MASS AND MOMENTUM TRANSFER TO ELLIPSOIDAL BUBBLES AND DROPS

Dr. Abdullah Abbas Kendoush
Department of Heat Transfer
Iraqi Atomic Energy commission

Dr. Abdul Nafi Shaker
Kaswar Ali Jamil
Department of Mechanical Engineering
College of Engineering
University of Baghdad

ABSTRACT
Semi-analytical solution for the resistance of the flow and convective heat and mass transfer over the surface of ellipsoidal bubble and a drop were obtained. The fluid flow solution utilized the viscous dissipation and the heat transfer solution was based on the integral method. New relations for the drag force and the convective heat and mass transfer coefficients were derived and compared with the available theoretical solutions and experimental correlations. The range of Reynolds number was from 1 to 100 and Weber number from 0 to 3.23.

KEY WORDS
Mass Transfer, Momentum Transfer, Ellipsoidal Bubble, Ellipsoidal Drop.

INTRODUCTION
Engineers, metallurgist, geologists, and industrialists all are trying to understand processes in which bubbles and drops move through liquid. Until recent decades there was not much theoretical analysis to help them, but satisfactory theories now exist for a number of important special cases. This study considers viscous and thermal effects of the deformation of ellipsoidal gas bubble and drop. The potential velocity field of (Mieron 1989) and the equation of Frankel and Weisz (1983) for the ellipsoidal deformation bubble will be utilized for the bubble case. For drop case, the equation of Taylor and Acrivos (1964) is utilized to express drop surface in the solution. The dissipation energy method was used to get the drag on the surface of the distorted bubble and drop. The energy equation was applied for heat transfer analysis using the method of Baird and Hamielec (1962).

THEORETICAL ANALYSIS
Consider a freely rising bubble or drop in an infinite medium under the influence of gravity, at steady state velocity, U, and under the following assumptionss:
1- Incompressible isothermal flow.
2- Axisymmetric uniform flow.
3- Constant surface tension, \(\sigma \), around the bubble.
4- Neglecting the boundary layer separation at the bubble surface.
5- Neglecting internal circulation inside the bubble.

(Meiron 1989) gave the velocity potential, \(\phi \), for the gas bubbles rising in an inviscid fluid as follows:

\[
\phi = U r e \left[-\frac{r}{re} \cos \theta - \frac{1}{2} \frac{P_1(\cos \theta) r e^2}{r^2} \right] \tag{1}
\]

In spherical coordinates, the radial and angular velocity components are

\[
V_r = -\frac{\partial \phi}{\partial r} = U \cos \theta (1 - \frac{r}{re}) \tag{2}
\]

\[
V_\theta = -\frac{1}{r} \frac{\partial \phi}{\partial \theta} = -U \sin \theta (1 + \frac{r}{re}) \tag{3}
\]

Frankel and Weihs (1983) gave the radius of ellipsoidal bubble as:

\[
r(\theta) = re.Z = re \left[1 - \frac{3}{64} We (\cos 2\theta + 1) \right] \tag{4}
\]

Taylor and Acrivos (1964) derived the radius of ellipsoidal drop as:

\[
r(\theta) = re.Z_d = re \left[1 - \lambda We P_k (\cos \theta) \right] \tag{5}
\]

where

\[
\lambda = \frac{1}{4(k+1)^3} \left\{ \frac{81}{80} k^3 + \frac{57}{20} k^2 + \frac{103}{40} k^2 + \frac{3}{4} - \frac{r_{z1}}{12} (k = 1) \right\} \tag{6}
\]

Using eq.(4) and eq.(5) to get the aspect ratio of bubble and drop, yield:

\[
E = \frac{b}{a} = \frac{64 - 12 We}{64 + 6 We} \tag{7}
\]

\[
E = \frac{b_d}{a_d} = \frac{2 [1 - \lambda We]}{2 + \lambda We} \tag{8}
\]

The tangential stress, \(r_{r\theta} \), at the bubble surface and drop surface is given as follows, Chao (1962).

\[
\left[(r_{r\theta})_{r=r\theta} \right] = \mu \left[r \frac{\partial}{\partial r} \left(\frac{V_\theta}{r} \right) + \frac{1}{r} \frac{\partial V_r}{\partial \theta} \right]_{r=r(\theta)} \tag{9}
\]

