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ABSTRACT

Qaiyarah oil field is characterized by its complexity due to its extra heavy oil reaching 16°
API. Thus, building a systematic PVT model for this field at a specific range of temperatures
is a powerful challenge for screening such reservoirs. The peng-Robenson equation of state
model with up to six pseudo components was developed for the crude sample of the
Qaiyarah oil field. This work represents the fingerprint for constructing a dynamic model for
the field under study. The model also applies to the heavy oil reservoirs under splitting and
lumping scenarios. This work suggests a lumping scheme to enhance the accuracy and CPU
performance of compositional reservoir simulations. Therefore, the full components model
(13 components) is lumped into a reduced number of pseudo components (6 components)
to be utilized in the compositional fluid simulation. This study outlines the Peng-Robinson
equation of state (EOS) to tune the data at a certain pressure range up to 400 psi. More
specifically, various essential parameters have been trained to match the model results with
the experimental data. Splitting processes of C6+ into four pseudo components, namely,
HYPO1, HYPO2, HYPO3,and HYPO4 is added to the matching picture. Separately, justifying the
critical properties introduced a better result of regression. The results showed an acceptable
match for Bo with an error percent below 1%, while calculated oil viscosity deviated from
measured values in different ranges against pressure variation.

Keywords: Bubble point pressure, Equation of state, Heavy oil reservoirs, Lumping, PVT
modeling.

1. INTRODUCTION

Developing a PVT model has been a significant concept to optimize field development and
identify a management plan for EOR schemes. Separately, PVT modeling for heavy oil
reservoirs has recently gained a huge potential due to its complexity. The modeling involves
light to extra heavy components., globally, numerical simulation of such components is
performed in compositional modeling to represent the compositional changes.
Characterization of heavy oil composition in terms of pseudo components is a vital challenge
in PVT modeling. Accurate prediction of PVT characterization for heavy oil reservoirs has
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been a potential candidate for implementing injection-production parameters and dynamic
system analysis of multi-thermal fluid stimulation.

Modeling hydrocarbon reservoir performance using EOS fluid characterization and factoring
in fluid composition variation shows a potential impact on hydrocarbon recovery (Ali et al.,
2019; Farkha et al.,, 2023; Alali and Verlaan, 2023). Examples are steam injection or in-
situ combustion, where the mass transfer occurs between the injected steam and the in-situ
hydrocarbons, resulting in the development of the injected fluid into a fluid that is miscible
with in-situ hydrocarbons. The PVT model was built based mainly on a massive input data
set, including gas oil ratio, molecular weight, relative volume, differential liberation data, and
mole fraction for all components up to C6+ components.

To achieve more applicable results, several correlations, including algorithms and neural
network models, are introduced to predict oil PVT properties. For example, (Ahmedzeki et
al,, 2012; Ali and Naife, 2021) presented an artificial neural network model to predict the
bubble point pressure for Iraqi oil fields. The comprehensive databank collected from certain
Iraqi oil reservoirs included reservoir temperature, solution gas-oil ratio, and gas density. At
the same time, in the surrounding area, (Riyahin et al., 2014) presented an accomplished
set of correlations to estimate the properties of Iranian crude oils based on the experimental
data. The correlations are applied for oils ranging from 15° to 30° APIL. Therefore, they
introduced a developed correlation to estimate formation volume factor (Bo), solution gas-
oil ratio (Rs), and bubble point pressure. Although these correlations have a particular scope,
they are all regression approaches of specific crude samples and, consequently, are difficult
to apply to other systems. Separately, splitting the heavy components is a key
characterization of EOS, and there are several approaches for splitting schemes through PVT
modeling. Finally, the Whitson method was selected. Several studies have been proposed
based on splitting schemes. To generate a compositional reservoir fluid modeling, dealing
with many full components demands a huge computer storage. This issue is solved by
suggesting lumping/grouping the detailed components into a set of pseudo components.
Several approaches have been proposed in the literature, including lumping fractions
(Michelsen, 1982).

Building a PVT model for a multi-component fluid system obtained from fluid analysis
results required performing a regression for key laboratory tests such as constant mass
expansion, differential liberation results, and oil viscosity (Asaee et al., 2014; Al-Waeli et
al, 2017; Nabipour and Baghban, 2019; Kerr et al., 2020). Characterization of
multiphase flow (oil, water, and gas) has been a crucial issue. Therefore, (Liu et al., 2021;
Quinones-Cisneros et al.,, 2004; Fouad et al.,, 2018) developed a thermal simulator
applicable to multiphase flow and regressed it with the commercial simulators to achieve
wide applicability at various thermal conditions .

