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ABSTRACT

The present work divided into two parts, first the experimental side which included the
measuring of the first natural frequency for the notched and unnotched cantilever composite beams
which consisted of four symmetrical layers and made of Kevlar- epoxy reinforced. A numerical
study covers the effect of notches on the natural frequencies of the same specimen used in the
experimental part. The mathematical model for the beam contains two open edges on the upper
surface. The effect of the location of cracks relative to the restricted end, depth of cracks, volume
fraction of fibers and orientation of the fiber on the natural frequencies are explored. The results
were calculated using the known engineering program (ANSYS), the results obtained has been
compared with those calculated analytically by (Sierakowski RL.), which have expressed the closest
well also the comparison between the experimental results with that calculated by (ANSYS) has
very well. The study shows that the highest difference in frequencies occur when the value of the
fiber orientation equal to 0°degree, the effect of location of the cracks decrease when the cracks
moving toward the free end and also shows that an increase of the depth of the cracks leads to a
decrease in the values of natural frequencies.
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1. INTRODUCTION

During operation, all structures are
subjected to degenerative effects that may
cause initiation of structural defects such as
cracks which, as time progresses, lead to the
catastrophic failure or breakdown of the
structure. Thus, the importance of inspection
in the quality assurance of manufactured
products is well understood. Cracks or other
defects in a structural element influence its
dynamical behavior and change its stiffness
and damping properties. Consequently, the
natural frequencies of the structure contain
information  about the location and
dimensions of the damage.

The first group of studies have been
performed for long times and the most
concepts related to the crack detection have
been well established from mathematical
theory (Chondros TG,1998) to impact echo
method(Cam E,2005, Ratcliffe CP1997) .
When a structure suffers from damages, its
dynamic properties can change, especially,
crack damage can cause a stiffness reduction,
with an inherent reduction in natural
frequencies, an increase in modal damping,
and a change of the mode shapes.
Consequently, there would also be a change
in the dynamic response of the structure
(Matveev VV, 2002 Kim M-B,2005).

Over the past decade, several
techniques have been explored for detecting
and monitoring of the defects in the
composite materials. (Adams RD,1978)
showed that any defect in fibre-reinforced
plastics could be detected by reduction in
natural frequencies and increase in damping.
(Nikpour K, Dimarogonas AD,1988 )
studied the variation of the mixed term in the
energy release rate for various angles of
inclination of the material axes of symmetry
and they derived the local compliance matrix
of a prismatic beam with a central crack.
(Nikpour K,1990) studied the buckling of
cracked composite columns and showed that
the instability increases with the column
slenderness and the crack depth. (Oral
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S,1991) developed a shear flexible finite
element for non-uniform laminated composite
beams. He tested the performance of the
element with isotropic and composite
materials, constant and variable cross-
sections, and straight and curved geometries.
In the last years, the effort is focused on the
vibration analysis of structural members using
breathing crack models to simulate real
fatigue cracks. Several researchers have
studied the problem of beams having a
breathing crack by employing different
approaches. In that (Saavedra PN,2001)
proposed a new modeling approach for
cracked beam structures. They used finite
elements for the beam, while for the cracked
element a new finite element matrix based on
an energy density function was employed.
Recently, (Sinha JK,2002) developed an
alternative finite element approach, where the
phase relationship between the first and
second response components is simulated
correctly. (Pugno N,2000) studied the
dynamic response of a beam with several
breathing cracks subjected to harmonic
excitation. Assuming that cracks open and
close continuously and using finite elements
to model the beam, a system of non-line a
algebraic equations was obtained and solved
by numerical integration.
Recently, (Song 0,2003) investigated the
dynamics  of  anisotropic ~ composite
cantilevers. They presented an exact solution
methodology utilising Laplace traform
technique to study the bending free vibration
of cantilever composite beams with multiple
open cracks.

The present search presented numerical

and experimental study for the effect of the
cracks on the natural frequencies of cantilever
composite beams. The lamination angle of the
fiber, volume fraction of fibers and the
location of notches relative constrain end are
studied.

