

New Correlation To Calculate Absolute Permeability From Gas Permeameter

Ass. Lecture Dhorgham S. Ibrahim

Ass. Lecture Hussein H. Hussein

University of Baghdad College of Engineering Petroleum Engineering Department

Abstract

In this study, two correlations are developed to calculate absolute rocks permeability from core samples tested by Gas Permeameter Apparatus. The first correlation can be applied if $K_g \le 100$, the second correlation can be applied if $K_g > 100$. Sixty core samples having different permeabilities to give a wide range of values that necessary to achieve a correlation.

The developed correlation is easily applied and a quick method to avoid repeating the test at different pressure values. Only one pressure test is required to reach absolute permeability which is equivalent liquid permeability.

The final results show, after comparison between the values of permeability from the correlations and the value of absolute permeability by liquid permeameter, good agreement between the values.

علاقة جديدة لحساب النفاذية المطلقة باستعمال جهاز نفاذية الغاز

المدرس المساعد ضرغام صكبان إبر اهيم المدرس المساعد حسين هادي حسين جامعة بغدادـ كلية الهندسة قسم هندسة النفط

الخلاصة:

تم في هذه الدراسة تطوير علاقتي ترابط لحساب النفاذية المطلقة للصخور من العينات التي يتم فحصها بجهاز قياس النفاذية باستخدام الغاز. العلاقة الأولى يمكن تطبقها إذا كانت النفاذية للغاز <100 ، العلاقة الثانية يمكن تطبقها اذا كانت النفاذية للغاز <100 ، العلاقة الثانية يمكن تطبقها اذا كانت النفاذية للغاز عمل من العينات التي يتم فحصها بعمان النفاذية النفاذية النفاذية الغاز من العلاقة الثانية يمكن من العلاقتان . النفاذية النفاذية الغاز من العلاقة العلمة من من العينات التي يتم فحصها بحمان النفاذية النفاذية باستخدام الغاز . العلاقة الأولى يمكن تطبقها إذا كانت النفاذية للغاز حمان من العلاقة الثانية يمكن من النفاذية من من العلاقة النفاذيات النفاذية النفاذية الغان من من القيم اللزمة لعمل العلاقتان . النفاذية للغاز حمان من التي يمكن من من القيم العلاقة النفاذيات النفاذيات النفاذية من من القيم المان من من القيم المانية النفاذيات النفاذية النفاذية من من القيم المانية العان من من القيم المانية العان من من القيم المانية النفاذيات النفاذيات النفاذيات النفاذية من من القيم المانية العان من من القيم المانية العان من من من القانية العان من من النفاذيات النفاذيات النفاذيات النفاذيات النفاذيات النفاذيات النفاذيات النفاذيات النفاذيات النون من مانية من القيم اللزمة لعمل العلاقتان . مان من من القيم النه من النون من من القان مان مانية النفاذيات الفاذيات النفاذيات النفاذيات النفاذيات النفاذيات النفاذيات النفاذيات الفاذيات الفاذيات الفاذيات النفاذيات الفاذيات الفاذيات الفاذيات الفاذيات النفاذيات النفاذيات النفاذيات النفاذيات النفاذيات النفاذيات النفاذيات الفاذيات الفاذيات

إن العلاقتين المُطورة سهلةُ التطبيق وتعتبر طريقة سريعة تجنبنا لتكرار الفحصُ لمختلف الضغوط والاكتفاء بالفحص عند ضغط واحد ونتمكن من خلالها إلى التوصل لقيمة النفاذية المطلقة المكافئة لنفاذية السائل

وقد أظهرت النتائج النهائية بعد اجراء المقارنة بين النفاذية المستخرجة من العلاقتين مع قيم النفاذية المطلقة المستخرجة من جهاز قياس النفاذية باستخدام السائل وجود تطابق كبير بين القيم.

Introduction

Laboratory measurement of permeability usually uses air as the flowing fluid and thus the value obtained is permeability to air (Kair).

Cole, frank (1969) said dry gas is usually used (air, N_2 , He) in permeability determination because of its convenience, availability, and to minimize fluid-rock reaction.

The low pressure air permeability of core often differs from its permeability to liquid by 30 to 100 percent due to the Klinkenberg effect. These errors are avoided if the permeability to gas

was measured at two or three pressures and plotted against the reciprocal of the mean pressure, and then extrapolating to infinite pressure to obtain the equivalent liquid permeability. This method is generally reliable, but has two drawbacksit requires tedious measurements, and requires longer time to reach steady state.

New correlation is developed to calculate equivalent liquid permeability from a single run on core sample by Ruska Gas Permeameter.

