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ABSTRACT 

Qaiyarah oil field is characterized by its complexity due to its extra heavy oil reaching 16° 

API. Thus, building a systematic PVT model for this field at a specific range of temperatures 
is a powerful challenge for screening such reservoirs. The peng-Robenson equation of state 
model with up to six pseudo components was developed for the crude sample of the 
Qaiyarah oil field. This work represents the fingerprint for constructing a dynamic model for 
the field under study. The model also applies to the heavy oil reservoirs under splitting and 
lumping scenarios. This work suggests a lumping scheme to enhance the accuracy and CPU 
performance of compositional reservoir simulations. Therefore, the full components model 
(13 components) is lumped into a reduced number of pseudo components (6 components) 
to be utilized in the compositional fluid simulation. This study outlines the Peng-Robinson 
equation of state (EOS) to tune the data at a certain pressure range up to 400 psi. More 
specifically, various essential parameters have been trained to match the model results with 
the experimental data. Splitting processes of C6+ into four pseudo components, namely, 
HYP01, HYP02, HYP03, and HYP04 is added to the matching picture. Separately, justifying the 
critical properties introduced a better result of regression. The results showed an acceptable 
match for Bo with an error percent below 1%, while calculated oil viscosity deviated from 
measured values in different ranges against pressure variation. 

Keywords: Bubble point pressure, Equation of state, Heavy oil reservoirs, Lumping, PVT 
modeling. 
 

1. INTRODUCTION 
 
Developing a PVT model has been a significant concept to optimize field development and 
identify a management plan for EOR schemes. Separately, PVT modeling for heavy oil 
reservoirs has recently gained a huge potential due to its complexity. The modeling involves 
light to extra heavy components., globally, numerical simulation of such components is 
performed in compositional modeling to represent the compositional changes. 
Characterization of heavy oil composition in terms of pseudo components is a vital challenge 
in PVT modeling. Accurate prediction of PVT characterization for heavy oil reservoirs has 

http://www.jcoeng.edu.iq/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0008-5534-291X
mailto:layla.mohamed1308d@coeng.uobaghdad.edu.iq
https://orcid.org/0000-0002-7457-4459
mailto:samira.m@coeng.uobaghdad.edu.iq


Journal of Engineering, 2024, 30(10) 
 

L.S. Al-Jaff and S.M. Hamd-Allah 

 

123 

been a potential candidate for implementing injection-production parameters and dynamic 
system analysis of multi-thermal fluid stimulation. 
Modeling hydrocarbon reservoir performance using EOS fluid characterization and factoring 
in fluid composition variation shows a potential impact on hydrocarbon recovery (Ali et al., 
2019; Farkha et al., 2023; Alali and Verlaan, 2023). Examples are steam injection or in-
situ combustion, where the mass transfer occurs between the injected steam and the in-situ 
hydrocarbons, resulting in the development of the injected fluid into a fluid that is miscible 
with in-situ hydrocarbons.  The PVT model was built based mainly on a massive input data 
set, including gas oil ratio, molecular weight, relative volume, differential liberation data, and 
mole fraction for all components up to C6+ components. 
To achieve more applicable results, several correlations, including algorithms and neural 
network models, are introduced to predict oil PVT properties. For example, (Ahmedzeki et 
al., 2012; Ali and Naife, 2021) presented an artificial neural network model to predict the 
bubble point pressure for Iraqi oil fields. The comprehensive databank collected from certain 
Iraqi oil reservoirs included reservoir temperature, solution gas-oil ratio, and gas density. At 
the same time, in the surrounding area, (Riyahin et al., 2014) presented an accomplished 
set of correlations to estimate the properties of Iranian crude oils based on the experimental 
data. The correlations are applied for oils ranging from 15° to 30° API. Therefore, they 
introduced a developed correlation to estimate formation volume factor (Bo), solution gas-
oil ratio (Rs), and bubble point pressure. Although these correlations have a particular scope, 
they are all regression approaches of specific crude samples and, consequently, are difficult 
to apply to other systems. Separately, splitting the heavy components is a key 
characterization of EOS, and there are several approaches for splitting schemes through PVT 
modeling. Finally, the Whitson method was selected.  Several studies have been proposed 
based on splitting schemes. To generate a compositional reservoir fluid modeling, dealing 
with many full components demands a huge computer storage. This issue is solved by 
suggesting lumping/grouping the detailed components into a set of pseudo components. 
Several approaches have been proposed in the literature, including lumping fractions 
(Michelsen, 1982). 
Building a PVT model for a multi-component fluid system obtained from fluid analysis 
results required performing a regression for key laboratory tests such as constant mass 
expansion, differential liberation results, and oil viscosity (Asaee et al., 2014; Al-Waeli et 
al., 2017; Nabipour and Baghban, 2019; Kerr et al., 2020). Characterization of 
multiphase flow (oil, water, and gas) has been a crucial issue. Therefore, (Liu et al., 2021; 
Quinones-Cisneros et al., 2004; Fouad et al., 2018) developed a thermal simulator 
applicable to multiphase flow and regressed it with the commercial simulators to achieve 
wide applicability at various thermal conditions . 
Limited phase behavior studies of extra-heavy oils have been available in the literature. 
(Ghasemi and Whitson, 2021) developed an approach to model the volumetric behavior 
of heavy oil for an extended range of temperatures using a modified Jacoby correlation. 
The present study aims to provide insight into heavy oil modeling and its sensibility toward 
crucial parameters by an acceptable agreement between experimental data related to the 
EOS outputs. Consequently, it can predict the properties of the PVT model for the heavy oil 
of the selected field. The PVT model built for the Qaiyarah oil field would be utilized as a 
fingerprint in dynamic modeling for the field under study. 
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2. BRIEF DESCRIPTION OF QAIYARAH OIL FIELD 
 