So, the tangential stress for bubble and drop respectively will be:

\[
(r_{r\theta})_{r=r(\theta)} = \frac{3 U \mu \sin \theta}{re.Z^4} \tag{10}
\]

\[
(r_{r\theta})_{r=r(\theta)} = \frac{3 U \mu \sin \theta}{re.Z_d^4} \tag{11}
\]
Kendoush (2000) reported the following equation for the dissipation function of spherical particle:

\[\phi = \pi \int_0^\pi (r_0 V_s)_{r=r(\theta)} \, dA \]

(12)

Since dA of the ellipsoidal deformable bubble or drop is:

\[dA = (2\pi a^2 \sin \theta \cos \theta + 2\pi b^2 \sin^3 \theta) d\theta \]

(13)

Therefore

\[\phi_{\text{bubble}} = - \frac{6\pi a^2 U^2 \mu}{\text{re}} \int_0^\pi \frac{\sin^3 \theta \cos^2 \theta}{Z^4} \, d\theta - \frac{3\pi a^2 U^2 \mu}{Z^7} \, d\theta \]

\[- \frac{6\pi b^2 U^2 \mu}{\text{re}} \int_0^\pi \frac{\sin^5 \theta}{Z^4} \, d\theta - \frac{3\pi b^2 U^2 \mu}{Z^7} \, d\theta \]

(14)

\[\phi_{\text{drop}} = - \frac{6\pi a_d^2 U^2 \mu}{\text{re}} \int_0^\pi \frac{\sin^3 \theta \cos^2 \theta}{Z_d^4} \, d\theta - \frac{3\pi a_d^2 U^2 \mu}{Z_d^7} \, d\theta \]

\[- \frac{6\pi b_d^2 U^2 \mu}{\text{re}} \int_0^\pi \frac{\sin^5 \theta}{Z_d^4} \, d\theta - \frac{3\pi b_d^2 U^2 \mu}{Z_d^7} \, d\theta \]

(15)

Kendoush (2000) derived the drag force on the rising bubble or drop as follows

\[D = \frac{\phi}{U} \]

(16)

So,

\[D_{\text{bubble}} = - \frac{6\pi a^2 U^2 \mu}{\text{re}} \int_0^\pi \frac{\sin^3 \theta \cos^2 \theta}{Z^4} \, d\theta - \frac{3\pi a^2 U^2 \mu}{Z^7} \, d\theta \]

\[- \frac{6\pi b^2 U^2 \mu}{\text{re}} \int_0^\pi \frac{\sin^5 \theta}{Z^4} \, d\theta - \frac{3\pi b^2 U^2 \mu}{Z^7} \, d\theta \]

(17)

\[D_{\text{drop}} = - \frac{6\pi a_d^2 U^2 \mu}{\text{re}} \int_0^\pi \frac{\sin^3 \theta \cos^2 \theta}{Z_d^4} \, d\theta - \frac{3\pi a_d^2 U^2 \mu}{Z_d^7} \, d\theta \]

\[- \frac{6\pi b_d^2 U^2 \mu}{\text{re}} \int_0^\pi \frac{\sin^5 \theta}{Z_d^4} \, d\theta - \frac{3\pi b_d^2 U^2 \mu}{Z_d^7} \, d\theta \]

(18)

and the coefficient \(C_D \) is the following

\[(C_D)_{\text{bubble}} = - \frac{D}{1/2 \rho U^2 \pi a^2} = \frac{24 \pi \int_0^\pi \sin^3 \theta \cos^2 \theta \, d\theta}{\text{Re} \int_0^\pi \sin^3 \theta \cos^2 \theta \, d\theta} + \frac{12 \pi}{\text{Re} \int_0^\pi \sin^3 \theta \cos^2 \theta \, d\theta} \]

\[- \frac{24 E^2}{e} \int_0^\pi \frac{\sin^5 \theta}{Z^4} \, d\theta + \frac{12 E^2}{\text{Re} \int_0^\pi \frac{\sin^5 \theta}{Z^4} \, d\theta} \]

(19)

for the bubble and
MASS AND MOMENTUM TRANSFER TO ELLIPSOIDAL BUBBLES AND DROPS

\[
(C_D)_{\text{drop}} = \frac{D}{1/2 \rho U^2 \pi a_d^2} = \frac{24 \pi \sin^3 \theta \cos^2 \theta}{Z_d^4} d\theta + \frac{12 \pi \sin^3 \theta \cos^2 \theta}{Z_d^7} d\theta
\]

\[
\frac{24E_d^2 \pi \sin^3 \theta}{Z_d^4} d\theta + \frac{12E_d^2 \pi \sin^3 \theta}{Z_d^7} d\theta
\]

for the drop.