THEORY OF OPERATION

The measurement of the permeability should be restricted to the low (laminar/viscous) flow rate region, where the pressure remains proportional to flow rate within the experimental error. For high flow rates, Darcy's equation as expressed by equation (1) is inappropriate to describe the relationship of flow rate and pressure drop. [Ali Hussein 1988]

$$q = \frac{KA(p_1 - p_2)}{\mu L} \tag{1}$$

In using dry gas in measuring the permeability, the gas volumetric flow rate q varies with pressure because the gas is a highly compressible fluid. Therefore, the value of q at the average pressure in the core must be used in equation (1). Assuming the used gases follow the ideal gas behavior (at low pressures), the following equation (2) is applied:

$$K(Darcy) = \frac{Q_{av}\mu L}{A(p_2 - p_1)}$$
(2)

KLINKENBERG EFFECT

Klinkenberg (1941) discovered that permeability measurements made with air showed different results from permeability measurements made with a liquid. The permeability of a core sample measured by flowing air is always greater than the permeability obtained when a liquid is the flowing fluid. Klinkenberg postulated, on the basis of his laboratory experiments, that the gases exhibited slippage at the sand grain surface.

The magnitude of the Klinkenberg effect varies with the core permeability and the type of the gas used in the experiment as shown in figure (1). The resulting straightline relationship can be expressed as: [Klinkenberg (1941)]

$$k_{g} = k_{L} + c \left[\frac{1}{p_{m}}\right]$$
(3)

Where:

K_g=measured gas permeability

P_m=mean pressure

K_L=equivalent liquid permeability, i.e., absolute permeability, K

C=slope of the line

Klinkenberg expressed the slope C by the following relationship:

$$C=bk_L$$
 (4)

b=constant that depends on the size of the pore openings and is inversely proportional to radius of capillary.

Jones (1972) studied the gas slip phenomena for a group of cores for which porosity, liquid permeability k_L and air permeability were determined. He correlated the parameter b with the liquid permeability by the following expression:

$$b = 6.9 k_{\rm L} - 0.36 \tag{5}$$

Equations 3, 4 and 5 can be combined and arranged to give:

 $6.9K_L^{0.64} + p_m K_L - p_m K_g = 0$

Equation (6) can be used to calculate the absolute permeability when only one gas permeability measurement (k_g) of a core sample is made at p_m . This nonlinear equation can be solved iteratively by using the Newton-Raphson iterative methods.

Experimental Work

The experimental work was performd in Pet. Eng. Dept./Univ. of Baghdad. The device used to determining (Kair) is shown Fig. (2).

The materials used for carrying out the experimental work are :

1.Core Sample: About (60) plugs are prepared and their dimensions are measured.

2.Gas Oil: Gas oil is used as a saturation liquid to test liquid permeability, does not volatile at room temperature.

The properties of gas oil are given in table (1).

3.Air: Air is used as a gas to test absolute permeability by gas permeameter.

The experiments were carried out as follows:

1.The absolute permeability is measured by Ruska Liquid Permeameter with gas oil.

2. The gas permeability is measured by Ruska Gas Permeameter with air at different pressure drop to get equivalent liquid permeability through drawing the permeability to gas at two or three pressures drop versus the reciprocal of the mean pressure, and then extrapolating to infinite pressure.

3.Two correlations are built by statistical program to get equivalent liquid permeability by single test with Ruska Gas Permeameter. The correlations are:

$$K_{L} = f(K_{g}, P)$$
⁽⁷⁾

$$K_L = A_1 \times K_g^{A_2} + A_3 \times P^{A_4} \qquad (8)$$

where :

 $K_g = gas permeability (md)$

P = mean pressure (atm)

Table (2) shows the values of the constants $(A_1, A_2, A_3 \text{ and } A_4)$.

Results

Several experiments have been carried out in this work to study the possibility of getting equation that has good agreement with equivalent liquid permeability from a single test by Ruska Gas Permeameter.

The correlations are built on about 75% of data point that covered different ranges of permeability as shown in Table (3) and use 25% of data point to check the correlations. After several trials in form of the correlations we get the final form that give acceptable agreement, as shown in Figure(3) and (4). The correlations take the Klinkenberg effect implicitly and take the effect of mean pressure explicitly, as shown in equation (8).