2. MATHMATICAL MODEL

The model chosen is a cantilever
composite beam of uniform cross-section area
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A, having two open — edge transverse cracks
at a variable positions L1 and L2, The width ,
length and height of the beam are B, L and H ,
respectively as shown in Fig.(1).The beam
consist of four symmetric layers.

2.1. The Stiffness Matrix For Crack

According to the St. Venant's principle,
the stress field is influenced only in the region
near to the crack. The additional strain energy
due to crack leads to flexibility coefficients
expressed by stress intensity factors derived
by means of Castigliano's theorem in the
linear elastic range. The compliance
coefficients Cj; induced by crack are derived
from the strain energy release rate, J,
developed( Tada H, Paris PC, 1985)theory. J
can be given as:

oU(R, A
J :—I
Y. (1)

Where A is the area of the crack section, P;
are the corresponding loads, U is the strain
energy of the beam due to crack and can be
expressed as (Nikpour K, Dimarogonas
AD,1988 ) :

j=N

i=N i=N i=N
u =J[D12Klzi + D122K|i zKlli + DZZKIZIi}iA'
A j=1 i-1

i=1 i=1

)

Where K, and K|, are the stress intensity
factors for fracture modes of | and I1. Dy, Di3
and D are the coefficients depending on the
materials parameters(Nikpour K,
Dimarogonas AD,1988 ) :

S1+ So

Dl = —0.5t722 Im
12 ©
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D, = 0.50b1 Im(s; +s5) (5)

The coefficients sy, s; are complex
constant and bij are constant. The mode I and
Il stress intensity factors, K;and K;;, for a
composite beam with a crack are expressed as
(Nikpour K,1990).

K; =oivmY;(¢)F;(a/H) (6)

Where @i is the stress for the corresponding
facture mode, is the correction
factor for the finite specimen size, v (¢) is

the correction factor for the anisotropic
materia(Nikpour K, Dimarogonas AD,1988
), a is the crack depth and H is the element
height. Castigliano's theorem [Tada H,Paris
PC, Irwin GR.1985] implies that the
additional displacement due to crack,
according to the direction of the P;, is:

o = 20 PA) ™

Substitution of this energy rate J into
Eq. (7), the relation between displacement
and strain energy release rate J can be written
as follows:

0
U, =— (R, ARA t)

i A

The flexibility coefficients, which are the
functions of the crack shape and the stress
intensity factors, can be introduced as
follows( Tada H, Paris PC, 1985):
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The compliance coefficients matrix, after
being derived from above equation, can be
given according to the displacement vector
5={u,v,8} as

C = J(M) (10)
Where ¢; (i, ] = 1, 2, 3) are derived by

using Egs. (1-9).
The inverse of the compliance coefficients
matrix, C™*, is the stiffness matrix due to
crack. Considering the cracked node as a
cracked element of zero length and zero mass(
Ratcliffe CP1997), the crack stiffness can be
represented as equivalent compliance
coefficients. Finally, resulting stiffness matrix
for the crack can be given as:

(el kel (1)
“ { cl [c]’ Lxe)

2.2. Component Mode Analysis

The equation of motion of a mid-plane
symmetrical composite beam is ( Vinson JR,
1991):

1S,,0y(x,t)/ ox* + pAd?y(x,t)/ 8t° = £ (t)
(12)

Where I, p, A and y (X, t) are geometrical

moment of inertia of the beam cross-section,
material density, cross sectional area of the
beam and transverse deflection of the beam,
respectively. Now, consider the
component o , for undamped vibration

analysis, Eqg. (12), in matrix notation, can be
given as:
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M Alqu + KAlqu = fm(t) (13)

where |\/|Al and K ,are the mass and

stiffness matrices of the component A ,
respectively,qAl and fAl (t) are the

generalized displacement and external force
vectors, respectively. Assuming that:

{qu}:{ Al}Sin(wAlt_'_ﬂ) (14)
)= -0k dutsin(@xt +5)

and substituting them into Eq. (13), one ends
up with the Standard free vibration equation
for the component A as,

2
OuM oy = Kudy (15)
Which gives eigen values 5,,..., @5, and
modal matrix ¢, for the component A .

Making the transformation
Qu = ¢A1 Pat (16)

where P, is the principal coordinate vector.