(Baird and Hamielec 1962) gave the following equation for mass transfer as a result of solving the diffusion equation for a fluid sphere

\[
Sh = \left[\frac{2 \pi \cdot Pe}{\pi - \int_0^\pi V_a \sin^3 \theta d\theta} \right]^{1/2}
\]

Substituting eq.(3) in eq.(21), yields

\[
Sh = \left(\frac{2 \pi \cdot Pe}{\pi} \right)^{1/2} \left[\int_0^\pi \sin^3 \theta \left(1 + \frac{r^3 e}{2Z^3} \right) d\theta \right]^{1/2}
\]

therefore

\[
(Sh)_{\text{bubble}} = \left(\frac{2 \pi \cdot Pe}{\pi} \right)^{1/2} \left[\int_0^\pi \sin^3 \theta \left(1 + \frac{r^3 e}{2Z^3} \right) d\theta \right]^{1/2}
\]

for the bubble and

\[
(Sh)_{\text{drop}} = \left(\frac{2 \pi \cdot Pe}{\pi} \right)^{1/2} \left[\int_0^\pi \sin^3 \theta \left(1 + \frac{r^3 e}{2Z^3} \right) d\theta \right]^{1/2}
\]

for the drop.

RESULTS AND DISCUSSION

Flow resistance and convective heat and mass transfer to a spheroidal bubble or drop were solved numerically using Simpson's rule.

Fig.(1) illustrates graphically the derived eqs. (19) and (20) where the drag coefficients of bubbles and drops are shown to be functions of Reynolds number at different aspect ratios.

Fig (2) shows the dependence of the drag coefficients on Weber number at different Reynolds numbers for bubbles (eq. 19) and drops (eq. 20).

For the case of ellipsoidal bubble and drop (i.e. for 0<We<3.23), the present results for the drag coefficient (eq. (19)) for the bubble, and eq. (20) for drop, were compared with the analytical solution of (Moore 1965) and the numerical solution of (Masliyah and Epstein 1970) in Figs.(3-11). The comparison with analytical solution of (Moore 1965) shows that there is good agreement between the result of this study and (Moor's 1965) results only for aspect ratio greater than 0.5 as shown in Figs.(3) and (4) for 0.9 and 0.7 aspect ratios, respectively. For aspect ratio less than or equal to 0.5, Fig.(5), the two solution diverge. The exactly what (Moore 1965) obtained when he compared his results with the experimental data. He found that the agreement between the experiments and his analytical solution remains fair for the aspect ratio less than 0.5.

The comparison of the present study with (Masliyah and Epstein 1970) shows that when (Re ≤ 10) there is good agreement between the two studies and for all aspect ratios Figs.(9), (10) and (11). When Re number increases above 10, one can see that the deviation between the (Masliyah and Epstein 1970) and this study increases as shown in Fig. (6), (7) and (8) for various aspect ratio.
Note that the numerical solution of Masliyah and Epstein suffers from the errors inherent in numerical results, which arises from discretization and stability (Masliyah and Epstein 1970). For mass transfer of the ellipsoidal bubble case Fig. (12) represents the curve of the influence of eccentricity on mass transfer around solid spheroid and shows that the results of this study are nearer to Lochiel and Calderbank (1964). Fig. (13) shows the relation between eccentricity and mass transfer around spheroids moving in within a potential flow regime, and compaes the present result with theoretical results of (Lochiel and Calderbank 1964) where the agreement is good.

CONCLUSIONS
The present investigation demonstrates that the dissipation method in momentum and integral method for heat or mass transfer in bubble and drops can be used to give good results for momentum and heat transfer. The accuracy expected to be improved further if one can cast actual radius equation for oblate spheroidal bubble or drop or drop using experimental data.