Conclusions

Simple, rapid and easily applied equation is developed to calculate equivalent liquid permeability that equation needs only single measurement of gas permeability . **References**

- Ali Hussien Jawad , "Evaluation of the Engineering Properties of the Reservoir Rocks by Direct and Indirect Methods", M. Sc. thesis, Pet. Eng. Dept., University of Baghdad (1988).
- Cole, Frank, "Reservoir Engineering Manual" Houston: Gulf Publishing Company, 1969.
- Jones, S. C., "A Rapid Accurate Unsteady State Klinkenberg Parameter" SPEJ, 1972, Vol. 12, No. 5, pp. 383– 397.
- Klinkenberg, L. J., "The Permeability of Porous Media to Liquids and Gases," API

Drilling and Production Practice, 1941, p. 200.

• Tarek Ahmed., "Reservoir Engineering Hand Book" Third Edition, Elsevier Inc. (2006).

Symbols And Abbreviations

Symbol	Description	Unit
А	Area	[cm ²]
A_1, A_2, A_3, A_4	Correlation constants	-
b	Constant	-
с	Slope	-
C.P	centi poise	
К	Absolute permeability	[Darcy]
K _g	Gas permeability	[Darcy]
K _L	Liquid permeability	[Darcy]
Ko	effective permeability for oil	[Darcy]
L	Length	[cm]
\mathbf{P}_1	Inlet pressure	[atm]
P ₂	Outlet pressure	[atm]
P _m	Mean pressure	[atm]
q	Discharge	[cc/sec]
Q_{av}	Average discharge	[cc/sec]
R	Correlation coefficient	-
V%	Variance	-

Abbreviations		Definition	
Не		Helium	
N2		Nitrogen	
Greek symbols			
Symbols	Description		Unit
μ	Kinematic viscosity		[csc]

Figure (1) effect of gas pressure on measured permeability for various gases [Klinkenberg (1941)]

1. Core holder, 2. Thermometer, 3. Three flow meters, Small, medium, Large, 4. Flow meter selector switch, 5. Pressure gauge, 6. Pressure regulator, 7. Second flow line valve, 8. Bleed off valve, 9. First flow line valve, 10. Bleed off valve, 11. Flow line regulator, 12. Air pressure gauge, 13. Air tank valve, 14. Air.

Figure (2) Ruska gas permeameter

Property	Value
Sp. gr. at 24° C	0.825
Viscosity at 19 ° C (C.P.)	4.39
Viscosity at 24 ° C (C.P.)	3.7
Viscosity at 30 ° C (C.P)	3.3

Table ()	l). Properties	of Gas oil.
1 4010 (1	I ropernes	og Ous om

Table (2) values of the correlations coefficients

	Cons	tants		Variance (V %)	Correlation coefficient (R)	Application range
A_1	A_2	A ₃	A_4	93.61	0.9623	K₂≤100
0.477104	1.110739	-9.4060	7.309868	75.01	0.9025	$\kappa_{g \ge 100}$
1.18921	0.931348	-105.314	248.0285	98.54	0.9926	Kg>100

Table (3) values of the results calculation

Core No.	L(mm)	D(mm)	Area(Cm2)	Pavg(atm)	ΔP(atm)	Kg(md)	KL(md)	K ₀ (md)
				1.125	0.25	17.35586		
1	33.96	25.19	4.98564	1.25	0.5	13.88469	2.740399	1.708781
				1.5	1	13.63675		
				1.125	0.25	118.0615		
2	26.31	25.3	5.02928	1.25	0.5	117.1094	102.7526	93.31896
				1.5	1	114.253		
3				1.125	0.25	83.2958		
	26.82	25.03	4.92251	1.25	0.5	80.32095		
				1.5	1	80.32095	71.63126	62.66466
4				1.125	0.25	374.2347		
	27.4	25.22	4.99752	1.25	0.5	368.2629		
				1.5	1	358.3098	310.4828	316.2579
5	17.96	25.35	5.04918	1.125	0.25	186.4445	165.967	158.4175
				1.25	0.5	182.5603		