Qaiyarah oil field is located 50 km south-east of Mousil city in northern Iraq. The field was 
initially discovered by well QY-1 in 1928. The structure corresponds to a narrow, long 
anticline with orientation from northwest to southeast, characterized by a flank dip of 6 to 
10 degrees (Al-Jaff and Hamd-Allah, 2023). The Jeribe and Euphrates formations, 
separated by a thin Dhiban formation, are the main pay formations of the reservoir. Initial 
reservoir pressure was estimated at a depth of 50 m subsea level to be 400 psi with an 
average reservoir pressure gradient of 0.401 psi/ft recorded at the oil zone and 0.433 psi/ft 
in the water zone. Fig. 1 shows the location of Qaiyarah oil field on the map. 
 

 
Figure 1. Location of Qaiyarah oil field. 

  
3. METHODOLOGY OF PVT CHARACTERIZATION 
 

The PVT modeling requires PVT laboratory data, including differential liberation data (Gas-
oil ratio, gas deviation factor, oil formation volume factor, oil viscosity, and oil specific 
gravity), constant composition expansion data and heavy components characteristics 
including mole fractions, density and molecular weight of C6+ Table 1. 

 
Table 1. Oil composition at initial conditions 

 
Component Composition (Mole fraction) Component Composition (Mole fraction) 

S2H 0.009 4IC 0.0212 

2CO 0.0035 4NC 0.045 

1C 0.0443 5IC 0.0389 

2C 0.1908 5NC 0.04 

3C 0.0576 +
6C 0.5897 

Sum of the mole fraction is 1                   
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Modeling heavy oil properties constitutes a potential challenge and vital input data for 
reservoir modeling. The heavy oil modeling in terms of pseudo- components is another 
problematic conflict due to the economic restriction related to the number of pseudo-
components. 
An essential requirement for building the PVT model is the saturation pressure at 110 °F is 
265 psi, oil formation volume factor at bubble point equals to 1.061, and initial GOR is 115 
ft3/bbl. The main composition of the sample under study is given in Table 1. 
 

3.1 Splitting Processes   

Splitting is the process of breaking down plus fractions into pseudo components 
characterized by mole fractions to achieve the applicability of the equation of state.  
In this study, Two Stages-Exponential splitting was used to redistribute the molar fraction. 
Various attempts were made to get a match for all key parameters by characterizing EOS, 
resulting in failed matching. Separately, splitting and lumping processes have been utilized 
for tuning EOS to regenerate PVT experiments. The multi-step process was started by 
splitting the heavy components as presented by Whitson using two stages- exponential for 
characterization of the molar distribution and petroleum fraction physical properties, 
consequently enhancing EOS prediction accuracy. 
After several splitting scenarios for a heavy component C6+, it was indicated that the 
splitting into four pseudo components showed a candidate match. The pseudo components 
had been identified as HYP01, HYP02, HYP03, and HYP04. Table 2 shows the new 
components after the splitting scenario. After splitting, the total number of components 
increased from 10 to 13. 

components properties.Pseudo  Table 2. 