Limited phase behavior studies of extra-heavy oils have been available in the literature.
(Ghasemi and Whitson, 2021) developed an approach to model the volumetric behavior
of heavy oil for an extended range of temperatures using a modified Jacoby correlation.

The present study aims to provide insight into heavy oil modeling and its sensibility toward
crucial parameters by an acceptable agreement between experimental data related to the
EOS outputs. Consequently, it can predict the properties of the PVT model for the heavy oil
of the selected field. The PVT model built for the Qaiyarah oil field would be utilized as a
fingerprint in dynamic modeling for the field under study.
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2. BRIEF DESCRIPTION OF QAIYARAH OIL FIELD

Qaiyarah oil field is located 50 km south-east of Mousil city in northern Iraq. The field was
initially discovered by well QY-1 in 1928. The structure corresponds to a narrow, long
anticline with orientation from northwest to southeast, characterized by a flank dip of 6 to
10 degrees (Al-Jaff and Hamd-Allah, 2023). The Jeribe and Euphrates formations,
separated by a thin Dhiban formation, are the main pay formations of the reservoir. Initial
reservoir pressure was estimated at a depth of 50 m subsea level to be 400 psi with an
average reservoir pressure gradient of 0.401 psi/ft recorded at the oil zone and 0.433 psi/ft
in the water zone. Fig. 1 shows the location of Qaiyarah oil field on the map.

Figure 1. Location of Qaiyarah oil field.

3. METHODOLOGY OF PVT CHARACTERIZATION

The PVT modeling requires PVT laboratory data, including differential liberation data (Gas-
oil ratio, gas deviation factor, oil formation volume factor, oil viscosity, and oil specific
gravity), constant composition expansion data and heavy components characteristics
including mole fractions, density and molecular weight of C6+ Table 1.

Table 1. Oil composition at initial conditions

Component Composition (Mole fraction) | Component | Composition (Mole fraction)
H,S 0.009 IC4 0.0212
CO, 0.0035 NC, 0.045
Cs 0.0443 ICs 0.0389
) 0.1908 NCs 0.04
Cs 0.0576 Ce* 0.5897
Sum of the mole fraction is 1

124



L.S. Al-]Jaff and S.M. Hamd-Allah Journal of Engineering, 2024, 30(10)

Modeling heavy oil properties constitutes a potential challenge and vital input data for
reservoir modeling. The heavy oil modeling in terms of pseudo- components is another
problematic conflict due to the economic restriction related to the number of pseudo-
components.

An essential requirement for building the PVT model is the saturation pressure at 110 °F is
265 psi, oil formation volume factor at bubble point equals to 1.061, and initial GOR is 115
ft3/bbl. The main composition of the sample under study is given in Table 1.

3.1 Splitting Processes

Splitting is the process of breaking down plus fractions into pseudo components
characterized by mole fractions to achieve the applicability of the equation of state.

In this study, Two Stages-Exponential splitting was used to redistribute the molar fraction.
Various attempts were made to get a match for all key parameters by characterizing EOS,
resulting in failed matching. Separately, splitting and lumping processes have been utilized
for tuning EOS to regenerate PVT experiments. The multi-step process was started by
splitting the heavy components as presented by Whitson using two stages- exponential for
characterization of the molar distribution and petroleum fraction physical properties,
consequently enhancing EOS prediction accuracy.

After several splitting scenarios for a heavy component C6+, it was indicated that the
splitting into four pseudo components showed a candidate match. The pseudo components
had been identified as HYP01, HYP02, HYP03, and HYP04. Table 2 shows the new
components after the splitting scenario. After splitting, the total number of components

increased from 10 to 13.
Table 2. Pseudo components properties.

Component Comg;:)s)ltlon Pc (atm) Tc (°K) (lbml\(flv/vlbm) 1 (cp) SG
HaS 0.009 88.2 373.2 34.08 0.0985 0.801
CO2 0.0035 7.8753 1045.4 643.4 1.854 0.985
CH4 0.0443 72.8 304.2 44.01 0.094 0.818
Cz2Hs 0.1908 454 190.6 16.043 0.099 0.300
CsHs 0.0576 48.2 305.4 30.07 0.148 0.356
(o 0.0212 419 369.8 44.097 0.203 0.507
NCq4 0.045 36 408.1 58.124 0.263 0.563
ICs 0.0389 37.5 425.2 58.124 0.255 0.584
NCs 0.04 334 460.4 72.151 0.306 0.625
HYPO0:1 0.1106556 33.3 469.6 72.151 0.304 0.631
HYPO2 0.1892770 22.83 636.838 141.822 0.5734 0.7786
HYPO3 0.1646309 10.16 874.968 371.9 1.42458 0.8872
HYPO04 0.0851364 6.25 1087.477 823.0754 2.15809 0.98792