\bigcirc

Number 6 Volume 18 June 2012

une 2012

Journal of Engineering

				1.5	1	181.2655		1	
					1				
6	22.21	24.04	4.00717	1.125	0.25	124.4662			
	23.21	24.94	4.88717	1.25	0.5	121.0088	110,0000	101 5006	
				1.5	1	121.0088	110.9096	101.5286	
7	27.02	25.45	5 00000	1.125	0.25	16.23058			
	37.82	25.45	5.08909	1.25	0.5	15.14854	10.001.57	7.02(01(
				1.5	1	14.87803	10.89157	7.836816	
8				1.125	0.25	40.57649			
	34.51	25.42	5.0771	1.25	0.5	30.43237			
				1.5	1	30.30866	0.299506	0.148432	
0			4.010.55	1.125	0.25	14.75841	10.000		
9	26.24	25.02	4.91857	1.25	0.5	13.78746	10.2665	7.341897	
				1.5	1	13.59327			
				1.125	0.25	14			
10	33.63	25.45	5.08909	1.25	0.5	13.03729	6.128824	4.154491	
				1.5	1	12.02702			
				1.125	0.25	31.79949			
11	30.85	25.44	5.08509	1.25	0.5	26.49958	2.068827	1.252938	
				1.5	1	24.29128			
				1.125	0.25	829.3049			
12	40.89	25.29	5.0253	1.25	0.5	814.4959	651.207	716.3055	
12	10.09	23.23	0.0200	1.5	1	784.8778	001.207		
				1.125	0.25	12	2.501802		
13	40.65	25.62	5.15731	1.25	0.5	10.61551		1.545329	
				1.5	1	9.611338			
				1.125	0.25	79.99816			
14	23.82	25.19	4.98564	1.25	0.5	79.12861	73.06468	64.05019	
				1.5	1	78.25907			
				1.125	0.25	74.71036			
15	34.49	25.33	5.04121	1.25	0.5	70.97484	41.17465	39.9756	
				1.5	1	68.23546			
				1.125	0.25	270.0979			
16	30.42	25.23	5.00149	1.25	0.5	265.6701	207.8752	203.109	
				1.5	1	254.6005			
				1.125	0.25	964.9403			
17	29.61	25.01	4.91464	1.25	0.5	877.2184	591.7179	644.4324	
				1.5	1	870			
				1.125	0.25	117.4282			
18	21.58	25.1	4.95008	1.25	0.5	115.0638	82.61604	87.83428	
				1.5	1	111.0807			
				1.125	0.25	114.9361			
19	20.44	25.35	5.04918	1.25	0.5	106.0948	70.18097	73.78142	
				1.5	1	105.8738			
				1.125	0.25	162.1563			
20	26.82	25.37	5.05715	1.25	0.5	160.2259	142.852	134.2486	
				1.5	1	157.3302	1		
	21 31.38 25.			1.125	0.25	65.34619			
21		31.38 25.4	5.06911	1.25	0.5	60.83955	45.39247	37.87465	
				1.5	1	60.27622	1		
	1			1.125	0.25	57.57394			
22	22.21	25.01	4.91464	1.25	0.5	54.284	24.67455	19.32622	
				1.5	1	49.34909			
			I	1	1.0	1	17.51707		

Dhorgham S. Ibrahim Hussein H. Hussein

NEW CORRELATION TO CALCULATE ABSOLUTE PERMEABILITY FROM GAS PERMEAMETER

				1.125	0.25	143.8746		122.496
23	29.29	25.51	5.11312	1.25	0.5	141.7895	131.4736	122.190
25	27.27	25.51	5.11512	1.5	1	140.7469	131.4730	
				1.125	0.25	11.46683		
24	25.03	25.44	5.08509	1.125	0.23	10.75015	8.656702	6 002000
24	24 25.05 25	23.44	5.08509		0.5	-	8.030/02	6.082099
				1.5	1	10.75015		
2.5	26.10	25.42	5.0771	1.125	0.25	86.6604	72 24650	(2.2.500)
25	36.19	25.42	5.0771	1.25	0.5	84.32524	72.24659	63.25908
				1.5	l	83.02793		
• •				1.125	0.25	13.93304		< -
26	41.23	24.56	4.73938	1.25	0.5	12.98306	9.566468	6.79134
				1.5	1	12.82473		
				1.125	0.25	314.1376		
27	23.16	25.34	5.04519	1.25	0.5	300.77	227.8641	224.770
				1.5	1	292.4153		
				1.125	0.25	7.549945		
28	33.09	25.49	5.1051	1.25	0.5	7.31401	6.146748	4.167904
20	55.09	23.49	5.1051	1.5	1	7 10(042	0.140/48	4.10/904
				1.5	1	7.196042		
				1.125	0.25	66.09866		
20	27.85	25.38	5.06113	1.25	0.5	64.09567	54.18614	46.05025
29				1.5	1	63.09417		
				1.125	0.25	677.3357		
30	22.79	24.97	4.89894	1.125	0.23	660.4023	508	544.5687
				1.25			8.6903	
31	30.59	25.54	5.12515		0.5	11.29738		6.108159
				1.5	1	10.86287		
20	16.47	7 25	4.01071	1.125	0.25	292.9959	220 2205	010040
32	16.47		25	4.91071	1.25	0.5	280.7877	220.3895
				1.5	l	274.6837		
		25.6		1.125	0.25	7.3		
33	23.83		5.14926	1.25	0.5	7.07506	2.321914	1.42315
				1.5	1	6.064337		
34	27.33	25.25	5.00942	1.125	0.25	714.9178	516.33	554.433
51	21.55	25.25	5.00712	1.25	0.5	695.059	510.55	551.155
				1.125	0.25	237.3676		
35	21.95	25.18	4.98168	1.25	0.5	224.537	170.8085	163.525
				1.5	1	220.5274		
				1.125	0.25	86.44464		
36	33.44	25.4	5.06911	1.25	0.5	81.64216	67.61386	58.797
				1.5	1	81.64216		
27	20.04	25.2	4.0007	1.125	0.25	699.1111	407.00	53 0.001
37	29.04	25.2	4.9896	1.25	0.5	677.9259	487.26	520.081
				1.125	0.25	895.9347		
38	27.35	24.66	4.77805	1.25	0.5	833.4277	636.9497	699.015
				1.5	1	830		
	1			1.125	0.25	93.69012		
39	19.66	25.22	5.0/121	1.125	0.23	89.43148	75 55251	66.4625
57	19.00	25.55	25.33 5.04121	1.23	1	89.07659	75.55354	00.4023
					1			
40	26.24	25.42	5.0771	1.125	0.25	808.943	620.82	679.503
4.1	21.50	25.16	4.07277	1.25	0.5	790.1304	750.061	020.214
41	31.59	25.16	4.97377	1.125	0.25	1017.227	750.861	838.214
				1.25	0.5	970.9891		