Component 
Composition 

(%)  
Pc (atm) Tc (oK) 

Mw 
(lbmol/lbm) 

µ (cp) SG 

H2S 0.009 88.2 373.2 34.08 0.0985 0.801 
CO2 0.0035 7.8753 1045.4 643.4 1.854 0.985 
CH4 0.0443 72.8 304.2 44.01 0.094 0.818 
C2H6 0.1908 45.4 190.6 16.043 0.099 0.300 
C3H8 0.0576 48.2 305.4 30.07 0.148 0.356 
IC4 0.0212 41.9 369.8 44.097 0.203 0.507 
NC4 0.045 36 408.1 58.124 0.263 0.563 
IC5 0.0389 37.5 425.2 58.124 0.255 0.584 
NC5 0.04 33.4 460.4 72.151 0.306 0.625 
HYP01 0.1106556 33.3 469.6 72.151 0.304 0.631 
HYP02 0.1892770 22.83 636.838 141.822 0.5734 0.7786 
HYP03 0.1646309 10.16 874.968 371.9 1.42458 0.8872 
HYP04 0.0851364 6.25 1087.477 823.0754 2.15809 0.98792 
 Sum=1  

 
The new mixture of 13 components was used to tune EOS by regression process to match 
experimental data. Separately, the first regression was investigated upon the critical 
pressure of the pseudo components, a centric factor (ω), and binary interaction coefficients 
(δ), providing an acceptable prediction. Table. 2 lists the modified components and their 
EOS parameters. 
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3.2 Lumping Processes   

The following conventional step included grouping the 13-component EOS into reduced 
pseudo components for compositional modeling to reduce time consumed through reservoir 
fluid simulation, referring to the lumping process. The Lumping process includes generating 
new pseudo components from the heaviest components. Then, the properties of the newly 
generated components were tuned by regression performance. (Fleming and Wong, 2015; 
Meziani et al., 2018; Ali et al., 2019; Liu et al., 2020; Izadi and Jafarzadegan, 2021; 
Samba et al., 2023) stated that using the lumping technique significantly contributes to CPU 
time saving through phase-behavior calculations. Accordingly, to build a compositional 
reservoir model and thermal EOS development, dealing with a large range of components is 
computationally more expensive and demands large computer storage. Therefore, to solve 
this issue, it has been recommended to group the components into reduced sets, including 
pseudo components. Various proposals for lumping processes were considered. The main 
criterion for the grouping was based on the selection components characterized by similar 
properties and molecular weight as maintained by (Rastegar and Jessen, 2009; Elizalde et 
al., 2009; Chen et al., 2020; Ghorayeb et al., 2022; Soto-Azuara et al., 2022).  
The 13-components model was reduced under the lumping process to produce six 
components for the combinations: (H2S-CO2), (CH4-C2H6,C3H), (IC4-NC4), (HYP01-HYP02) 
and (HYP03-HYP04). Table 3 presents the generated lumped composition corresponding to 
the mole fraction. To achieve an optimum regression, the PVT model was rematched by 
adjusting the critical properties of the grouped pseudo components as stated in the literature 
(Maes et al., 2016; Zirrahi et al., 2017a; Zirrahi et al., 2017b;  Azinfar et al., 2018a; 
Azinfar et al., 2018b; Ahmed et al., 2023; Chamgoué et al., 2023; Ratnakar et al., 2017; 
Hameed et al., 2018; Hadi and Hamd-Allah, 2020). Table 4 summarizes the results of the 
regression parameters after the lumping process.   
 

Table 3. Components mole fraction after lumping process. 
 

Components Mole Fraction Components Mole Fraction 

2S to CO2H 0.0125 IC5 to NC5 0.0789 
H3to C 4CH 0.2927 HYP to HYP 0.29993263 

IC4 to NC4 0.0662 HYP to HYP 0.24976737 
 
Gauging the accuracy of the lumping scheme showed that the presented strategy was in good 
agreement with the observed data. Figs. 2 to 4 compare the measured oil formation volume 
factor, oil specific gravity, and oil viscosity, respectively, with the lumped and detailed 
components after the splitting and regression process. 
 