By premultiplying ¢,, and substituting Eq.
(16), Eq. (13) becomes:

(PEM b B + (K o )P0 = B F s 1)

(17)
Where
¢/11M A1¢A1 = [mm]
BuK e = (K] (18)

where [m,] and [kn] are modal mass and

stiffness  matrices,  respectively.  Mass
normalising the modal matrix by:
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(19)

where y; is mass normalized mode vector.

By using the transformation

Ou =¥ mSm (20)

by premultiplying w;, and substituting Eq.
(20), EqQ. (13) becomes

18, + @Sp =¥ T (0) (21)

where o3, is. a diagonal matrix comprising
the eigenvalues of p .

Consider components. A, A, A

N

Joined together by means of springs capable
of carrying axial, shearing and bending
effects. The kinetic and-strain energy of the
components, in terms of principal modal
coordinates, can be given as:

T:ls‘lvls'
2

U= % s'Ks (22)

Where T and U are kinetic and strain energy,
respectively. M and K in Eq. (22) are:
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oy 0 0
K - 0 o, 0
0 0 .. oy (23)

The strain energy of the connectors, in terms
of principal modal coordinates, is:

1
Ue="s'y" Kos (24)

Where Kc is the stiffness matrix of the
cracked nodal element and can be calculated
by using Eq. (9) v in EQ. (24) can be written
as:

Yo O 0

| 0w 0
W =

0 0 LN

(25)
The total strain energy of the system is,
therefore:

U, = %ST (K +y Kewys, (26)

Where K has been given by Eq. (23). The
equation motion of the complete structure is:

s+(K+y Key =y f(t) 27)

Where i has been given by Eq. (25), f (t) is
the global force vector for the system. From
Eq. (27), the eigenvalues and mode shapes of
the cracked system can be determined. After
solving these equations, the displacement for
each component are calculated by using Eq.
(20).
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3.RESULTS AND DISCUSSION

3.1. Validation Of The Current Work

In order to check the accuracy of the
present method , the results found by using
the finite element method (ANSYS 5.4) are
compared with the analytical solution of
(cracked unidirectional beam), found by
Sierakowski RL. ( Vinson JR, Sierakowski
RL, 1991), as shown in Fig.(1). The beam
assumed to be made of graphite fiber
reinforced polyamide which contains four
notches of triangle shape. The numerical
results show a good agreement compared
with analytical solution.

3.2. Vibration Of The Laminate Beam

The geometrical characteristics of the
beam used in experimental and theoretical
analysis are the length (L)= 0.75 m, height
(H) =0.03 m and width(B)=0.03 m as shown
in Fig.(2) . The material properties of the
kevlar- epoxy are( kawczuk M, 1997):

E1=221Gpa, E2
=23 Gpa,

G12 =8.6 Gpa,

G 23 = 6.5 Gpa,
v12 =02

v23 =0.3.

3.2.1 Experimental Side:

Experimental work presents the
measurement the first natural frequency of the
Specimens shown in Fig.(2). Experimental
configuration shown in Fig.(3), used to
measured the natural frequency. An
accelerometer with a mass of 3 gm attached
on the top edge of the beam using a wax at
distance of about of 200mm from the clamped
end. The accelerometer is connected by an
amplifier. The charge amplifier is analyzed by
an FFT analyzer which enable to readout the
peaks from the digital analyzer.Tables (1,2)
show the effect of the fibers orientation and
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cracks size on the first natural frequency for
the cantilever composite beams which
contents two cracks which were located as L;
/L=01 L,/ L =0.25 and the volume of
fiber (V) was 0.8. It can be clearly seen from
table (1) that, the high decreasing in the
natural frequency occur until angle of fiber
50° and greater than it the change is very low.
Table (2) shows that the  first natural
frequency of the un notched beams equal to
(45.2 Hz) and also shows that increasing the
depth of the of cracks lead to decreasing in
the value of the first natural frequency.