Sum=1

The new mixture of 13 components was used to tune EOS by regression process to match
experimental data. Separately, the first regression was investigated upon the critical
pressure of the pseudo components, a centric factor (w), and binary interaction coefficients
(8), providing an acceptable prediction. Table. 2 lists the modified components and their
EOS parameters.
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3.2 Lumping Processes

The following conventional step included grouping the 13-component EOS into reduced
pseudo components for compositional modeling to reduce time consumed through reservoir
fluid simulation, referring to the lumping process. The Lumping process includes generating
new pseudo components from the heaviest components. Then, the properties of the newly
generated components were tuned by regression performance. (Fleming and Wong, 2015;
Meziani et al., 2018; Ali et al., 2019; Liu et al., 2020; Izadi and Jafarzadegan, 2021;
Samba et al., 2023) stated that using the lumping technique significantly contributes to CPU
time saving through phase-behavior calculations. Accordingly, to build a compositional
reservoir model and thermal EOS development, dealing with a large range of components is
computationally more expensive and demands large computer storage. Therefore, to solve
this issue, it has been recommended to group the components into reduced sets, including
pseudo components. Various proposals for lumping processes were considered. The main
criterion for the grouping was based on the selection components characterized by similar
properties and molecular weight as maintained by (Rastegar and Jessen, 2009; Elizalde et
al,, 2009; Chen et al., 2020; Ghorayeb et al., 2022; Soto-Azuara et al., 2022).

The 13-components model was reduced under the lumping process to produce six
components for the combinations: (H2S-CO2z), (CH4-C2He,C3H), (IC4-NC4), (HYPO1-HYPO02)
and (HYP03-HYPO04). Table 3 presents the generated lumped composition corresponding to
the mole fraction. To achieve an optimum regression, the PVT model was rematched by
adjusting the critical properties of the grouped pseudo components as stated in the literature
(Maes et al., 2016; Zirrahi et al., 2017a; Zirrahi et al,, 2017b; Azinfar et al., 2018a;
Azinfar et al., 2018b; Ahmed et al.,, 2023; Chamgoué et al., 2023; Ratnakar et al., 2017;
Hameed et al., 2018; Hadi and Hamd-Allah, 2020). Table 4 summarizes the results of the
regression parameters after the lumping process.

Table 3. Components mole fraction after lumping process.

Components Mole Fraction Components Mole Fraction
H2S to CO2 0.0125 IC5 to NC5 0.0789
CHa to C3H 0.2927 HYP to HYP 0.29993263
IC4 to NC4 0.0662 HYP to HYP 0.24976737

Gauging the accuracy of the lumping scheme showed that the presented strategy was in good
agreement with the observed data. Figs. 2 to 4 compare the measured oil formation volume
factor, oil specific gravity, and oil viscosity, respectively, with the lumped and detailed

components after the splitting and regression process.

Table 4. Regression parameters after lumping processes.

P Acentri Mol. mole)! mega B
components (atrcn) Tc(K) facice)r"flg-z wei(;rht ve ’("1(())- ze) Omega A 0 X 1e gi
H.S to CO, | 83.838 353.5 13.5 36.86 9.723 0.457 7.780
CHsto CzH | 47.097 | 303.595 9.5 30.707 15.035 0.457 7.780
IC4toNC4 | 37.011 | 419.628 18.756 58.124 2.576 0.457 7.780
IC5to NC5 | 33.352 | 465.045 23.917 72.151 30.499 0.457 7.780
HYP to HYP | 12.670 | 770.306 80.980 274.813 108.778 0.457 7.780
HYP to HYP | 4.860 | 1112.546 155.926 1086 248.316 0.457 7.780
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Figure 2. Comparison of measured Bo with the predicted Bo based on lumped and full fluid
description.

4. RESULTS AND DISCUSSION

After the regression operation of PR-EOS parameters, the model is arranged for evaluation
and performance prediction. To reach the best results, careful justifying of the critical
properties and acentric factors was performed. Therefore, after carefully adjusting the EOS
parameters, the results showed that the observed data relating to oil formation volume
factor, oil viscosity, and oil specific gravity matched the model results more at a pressure
above the saturation pressure, as shown in Figs. 2 to 4. The performance of the lumping
scheme is investigated. The results showed that the investigated lumped scheme can achieve
an acceptable prediction of PVT performance.

