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ABSTRACT
This paper presents a procedure for the free vibration analysis of stiffened conical shell by the finite
element method. The element used is a modified eight-node superparametric shell element. The
effects of the number and cross-section area of stiffeners on the conical shells were analyzed. The
results showed that increasing the number of stiffeners and their cross-'i'ectional area tend to
increase the natural frequency of the conical shell. These results are iompared with available
research results and those obtained from MSC\NASTRAN .
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INTRODUCTION
Knowledge of the free vibration characteristics of elastic shells is important to the general

understanding of the fundamental behavior of shells and to the industrial applications of these

structures. In connection with the latter, the natural frequencies of the shell must be known in order
to avoid the destructive effect of resonance with nearby rotating or oscillating equipments or other
dynamic excitations such as earthquakes. [Garnet and Kempner 1964] found, by means of
Rayleigh-Ritz procedure, the lowest axisymmetric modes of vibration of truncated conical shells.

Transverse shear deformation and rotatory inertia effects were accounted for and the results were
compared with those predicted by the classical thin-shell theory. Elemental mass matrices have

been produced by [Ross 1975] for the free vibration of conical and cylindrical shells, based on a
semi-analytical approach. Frequencies and modes of vibration have been compared with existing
solutions and also with experimental results obtained from other sources. [Irie, Yamada and Kaneko
1982] presented an analysis for free vibration of a truncated conical shell with variable thickness by
use of the transfer matrix approach. The applicability of the classical thin shell theory was assumed
and the governing equations of vibration of a conical shell were written as a coupled set of first
order differential equations by using the transfer matrix of the shell. The natural frequencies and thea
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mode shapes of vibration were calculated numerically in terms of the elements of the matrix under
any combination of boundary conditions at the edge. [Ansar, Yam and lee 1985J studied the
axisymmetric and asymmetic responses to free and forced vibrations of various types of shells of
revolution through the finite element analysis utilizing curved anC/or conical elements. A computer
program package was developed and it was utilized to investigate the vibration characteristiis of
bells. [Mustafa and Ali 1987J presented a work in which the application of structural symmetry
techniques to the free vibration analysis of cylindrical and conical shells for the prediction of
natural frequency and mode shapes was described. Half and quarter models of the shell were
developed and analyzed using semi-loaf and facet shell finite elements. Stiffened and unstiffened
circular cylindrical and conical shells were considered. [David, Thambiratnam and Thevendran
1964) studied the optimum design of conical shells for free vibration. The lowest frequency was
considered, results indicate considerablc elevation in frequencies for the shells restrained at the base
and free at the top. A numerical procedure incorporating the optimization technique and the finite
element mcihod was used.
The present work consists of the free vibration analysis of stiffened conical shells, taking into
consideration the effect of the number, size and shape of stiffeners on the natural frequency of
stiffened conical shells. This analysis was carried out via the finite element method, a special
purpose computer prqgram was built to achieve such a task. In order to support the results obtained
from this computer piogram, a comparison was made with the results of [Mustafa and Ali 19871
and the results obtained by running MSC\NASTRAN package.

FORMULATION OF SUPERPARAMETRIC SHELL ELEMENT
This element consists of four corner and four midside nodes as shown in Fig. (1). The degrees of
freedom considered at the nodes are the three translations u, v, w of the midsurface and two
rotations o and B of the normal to the midsurface as shown in Fig.(2). The Cartesian coordinate of
any point of the shell and the curvilinear coordinate can be written in the form:
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Where h the thickness pf element and l3;, mri and fl3; &re the direction cosines. Here N; is a function
taking a value of ,,nity at the node i and zero at all other nodes is called as "shape function
"[William Weaw and Paul R. Johnston 1987], as shown in Tablc.(l).
In the kinematics formulation two assumptions are imposed:
l- Nodal fiber is inextensible.
2- Only small rotations are considered.
The displacements at any point ((, n, O can be expressed in terms of the nodal displacements as
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In this forrnula the symbol Lt i denotes the following matrix:

(2)
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Column I in this array contains negative values of the direction cosines of the second tangential
vector V2;, ofld coiumn 2 has the direction cosines for the first tangential vector Vri.
The assumptions devoted to the used element are:

1- The strain in the direction normal to the mid-surface is assumed to be negligible ( t ,, )
2- A normal to mid-surface of the shell element will remain normal to the mid-surface of the shell
after deformation.
The displacement shape functions mzy be cast into the matrix form:

-tT
- ffi2,

- fizi

[Ni]:[Nai]+( [Nsi] (i:1,2. . .8)

Where

[r ooool tooo -tL t,,1

[Nei]:l o I 0 0 0l Ni and [NniJ:[o 0 0 -rry, u,l
[o o I o o] p o o -h, ,\,)

The 3 X 3 Jacobian matrix required in this formulation is:

| *,€ y,€ z,€1

Ul: I *,, !,e ,,ry\.

l*,( v,( ,,()
The derivatives in matrix [J] can be found from eq.( 1)
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For this element, six types of non-zero strains are,

u
". t ''r

v
,y

W,,

u +y,y ,x

v+w,z ,y

w+u,x ,z

(3)

hr
Ni

2
(4)

(s)
o

t x

t
v

t.
1/,x!

7,,

(6)

ZX

The stress-resultant vector in the local coordinate systern is,

{N'}:{N *, N y, }..I x,y, Qr, Q*, M*, M y, M*,r, }'
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The relationship between the stress resultants and the generalized strains can be stated as follows,

{}J'}:[D'] {e'} (8)

Where [D'] is therigidity matrix. A typical rigidity matrix is given by,
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where, k :shear correction factor (assumed k:|.2) [William Weavr and Paul R. Johnston 1987]

STIFFENED CONICAL SHELLS
If the spacing of the stiffeners is uniform and they lie along the natural coordinate directions,
equivalent shell rigidities can be obtained by merging the stiffener rigidities with those of the shell.
Fig. (3) shows a shell of thickness t with eccentric stiffeners in ( and q directions at intervals s6 and
s, respectively and Fig.(a) shows the geometry of conical shell with stiffeners [D. N. Buragohain
and A. S. Patil 1985J. fig.(s) shows seven types of stiffeners which used in this work.
The kinematics relations between the displacements at the rib centroidal axis and those at the shell
midsurface are gi'ren in eq. (10), in which all the displacements are along the coordinate system O
x',y',2'defined at the point under consideration, with z' alongthe thickness of the shell, x'tangential
to the stiffener along the ( direction, and y'tangential to the stiffener along 11 direction.

For ( rib: wr,,,=w' , urx,=u' + e q()u'lA z') (10a)

For rlrib: wo,=lrr , vry,=V'+er(0v'l0z') (10b)

Here u',v',w'are the displacement at the shell midsurface and o 6 , e 11

are the eccentricities of the stiffeners.
The stress resultants and strains of the ( directional rib are,

{N*,},:l/h {No, Q,* Mo To,}r I
{e*,}, :l/tr {e'*, ,{o,r' :1,,*, A9r*,/Ax'|. f (11)
in which No, ,Qo, ,Mo, and Til, ard axial force, shear force, bending moment and torsional
moment respectively.
The relation between stiffener strains and shell strains are given by,
trx,:t*,g +eE rk, r,,

/ux'=lor'
ln'z'--Yz'x'o (12)

Agr*, lAx' =ll2 y*,r,
Similar expressions can be written for 11 directional stiffeners. These relations for both sets of
stiffeners may be expressed in matrix form as,

{e'}, :[T] {e'} (13)
The stress resultants in terms of strains can be written for both sets of stiffeners together as,

{N'},:[D'],{e'}, (14)
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o
The various matrices in eqs. (13) and (14) are given by,
{g'}, :{trx, try, yrx,y, Try,2, \rz,x, Xrx, Xry, b*,r, }T
{N'}r:{No, Nry,Nrx,y, Qry, eo, Mo, Mry, Mr*,r,},
where,
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( 1 8)
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[nl,
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41, o

0 G{e +G,/,
In eq. (18), E, G, A, S, I and J denote Young's modulus, shear modulus, cross sectional area, shear
area, moment of ineitia and torsional inertia respectively, of the 6, or rl directional stiffener as
indicated by the subscript. In eqs. (16), the quantity Mn,y, give thr.'sum ofthe torsional moments of
both stiffeners.
If the stiffener rigidities are uniformly distributed over the spacing of the stiffeners to obtain
equivalent rigidities over the shell midiurface, then from eq.(l3) and (14), the strain energy of the
stiffeners can be obtained as, 

!

u, =+!t'\'lrl'lol,[r]{r,} dA (re)

in which [D]' is obtained by dividing the rigidity terms corresponding to ( ribs by s6 and those
corresponding to r'1 ribs by sn in [D,]' .

