible when the 
angle of the fiber is greater than 55o, 
especially when the crack ratio is relatively 
low. 

 In Figs. (٨ ,٧ and ٩), the variation of the 
three lowest natural frequencies of the 
composite beam with two cracks is shown as 
a function of fiber orientation (α ) for 
different cracks locations. In these figures, 
three cases, labeled as E, F and G, were 
considered .The cracks locations (L1/ L , L2 /L 
) for the cases E, F and G, where chosen as 
(0.2, 0.35), (0.5, .65), (0.8,0.95) respectively. 
From the previous figures it can be clearly 
seen that , when the cracks are placed near the 
fixed end the decreases in the first natural 
frequency are highest , when the cracks are 
located near the free end ,This observation  
leads to the conclusion that, the first, second 
and third natural frequencies are most 

2E
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affected when the cracks located at the near of 
the fixed end, the middle of the beam and the 
free end . 

Figs. (10, 11 and 12) present the first 
three natural frequencies as a function of the 
volume of fiber (V) for several values of the 
crack ratios L1/L = 0.2, L2/L = 0.35 and the 
angle of fiber (α ) is 0o. As can be seen from 
the figures, the natural frequencies are 
affected by the values of the volume of fiber 
(V) and the crack ratios (a/H), as expected. 
The flexibility due to cracks is high when the 
volume of fiber is between 0.2 and 0.8. 
4.CONCLUSION 
 
       From the previous discussion, the 

following can be concluded 
1. The effect of notches decrease as the 

notches moved toward the free end. 
2. The natural frequencies decrease as 

the depth of notches are growth. 
3. As increase the angle of fibers 

orientation the change on  natural 
frequencies is negligible. 

4. The high flexibility of cracks due at 
volume of fiber range (0.2 – 0.8). 
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Fig (2)  
Geometry of the cantilever composite beam with two cracks. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. (1) The relation between the relative first natural frequany and the angle o f 
the fiber.
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Table (1): The effect of the fibers orientation on the first natural frequency  for the notched cantilever 
plates. 

 
  
  
  
  
  
  
  
  
  
  
 
 
 

θο

 
(Degree) 

Experimental 
ω1

(HZ) 
 

Present Work 
(ANSYS)ω1

 (HZ) 
 

0 30 31.4 
10 28.5 30.5 
20 27 28.6 
30 25 26.1 
40 22 23.2 
50 21.9 22.8 
60 21.5 22.51 
70 21.4 22.3 
80 21.1 22.25 
90 20 22 
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Fig.(3) Experimental configuration 
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Table(2): The effect of the size of the notches on the first natural frequency  for the notched    
cantilever plates. first natural frequency  for the notched cantilever plates. 

  

  
  
  
  
  
  
  
  
  
  

 
 

 

Fig. (4) First non- dimensional natural frequancies as a function 
of fiber orintation for different crack ratios a/H =0.2, 0.4, 0.6,

 and volume of the fiber V is 0.8.
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Fig. (5)  second non- dimensional natural frequancies as a function of iber orintation for 
different crack ratios a/H =0.2, 0.4, 0.6, and volume of the fiber V is 0.8.
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Fig. (6) Third non- dimensional natural frequancies as a function of iber orintation for different crack ratios a/H =0.2, 
0.4, 0.6, and volume of the fiber V is 0.8.
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Fig. (7) First non- dimensional natural frequancies as a function of fiber orintation  for different 
crack locations for the cases E, F and G, and volume of the fiber V is 0.8.
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Fig. (8) Second non- dimensional natural frequancies as a function of fiber orintation  for different 
crack locations for the cases E, F and G, and volume of the fiber V is 0.8.
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Fig. (9) Third non- dimensional natural frequancies as a function of fiber orintation  for different 
crack locations for the cases E, F and G, and volume of the fiber V is 0.8.
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Fig. (10)First non- dimensional natural frequancies as a function of the fiber volume fraction 
for different crack ratios a/H = 0.2, 0.4, 0.6.
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Fig. (11) Second non- dimensional natural frequancies as a function of the fiber volume fraction 
for different crack ratios a/H = 0.2, 0.4, 0.6.
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Fig. (12)Third non- dimensional natural frequancies as a function of the fiber volume fraction 
for different crack ratios a/H = 0.2, 0.4, 0.6.
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