Table 4. Regression parameters after lumping processes. 

components 
Pc 

(atm) 
Tc(K) 

Acentric 
factor*10-2 

Mol. 
weight 

Vc (mole)-1 
*10-2 

Omega A 
Omega B 

*10-2 

H2S to CO2 83.838 353.5 13.5 36.86 9.723 0.457 7.780 
CH4 to C3H 47.097 303.595 9.5 30.707 15.035 0.457 7.780 
IC4 to NC4 37.011 419.628 18.756 58.124 2.576 0.457 7.780 
IC5 to NC5 33.352 465.045 23.917 72.151 30.499 0.457 7.780 
HYP to HYP 12.670 770.306 80.980 274.813 108.778 0.457 7.780 
HYP to HYP 4.860 1112.546 155.926 1086 248.316 0.457 7.780 
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Figure 2. Comparison of measured Bo with the predicted Bo based on lumped and full fluid 
description. 

4. RESULTS AND DISCUSSION 
 

After the regression operation of PR-EOS parameters, the model is arranged for evaluation 
and performance prediction.  To reach the best results, careful justifying of the critical 
properties and acentric factors was performed. Therefore, after carefully adjusting the EOS 
parameters, the results showed that the observed data relating to oil formation volume 
factor, oil viscosity, and oil specific gravity matched the model results more at a pressure 
above the saturation pressure, as shown in Figs. 2 to 4. The performance of the lumping 
scheme is investigated. The results showed that the investigated lumped scheme can achieve 
an acceptable prediction of PVT performance.  
In this work, we have proposed a splitting and lumping framework referring to the 
rapprochement of the molecular weight and the composition of the components for reducing 
the number of detailed descriptions through PVT modeling to be more suitable for fluid 
simulation. We have started the application of the proposed lumping scheme for a crude 
sample taken from Jeribe formation characterized by rich experimental data to gauge the 
certainty of the lumped fluid. It is, however, likely that a regression framework is preferable 
to be included in the proposed study to maintain the required accuracy if a detailed fluid is 
lumped into six or fewer pseudo components. 
 

 

specific gravity with the predicted -Comparison of measured oil Figure 3.
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Figure 4. Comparison of measured oil viscosity with the predicted based on 

lumped and full fluid description. 
  
The earlier matching attempts utilized various types of splitting, including exponential, 
2_Stage exponential, and Gamma methods. In this work, 2_Stage exponential showed good 
compatible results.  
Regarding the splitting scheme, several scenarios have been investigated for splitting the 
heavy component (C6+), including seven, six, and four pseudo components, to achieve an 
acceptable match between observed and calculated data. Finally, it has been found that 
splitting into four pseudo components showed a candidate match. 
In this study, the detailed EOS model has been used by tuning it properly to the laboratory 
PVT data to develop a pseudoized EOS model that has a major role in gauging how much the 
accuracy of a certain lumped EOS model since it is compared directly with the detailed EOS 
model. It is worthy to prevail that, unfortunately, lumping approaches do not have any 
background about the generated compositions during EOR processes.  
The regression showed a noticeable deviation in comparison of Ping-Robinson EOS to the 
experimental data below bubble point pressure. As stated above, there was a noticeable 
deviation in the values due to the gas liberation continuously associated with the gas 
composition at this stage of pressure decline, as shown in Fig. 2. The resulting Bo values 
ranged from 1.025 to 1.061 bbl/STB based on the range of the observed PVT data. Oil-
specific gravity fitted with the measured values introduced a reasonable match. Fig. 3, 
regarding bubble point pressure regression, showed better matching, recording 265 psi 
corresponding to the specific gravity of 0.924. However, some observed points were not fully 
regressed. This is a clear signal that the EOS ‘s parameters were recommended to be adjusted 
to regenerate the reservoir fluid behavior. The Peng-Robison model was the accurate 
correlation for oil-specific gravity prediction. A good match had been generalized for Bo and 
oil-specific gravity with less than 1% deviation. Fig. 4 shows a relatively acceptable match 
between experimental oil viscosity and the predicted values. The deviation of the lumped 
and the full sets was 0.07% below the saturation pressure but only 0.025% when the 
pressure was above bubble point pressure. 
 