The total strain energy of the stiffened shell is then given by,

u=:l({''}.[o'J{r'}* {",1'V]'lol,lrl{e,\pe e0)
This is equivalent to the behavior of a homogeneous shell with equivalent rigidity matrix [D.q]
given by. ,

b,n] = [r,] + Vl, [a],tr1
The stiffened shell then can be analyzed as a homogeneous shell using the element described
earlier.
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To automate the stiffener spacing calculations, the following method can be implemented. Let n6

be the number of ( directional r-tiff.rr.rr and nn is the number of 11 directional stiffeners within

the element. At a Gauss point, the following two values are computed

s, =2(Jl, + Jl, + JL)'t' (zz)
S, =Z(Jl, + Jl, + Jlr)'t'
in which J,s are the coefficients of the Jacobian matrix. Effectively 51 gives the dimension of the

element along the 11 direction and Sz gives the dimension along the ( direction at that Gauss

point. Thus,

(23)

O

s

s

SOLUTION OF EQUATION
The equation of motiolt for azerc external force vector R can be presented as,

tMlt U )+tKl{u}:o
For harmonic disPlacements,

Ui :Oi sin(ro;t+o;) i:1,2,....DOF

(24)

(2s)

In this harmonic expression, Oi is a vector of nodal amplitudes (mode shape) for the ith mode of

vibration. The symbol ori represents the angulor frequency of mode i, and oi denotes the phase

angle, By differentiating eq. (25) twice with respect to time t ,

U, = -oi0, sin(ro,t * a') (26)

substitution of eq.(26) and eq.(27) into eq.Q$ allows cancellation of the term sin(o:i t+oi) , which

leaves,

(K-orfM;q, =6' Q7)

Eq. (27)has the form of the algebraic eigenvalue problem'

The most efficient form of 
"ql lzll for itructural vibrations accepb the eigenvalue problem only in

the following standard,

(A-l.iI)XXi =0 (28)

In which (A) is a symmetric matrix (dynamic matrix) and (l ) is an identity matrix. the symbol 1",

denotes the ith eigenvalue, and XX; is the coresponding eigenvect_or for a new system of

homogeneous equat-ions. r,q.(zz) can be written in the form of eq.(28) by factoring either matrix [K]

o. -u[i* [M], using the cioleslry squqre root method, which makes use of the fact that any square

matrix tAi can be eipressed as the product of an upper and lower triangular matrix'

RESULTS AND DISCUSSIONS
The vibration characteristics of a conical shell is important to understand the fundamental behavior

of shells and the industrial applications of these structures. Acccrding to [Mustafa B' A', Ali R.

l9g7l, one quarter of the mode[ has been analyzed. The shape of stiffened (ring and string) conical
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shell and material properties are shown in Fig.(5). The boundary condition was zero translation at

ends i.e. (shear diaphragm ends).
A convergence test was made in order to select a suitable mesh size. fig.(7) shows the variation of
natural frequency with total degrees of freedom. It was notice that the natural frequencies were
stabilized after 100 degrees of freedom.
The results of the present work were compared with the theoretical results of [Mustafa B. A., Ali R,

19871 and with those obtained from MSC\NiASTRAN as shown in Table (2).
The percentage errors were computed between the present work ,MSC\NASTRAN, and [Mustafa
B. A., Ali R. 19871, and recorded in Table (2). tt was noted that these percentage errors were small
because the special shell element (i.e. superparametric shell element) was used, which have 40
degrees of freedom. The natural frequency increases when the conical shell thickness increase as

shown in fig.(8). The conical shgll be;rmes less stiff and hence the frequency decreases. It was

noted from Fig.(9) that when the shell was stiffened the natural frequency was increased according
to the number of stiffeners (string) i.e. ( natural frequency increases when increasing number of
stiffeners). And the same results were obtained for ring stiffeners as shown in Fig.(10). In general,