In this work, we have proposed a splitting and lumping framework referring to the
rapprochement of the molecular weight and the composition of the components for reducing
the number of detailed descriptions through PVT modeling to be more suitable for fluid
simulation. We have started the application of the proposed lumping scheme for a crude
sample taken from Jeribe formation characterized by rich experimental data to gauge the
certainty of the lumped fluid. It is, however, likely that a regression framework is preferable
to be included in the proposed study to maintain the required accuracy if a detailed fluid is
lumped into six or fewer pseudo components.

0.95 Oil specific gravity
0.945 ®
0.94 4

0.935

Q

[ }

0.93 Py 4 ® Experimental

p Full
0.925 e o
Lumped

Oil specific gravity (gm/cc)
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Figure 3. Comparison of measured oil-specific gravity with the predicted
based on the lumped and full fluid description.
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Figure 4. Comparison of measured oil viscosity with the predicted based on
lumped and full fluid description.

The earlier matching attempts utilized various types of splitting, including exponential,
2_Stage exponential, and Gamma methods. In this work, 2_Stage exponential showed good
compatible results.

Regarding the splitting scheme, several scenarios have been investigated for splitting the
heavy component (C6+), including seven, six, and four pseudo components, to achieve an
acceptable match between observed and calculated data. Finally, it has been found that
splitting into four pseudo components showed a candidate match.

In this study, the detailed EOS model has been used by tuning it properly to the laboratory
PVT data to develop a pseudoized EOS model that has a major role in gauging how much the
accuracy of a certain lumped EOS model since it is compared directly with the detailed EOS
model. It is worthy to prevail that, unfortunately, lumping approaches do not have any
background about the generated compositions during EOR processes.

The regression showed a noticeable deviation in comparison of Ping-Robinson EOS to the
experimental data below bubble point pressure. As stated above, there was a noticeable
deviation in the values due to the gas liberation continuously associated with the gas
composition at this stage of pressure decline, as shown in Fig. 2. The resulting Bo values
ranged from 1.025 to 1.061 bbl/STB based on the range of the observed PVT data. Oil-
specific gravity fitted with the measured values introduced a reasonable match. Fig. 3,
regarding bubble point pressure regression, showed better matching, recording 265 psi
corresponding to the specific gravity of 0.924. However, some observed points were not fully
regressed. This is a clear signal that the EOS ‘s parameters were recommended to be adjusted
to regenerate the reservoir fluid behavior. The Peng-Robison model was the accurate
correlation for oil-specific gravity prediction. A good match had been generalized for Bo and
oil-specific gravity with less than 1% deviation. Fig. 4 shows a relatively acceptable match
between experimental oil viscosity and the predicted values. The deviation of the lumped
and the full sets was 0.07% below the saturation pressure but only 0.025% when the
pressure was above bubble point pressure.

5. CONCLUSIONS

The lumping scheme is investigated to reduce the full fluid description into lumped groups
to be more suitable for compositional fluid simulation. This is according to the authors'
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knowledge; the first fingerprint includes the compositional modeling of Qaiyarah's heavy oil.
Therefore, constructing a PVT model for the Qaiyarah oil field, characterized by its complex
composition, is a crucial challenge. This work is successfully tested upon a wide range of
temperatures and compositions to predict oil viscosity, oil formation volume factor, and oil
specific gravity for the field under study. The data utilized to develop the PVT model were
obtained from flash differential liberation in combination with PVT data. It has been
concluded that PR-EOS will be maintained for the estimation of the parameters for similar
models in the field under study.

We have presented the application of the proposed splitting and lumping schemes of the
reservoir fluid with the associated rich set of observed data to gauge the accuracy of the
proposed model.

The pseudoized equation of the state model with only six heavy oil pseudo components
provided an accurate prediction for a wide range of temperatures. The earlier match
between the observed and calculated values was achieved by adjusting the critical
properties influencing the PR-EOS results. Lumping the heavy oil components was the key
parameter for matching the experimental results with an acceptable fit of the calculated data.
The presented results showed that the suggested lumping scheme can achieve a good
prediction of PVT data. However, it is recommended that the regression stage is preferred to
be included in the proposed scenario as the detailed fluid composition is lumped into six or
less pseudo components.

NOMENCLATURE
Symbol Description Symbol Description
Bo 0il Formation Volume Factor, bbl/stb RSK Redlich Kwong Soave
CPU Central Processing Unit SG Specific Gravity
EOS Equation of State Tc Critical Temperature, K
GOR Gas 0il Ratio, scf/stb Vc Critical Volume, 1/mole
Mw Molecular Weight, Ibmole/lbm u Viscosity, cp
Pc Critical Pressure, atm () Binary Interaction Coefficient
PR Peng Robinson .
Rs Solution Gas Oil Ratio, scf/stb ® Centric Factor
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