3.2.2 Theoretical Analysis:

To more deeply analysis, theoretical
analysis using the finite element (ANSYS).
Figs.(4, 5 and 6) show the first three natural
frequencies as a function of the fiber
orientation («) for different crack ratios
(a/H). In the model, the composite beam has
two cracks which were located as L; / L = 0.1,
L, /L = 0.25 and the volume of fiber (V) was
0.8. It is noticeable that a decrease in the
natural frequencies become more intensive
with the growth of the crack depth. The most
difference in frequencies occur when the
value of the fiber () is 0°. When the value
of the angle of fiber is greater than 55° the
effects of the cracks on the frequencies
decrease. This can be explained as the
flexibility due to crack is negligible when the
angle of the fiber is greater than 55°
especially when the crack ratio is relatively
low.

In Figs. (, and ), the variation of the

three lowest natural frequencies of the
composite beam with two cracks is shown as
a function of fiber orientation («) for
different cracks locations. In these figures,
three cases, labeled as E, F and G, were
considered .The cracks locations (Li/ L, L, /L
) for the cases E, F and G, where chosen as
(0.2, 0.35), (0.5, .65), (0.8,0.95) respectively.
From the previous figures it can be clearly
seen that , when the cracks are placed near the
fixed end the decreases in the first natural
frequency are highest , when the cracks are
located near the free end ,This observation
leads to the conclusion that, the first, second
and third natural frequencies are most
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affected when the cracks located at the near of
the fixed end, the middle of the beam and the
free end .

Figs. (10, 11 and 12) present the first
three natural frequencies as a function of the
volume of fiber (V) for several values of the
crack ratios Li/L = 0.2, L,/L = 0.35 and the
angle of fiber («) is 0°. As can be seen from
the figures, the natural frequencies are
affected by the values of the volume of fiber
(V) and the crack ratios (a/H), as expected.
The flexibility due to cracks is high when the
volume of fiber is between 0.2 and 0.8.
4.CONCLUSION

From the previous discussion, the
following can be concluded

1. The effect of notches decrease as the
notches moved toward the free end.

2. The natural frequencies decrease as
the depth of notches are growth.

3. As increase the angle of fibers
orientation the change on natural
frequencies is negligible.

4. The high flexibility of cracks due at
volume of fiber range (0.2 — 0.8).

5. REFRENCES

® Adams RD, Cawely P,Pye CJ, Stone J. A
vibration testing for non- destructively
assessing the integrity of the structures. J.
Mech.Eng.Sci. 1978;20:93-100.

® Chondros TG, et al. A continuous cracked

beam vibration theory. J Sound Vib.
1998;215:17-34.

® Cam E, et al. An analysis of cracked beam

structure using impactecho method. NDT &
EInt.  2005;38:368-73.

® Kim M-B, Zhao M. Study on crack
detection of beam using harmonic
responses. In: Proceedings of the 2004
international conference on intelligent

Volume 17 December 2011

Journal of Engineering

mechatronics and automation, August2004,
Chengdu, China, p.72-6.

® kawczuk M, Ostachowicz W, Zak A. Modal
analysis of  cracked unidirectional
composite beam. Compos Part B 1997,
28:641-50.

® Matveev VV, Bovsunovsky AP. Vibration-
based diagnostics of fatigue damage of

beam-like structures. J Sound Vib
2002;249(1): 23-40.

® Nikpour K, Dimarogonas AD. Local
complains of composite cracked bodies.
Composite Sci. Technol. 1988; 32:209-23.

® Nikpour K, Buckling of cracked composite
columns. Int.J.Solids Struc. 1990;
26(12):1371-86.

® Oral S. A shear flexible finite element for

non uniform laminated composite beam.
Comput. Struct. 1991; 38(3) : 353-60..

® Pugno N, Surace C, Ruotolo R. Evaluation
of the non-linear dynamic response to
harmonic excitation of a beam with several
breathing cracks. J Sound Vib
2000;235:749-62.

® Przemieniecki JS. Theory of matrix
structural analysis. 1 st ed. London;
McGraw — Hill;1967.

® Ratcliffe CP. Damage detection using a

modified Laplacian operatoron mode shape
data. J Sound Vib 1997;204(3):505-17.

® Sinha JK, Friswell MI. Simulation of the
dynamic response of acracked beam.
Comput Struct 2002;80:1473-6.