the stiffeners were required to increase the bending stiffness of such thin walled members
(shells and plates). Consequently, stiffened shells u,ere often used in aircraft and launch vehicles to
obtain lightweight structures with high bending stiffness and decreasing in the mode shape. So, the

suitable numbers of stiffeners were 3 for rings and 3 for strings. Table (3) shows the results of
natural frequencies for each shape in Fig.(6) but with constant cross-sectional area. These stiffeners
have a great effect on results, for which the maximum resistance stresses of each stiffener, due to
bending, were proportional to the distances of the most remote fibers from the neutral axis of the
cross section. [n order to obtain the maximum resistance to bending, sections with large area far
away from the neutral axis are implemented. It was noted that the natural frequency increases with
increasing the cross- sectional area as shown in Fig.(l1). The increase in cross-sectional area caused
an increase in the structure stiffness. From Fig.(12) it was recognized that the natural frequency
increases with decreasing the angle of the conical shell. Thus decreasing the cone angle caused a

decrease in the structure stiffness .

CONCLUSIONS:
The conclusions obtained from the present analysis can be summarized as follows:
1- The effect of the thickness on the natural frequency is studied and it is noted that the smallest

natural frequency occur when the thickness of conical shells was small.
2- Stiffeners and their shapes have a great effect on natural frequencies, where the natural

frequency increases with increasing the number of stiffeners and their cross-sectional area.

3- Increasing the cone angle tends to reduce the natural frequency.
4- It can be seen that the superparametric shell element gives good results in such vibrational

analysis of stiffened conical shell.
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Table (1) Shape Function for Midsurface Interpolation of shell Elements

Serendipify 8-node element:

corner nodes: Ni : 1,, + EEi Xl + qqiXEEi + qni - l)4t^ 
I

Midside nodes: Ni =
1

2
e? o+ €€, )(l - n')

I ri(l + nniXl -\')+-
2

o

Table (2) Verification Test for vibration case

Natural Frequency (Hz)

Present work 1352. 1 g l
MSC\h[ASTRAN 1361 ,54

[Mustafa B. A., Ali R. 19871 r333
Percentage Error 1.4250

Table (3) Type of different stiffeners for vibration case

a

Shape
No.

I*10{ (-o) Jr'lo't (rro)
_Natural Frequency (Hz)

Present
work

MSC\
NASTRAN

I 4.4 0.9 1139.13 1 l5 4.22
1
5 2.4 2.6 1189.67 1214.53
3 2 2.2 llg2.44 1222,36
4 2 2.1664 1 l8l.7g 1220. l3
-) 3.4 6.6 1201 .gg 1251 .91

6 2.2 I 3.6 1206.12 1259,34
7 2 2.2 1 182 .44 1222.36
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Nr, -

1

I*.--

N; --

Length:0.2667 m
Small radius:0.087 m
Large radius:0.134 m
Thickness:z54 mrn
E- 68.95E9 N/rn2
v: 0.303
p- 2714 Kg lm3

or:2.4E8 N/m'

6

Fig.(s) Type of stiffeners

A

a

I

2

A.

4 5

A

7

Ring depth- 6.35E-3 m String depth- 1,278-2 m
Ring width- 6,35E-3 m String width: 6.35E-3 m
E,:68 .95E9 N/^' Er:73. 13E9 N/m2
p,: 27 l4Kglm3 ps: 2765 Kg/m3
No. of rings-3 No. of strings:3
oyr:2.488 N/m2 oys:4.6E8 N/m2

Fig. (6) Shape of stiffened conical shell (ring and string) with material properties.
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Fig(13) Distribution of e.lements inside a quarter of conical shell with it's
deformed shape for the first mode
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tKl
tMl
L
M
N
a
T
I
J

No. of rings
No. of stringers
Shear Area of the Stringer
Shear Area of the Ring
Element Stiffness matrix
Element Mass matrix
Length of conical shell
Bpnding Moment per Unit Length
Force per Unit Length
Shear per Unit Length
Torsion Moment per lJnit Length
Bending Moment of Inertia
Torsion Moment of Inerlia

m
N.m/m
N/m
N\rn
N.m/m
kg. ^'kg.m2

:
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