\bigcirc

Number 6 Volume 18 June 2012

Journal of Engineering

				1.5	1	950		
				1.125	0.25	12.51811		
42	29.33	25.52	5.11712	1.25	0.5	12.01738	9.624668	6.836958
			0111/12	1.5	1	11.78789		
				1.125	0.25	214.2575		
43	31.4	25.53	5.12114	1.25	0.5	209.7938	183.1878	176.6552
15	51.1	20.00	0.12111	1.5	1	206.446	102.1070	
				1.125	0.25	73.72598		
44	36.33	25.73	5.20169	1.25	0.5	72.45484	63.59033	54.94726
	50.55	20.75	0.20109	1.5	1	71.18371	05.57055	54.74720
				1.125	0.25	126.8594		
45	30.7	25.5	5.10911	1.25	0.5	124.6722	100.5551	91.11862
10	50.7	20.0	5.10911	1.5	1	120.2977	100.5551	91.11002
				1.125	0.25	677.4134		
46	30.22	24.9	4.87151	1.125	0.23	643.5427	498.8496	533.752
40	50.22	27.7	4.07131	1.23	1	632.2525	470.0470	555.752
				1.125	0.25	147.8652		
47	42.63	25.32	5.03723	1.125	0.23	147.8032	117.5869	108.296
4/	42.03	23.32	5.05725	1.23	0.5	140.1639	117.5009	108.290
				1.125	0.25	110.0825		
48	30.94	25	4.91071	1.125	0.23		83.10504	73.83157
48	30.94	23	4.910/1	-	0.5	103.2023		/3.8313/
				1.5	1	103.2023		
40	26.29	.28 24.91	.91 4.87542	1.125	0.25	1164.729	844.2025	953.9414
49	36.28			1.25	0.5	1083.469		
				1.5	1	1083		
- 0				1.125	0.25	62.93357		46.99869
50	27.13	25.28	5.02133	1.25	0.5	61.16356	55.19626	
				1.5	1	60.9669		
				1.125	0.25	285.2871		
51	19.18	25.33	5.04121	1.25	0.5	276.9778	224.6436	221.2667
				1.5	1	270.0533		
				1.125	0.25	129.7911		
52	42.9	25.36	5.05316	1.25	0.5	123.6105	105.5569	96.13401
				1.5	1	123.6105		
				1.125	0.25	9.594691		
53	22.41	25.48	5.1011	1.25	0.5	9.914514	6.312297	4.291975
				1.5	1	8.795133		
				1.125	0.25	9.11093		
54	31.82	25.44 5.	5.08509	1.25	0.5	8.313723	5.985042	4.047046
				1.5	1	8.313723		
				1.125	0.25	16.5		
55	38.12	25.51	5.11312	1.25	0.5	14.65421	8.71269	6.125532
				1.5	1	14.51852		
				1.125	0.25	71.92927		
56	29.41	24.62	4.76256	1.25	0.5	67.43369	54.30187	46.15882
20 20.11			1.5	1	67.43369	1	70.13002	

Dhorgham S. Ibrahim Hussein H. Hussein

Figure (3) predict versus observed values of K_L,K_g≤100

Predict Permeability

Figure (3) predict versus observed values of K_L,K_g>100