Assist. Lecture: Ahmed N. Ouyed

® Saavedra PN, Cuitino LA. Crack detection

and vibration behavior of cracked beams.
Comput Struct 2001;79:1451-9.

® Song O, Ha TW, Librescu L. Dynamic of an

isotropic cantilevers weakened by multiple
transverse open cracks. Eng. Fract. Mech.
2003; 70:105-23.

® Tada H, Paris PC, Irwin GR. The stress

analysis of cracks handbook. 2" ed. St.
Louis, MO: Paris production incorporated
and Del Research Corporation;1985.

® Vinson JR, Sierakowski RL. Behavior of

structures composed of composite materials.
1 st ed. Dordrecht: Martinus Nijhoff; 1991.

FREE VIBRATION ANALYSIS OF NOTCHED
COMPOSITE LAMINATED CANTILEVER BEAMS



&)

Number 6 Volume 17 December 2011 Journal of Engineering

—&— Present —— Sierakowski RL.

Relative first frequncy

0 15 30 45 60 75 90
Angle of fiber .

Fig. (1) The relation between the relative first natural frequany and the angle o f
the fiber.

Fiber Matrix

Fig (2)
Geometry of the cantilever composite beam with two cracks.
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Fig.(3) Experimental configuration

Table (1): The effect of the fibers orientation on the first natural frequency for the notched cantilever
plates.

Experimental Present Work
w.(HZ) (ANSYS) ¢, (HZ)
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Table(2): The effect of the size of the notches on the first natural frequency for the notched
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cantilever plates. first natural frequency for the notched cantilever plates.

1St non - dimensional frequncies

Experimental ANSYS
First Natural First Natural
Frequency Frequency
(HZ) (HZ)

ratio (a/h)

——a/h =0.2
—&—a/H=0.4
—@—a/H=0.6

o} 10 20 30 40 50 60 70
Angle of fiber.

Fig. (4) First non- dimensional natural frequancies as a function
of fiber orintation for different crack ratios a/H =0.2, 0.4, 0.6,
and volume of the fiber Vis 0.8.

80 90
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1.2 —e— a/H =0.0
——a/h =0.2
—&— a/H= 0.4
—@—a/H = 0.6

2nd non - dimensional frequncies

o . . . . . . . .
o 10 20 30 40 50 60 70 80 90
Angle of fiber.

Fig. (56) second non- dimensional natural frequancies as a function of iber orintation for
different crack ratios a/H =0.2, 0.4, 0.6, and volume of the fiber Vis 0.8.
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Angle of fiber.

Fig. (6) Third non- dimensional natural frequancies as a function of iber orintation for different crack ratios a/H =0.2,
0.4, 0.6, and volume of the fiber V is 0.8.
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Fig. (7) First non- dimensional natural frequancies as a function of fiber orintation for different
crack locations for the cases E, F and G, and volume of the fiber Vis 0.8.
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Fig. (8) Second non- dimensional natural frequancies as a function of fiber orintation for different
crack locations for the cases E, F and G, and volume of the fiber V is 0.8.
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1St non - dimensiond frequncies

1.2

0.8
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0.4

3rdnon - dimensional frequncies

0.2

NOTCHED

——E
—A—F
——G

o 10 20 30 40 50 60 70 80 90

Angle of fiber .

Fig. (9) Third non- dimensional natural frequancies as a function of fiber orintation for different
crack locations for the cases E, F and G, and volume of the fiber Vis 0.8.

0.1 4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Volume fractio
Fig. (10)First non- dimensional natural frequancies as a function of the fiber volume fraction
for different crack ratios a/H = 0.2, 0.4, 0.6.
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Is) . . . . . . . . .
o} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Volume fraction.

Fig. (11) Second non- dimensional natural frequancies as a function of the fiber volume fraction
for different crack ratios a/H = 0.2, 0.4, 0.6.

0o 1 1 1 1 1 1 1 1 1
(o] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Volume fraction.

Fig. (12)Third non- dimensional natural frequancies as a function of the fiber volume fraction
for different crack ratios a/H = 0.2, 0.4, 0.6.