5. CONCLUSIONS 

The lumping scheme is investigated to reduce the full fluid description into lumped groups 
to be more suitable for compositional fluid simulation. This is according to the authors' 
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knowledge; the first fingerprint includes the compositional modeling of Qaiyarah's heavy oil. 
Therefore, constructing a PVT model for the Qaiyarah oil field, characterized by its complex 
composition, is a crucial challenge. This work is successfully tested upon a wide range of 
temperatures and compositions to predict oil viscosity, oil formation volume factor, and oil 
specific gravity for the field under study. The data utilized to develop the PVT model were 
obtained from flash differential liberation in combination with PVT data. It has been 
concluded that PR-EOS will be maintained for the estimation of the parameters for similar 
models in the field under study. 
We have presented the application of the proposed splitting and lumping schemes of the 
reservoir fluid with the associated rich set of observed data to gauge the accuracy of the 
proposed model. 
The pseudoized equation of the state model with only six heavy oil pseudo components 
provided an accurate prediction for a wide range of temperatures. The earlier match 
between the observed and calculated values was achieved by adjusting the critical 
properties influencing the PR-EOS results. Lumping the heavy oil components was the key 
parameter for matching the experimental results with an acceptable fit of the calculated data. 
The presented results showed that the suggested lumping scheme can achieve a good 
prediction of PVT data. However, it is recommended that the regression stage is preferred to 
be included in the proposed scenario as the detailed fluid composition is lumped into six or 
less pseudo components. 
 
NOMENCLATURE 
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 القيارة النفطينمذجة الضغط والحجم والحرارة لحقل 
 

 سميرة محمد حمدالل *،  ليلى صديق الجاف

 
   ، كلية الهندسة، جامعة بغداد، بغداد، العراقنفطقسم هندسة ال  

 

 الخلاصة
من مقياس معهد    16الثقيلة جدا بدرجة    ونفوطهحقل القيارة النفطي نادرا ما يتم وضعه تحت الدراسة وذلك لطبيعته المعقدة  

فان نمذجة خواص الموائع لهذا الحقل لمدى معين من درجات الحرارة يعتبر تحدي كبير لتمثيل هذا النوع   لذاالبترول الامريكي. 
  ،الحجم النسبي  ،الجزيئي  الوزن   ،النفطمتمثلة بنسبة الغاز الى  بيانيةمن المكامن. تمت النمذجة المكمنية اعتمادا على مدخلات  

واعلى. تم استخدام معادلة بنك روبنسون   6  الثقيلة بتسلسلبيانات التفاضلية الجزئية النسبة المولية لكل المكونات لغاية المكونات  
نفطي لحقل القيارة النفطي. لذلك تم تقديم هذا الموديل لمطابقة البيانات المقاسة.  تمثيل معادلة الحالة تستخدم    نموذجلتمثيل  

.  الهيدروكربوناتمهم على معدل استخلاص    تأثيرالمائع اظهر  مع التباين في مكونات    الهيدروكربونيةلتمثيل ادائية المكامن  
المحترقة مما ينتج    والهيدروكربونات الموقعي حيث يتم تبادل الكتلة بين البخار المحقون    والاحتراقمثال على ذلك حقن البخار  

الاختزال لتحسين دقة   تقديم عملية مت ،البحثالمحترقة. في هذا  الهيدروكربوناتعن تطويل المائع المحقون الى مائع ممتزج مع 
مكون من ستة   موديل مختزلتم اختزال المائع بمكوناته الثلاثة عشر الكاملة الى    الركيبية لذلكو معالجة البيانات لنمذجة الموائع  

   المركبة.مكونات فقط ليتم استخدامه في نمذجة الموائع 
الموديل والقيم المقاسة حقليا. التركيب الكيميائي والفيزيائي للمكونات   نتائجعوامل عديدة تم اختبارها للوصول الى التطابق بين   

 مختزلةمكونات   أربعكانت من ضمن المدخلات الاساسية للموديل. من الجدير بالذكر بان عملية التقسيم للمكونات الثقيلة الى  
النتائج للمطابقة. النتائج التي تم التوصل    أفضلضبط الخواص الحرجة قدمت    منفردة،صورة مكملة للمطابقة. بصورة    اضافت

بينما    %. 1مطابقة لبيانات معامل التكوين الحجمي مسجلا نسبة خطأ اقل من   أفضل اليها وضحت بان الموديل قد توصل الى  
   لزوجة النفط المحسوبة سجلت انحراف بمعدل متغير مقابل تغير قيم الضغط.

 . نمذجة الضغط والحجم والحرارة اختزال، ⸲حقول النفط الثقيل ⸲معادلة الحالة ⸲ضغط الفقاعة :مفتاحيةالكلمات ال
 
 