REFERENCES

NOMENCLATURE
a: Semi major axes of the ellipsoidal spheroid bubble
b: Semi major axes of the ellipsoidal spheroid drop
bo: Semi minor axes of ellipsoidal spheroid bubble
bo: Semi minor axes of the ellipsoidal spheroid drop
Cₐ: Drag coefficient
D: Equivalent diameter
E: Bubble aspect ratio
Eₙ: Drop aspect ratio
g: Acceleration due to gravity
K: Ratio of viscosity of the continuous phase to that of the dispersed phase
M₀: Morton number
Nu: Nusselt number
P₁(cosθ): Legendre polynomial [P₁(cosθ)=cosθ]
P₂(cosθ): Legendre polynomial [P₂(cosθ)=cosθ]
Pe: Peclet number
Pr: Prandtl number
r: Variable bubble surface radius
re: Spherical equivalent radius of the bubble
Re: Reynolds number
Sc: Schmidt number
Sh: Sherwood number
U: Main upstream velocity
We: Weber number
Z: Bubble deformation factor
Zₙ: Drop deformation factor

Greek Symbols
µ: Dynamic viscosity
σ: Surface tension
ρ: Fluid density
Φ: Dissipation function
Ω: Velocity potential
Vᵣ: Radial surface velocity component
Vₘ: Tangential surface velocity component
Φ: Dissipation function
τᵥ: Tangential bubble surface stress
Figure 1: Drag coefficient of the bubble and drop versus Reynolds number for various aspect ratios according to Eq. (2-19) for bubble and Eq. (2-20) for carbon tetrachloride drop in water.

1- Aspect ratio = 1, We = 0 for both spherical bubble and drop.
2- Aspect ratio = 0.74, We = 1 for bubble, We=0.878 for carbon tetrachloride drop.
3- Aspect ratio = 0.52, We = 2 for bubble, We = 1.762 for carbon tetrachloride drop.
4- Aspect ratio = 0.30, We = 3.23 for bubble, We = 2.816 for carbon tetrachloride drop.
Figure (2) Variation of the drag coefficient of the bubble and drop versus Weber number for various Reynolds numbers according to Eq. (2-19) for bubble and Eq. (2-20) for carbon tetrachloride drop in water.

(1) Re = 1
(2) Re = 5
(3) Re = 10

Figure (3) Drag coefficient versus Reynolds number for 0.9 aspect ratio.

--- Eq. (2-19) for bubble and Eq. (2-20) for drop.
--- Moore's results (1965).
Figure (4). Drag coefficient versus Reynolds number for 0.7 aspect ratio.

--- Eq. (2-19) for bubble and Eq. (2-20) for drop.
--- Moore's results (1965).

Figure (5). Drag coefficient versus Reynolds number for 0.5 aspect ratio.

--- Eq. (2-19) for bubble and Eq. (2-20) for drop.
--- Moore's results (1965).
Figure (6). Drag coefficient against Reynolds number for oblate spheroid of 0.9 aspect ratio.

---, Eq. (2-19) for bubble and Eq. (2-20) for drop.

Figure (7). Drag coefficient against Reynolds number for oblate spheroid of 0.5 aspect ratio.

--- Eq. (2-19) for bubble and Eq. (2-20) for drop.

Figure (8). Drag coefficient against Reynolds number for oblate spheroid of 0.2 aspect ratio.

--- Eq. (2-19) for bubble and Eq. (2-20) for drop.
Figure (9). Drag coefficient against Reynolds number for oblate spheroid of 0.9 aspect ratio.

- Eq. (2-19) for bubble and Eq. (2-20) for drop.

Figure (10). Drag coefficient against Reynolds number for oblate spheroid of 0.5 aspect ratio.

- Eq. (2-19) for bubble and Eq. (2-20) for drop.

Figure (11). Drag coefficient against Reynolds number for oblate spheroid of 0.2 aspect ratio.

- Eq. (2-19) for bubble and Eq. (2-20) for drop.
Figure (12). The influence of eccentricity on mass transfer around solid spheroids.

Figure (13). The influence of eccentricity on mass transfer around spheroid moving in a potential flow regime.