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ABSTRACT

The importance of the beam in the service of our life and how the damaged beam costly influence the
economy and even endanger the human life itself, draws our attention to study the specific methods to
detect crack and damage by using free vibration analysis of mechanical beam structures. In the present
research, three kinds of beam structures have been investigated namely (simply supported beam, portal
frame and crane frame) by using finite element method. Six cases of damage are modeled for simply
supported beam and portal frame and with seven cases for crane frame. The damage is simulated by
reducing the stiffness of assumed elements with ratios (25% and 50 %) in mid- span of the simply
supported beamand by introducing cracked elements at different locations with ratio of depth of crack to
the height of the beam (a/h) 0.1, 0.25 for simply supported beam and 0.1 and 0.2 for portal and crane
frames. A program coded in Matlab 6.5 was used to model the numerical simulation of the damage
scenarios. The results showed a decreasing in the five natural frequencies with shifting in the damaged
mode shape associated with their frequencies from undamaged beam which means the indication of
presence of the damage. The direct comparison gives an indication of the damage but the location of the
damage, is not detected. Four structural damage identification methods based on changes in the dynamics
characteristics of the beam structures are examined and evaluated for damage scenarios for the three
structures considered. The results of the analysis indicate that the curvature energy damage index method
performs well in detecting, locating and quantifying damage in single and multiple damage scenarios for
the three structures.
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INTRODUCTION

The ability to monitor a structure and detect damage at the earliest possible stage is of
outmost importance in mechanical, civil and aerospace engineering communities. Structural damage is
considered as a weakening of the structure that negatively affects its performance. Damage may be also
defined as any deviation in the structural original geometric or material properties that may cause
undesirable stresses, displacements, or vibrations on the structure. These weakenings and deviation
may be due to cracks, loose bolts, broken welds, corrosion, fatigue, etc. (Ren, 2002). Many structural
components are now decaying because of age, deterioration, and lack of maintenance or repair.

Current nondestructive damage detection (NDD) technique are either visual or are based on
experimental methods. Visual inspection has always been the most common method used in detecting
damage in a structure, but the size and degree of complexity of today’s structures being built provide
less scope for visual inspections. The experimental methods such as acoustic or ultrasonic techniques,
magnetic field procedure, radiography, eddy current, etc. All of these experimental methods require
that the damaged region be identified a priori, and that the segment of the structure being examined
must be easily accessible, subjected to these limitations, these methods can detect on or near the
surface of the structure. The methods are obviously “local” inspection approac hes (Dewen, 2004).

One way to overcome the previously mentioned limitations is by using global damage
detection methods. Structural damage identification based on changes in dynamic characteristics
provides a global way to evaluate the structural condition. These methods are based on the idea that
modal parameters (i.e., natural frequencies, mode shapes and modal damping ratio) are a function of
the physical properties of the structure stiffness, damping, mass and boundary conditions (Herrera,
2005). Therefore, changes in the physical properties will cause detectable changes for the changes in
the modal parameters.

MODELING THE STIFFNESS MATRIX OF THE CRACKED ELEMENT

It is assumed that the damage in the beam structure will affect only the stiffness matrix and not
to the mass matrix. This assumption is consistent with those used by (Yuen 1985, Qian 1990 and Kisa
2000).

The beam is divided into elements and the behavior of the elements located to the right of the
cracked element regarded as external forces applied to the cracked element, while the behavior of
elements situated to its left as constraints, see Fig.1. Thus the flexibility matrix of a cracked element
with constraints can be calculated. The strain energy of undamaged element in case of bending
(Singor, 1951), is:
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L 2
W(O):IMl dx (1)
) 2El
As shown in Fig. 1,
M, = (px + M) )
Substitute Eq. (2) in (1) to get
L 2
W(O):J‘(px—i_M) dx (3)
o 2El
213
wo =1 P vz oML ()
2ElI| 3
Where:
W @ : The strain energy of undamaged element.
E: Elastic modulus.

I Momentof inertia of undamaged element.
L: Lengthof the finite element.

p: Internal shear force at the right end of beam.
M :

Internal bending moment at the right end of beam.
And by using the relation below, (Thomson 1988).

{uj=[cl{P} 5)

[c] .{u}, {P}  are the influence coefficient flexibility matrix, displacement and force vectors,

respectively.
The component of flexibility matrix [C] can be written as, (Thomson 1988).

_ oy,

C, = —— 6
=% ©)

And the displacement u, computed by using Castigliano's theorem (Singor, 1951). As

(0)
u = oW Apl (7)

Substitute Eg. (7) into (6), the flexibility coefficient of undamaged element evaluated as

w_ OW® ®)
T opiop;

where:

P.=p 1p2:M I, j=12

And using Eqg. (4) in Eq. (8) gives:
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The flexibility matrix of the uncracked element can be expressed as

L° L?
col-5 3 2 ©
L
2

From the equilibrium conditions shown in Fig (2), the following relationships hold:
Z Fy=0 (10)
P+P,=0 or B=-R, (11)
d>M,=0 (12)
My +P,L+M; =0 (13)
M;=-PF.,L-M;, (14)

FromEqg. (11) and (14) we get in matrix form

I

P, -1 0

Ml | L -1 I:)i+1

I:)|+l - 1 0 IvliJrl

M, 0 1
{Pl Mi I:)i+1 M i+l }T = [T] {Pi+1 M i+l }T (15)
Where
E (16)

10 -1 01

The element stiffness matrix in base system is obtained by the inversion of the flexibility matrix as
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[K]=[c]* (17)

The stiffness matrix of undamaged element can be written as

[K.J=[T] co'mr (18)
i ei ui+l 0i+l
12 6L 12 6L ] u,
El 4L 6L 2L | 6,
[Ku] =73
L 12 -6L | u, (19)
sym A% | 0,

The stiffness matrix of undamaged element [Ku] is the same that developed by (Merovitch 1975),

for undamaged beam element with rectangular cross-section given by Bernoulli-Eular theory have two nodes
with two degree of freedoms (2 d. o.f.s), {u, 0 } at each node, as seen in Fig. 2, the mass matrix for an
element without crack is

156 22L 54 -13L

M. ]= mL 42 13L -3l (20)
" 420 156  —22L
sym 41°

Where m is the mass per unit length.

According to the principle of Saint-Venant, the stress field is affected only in the region adjacent
to crack. However, the calculation of the additional stress energy ofa crack has been studied in fracture
mechanics and the flexibility coefficient expressed by a stress intensity factor can be derived by
applying the Castigliano's theorem in linear-elastic range.

From the condition of equilibrium, the stiffness matrix of the cracked element in the free-free
state can be derived. For a rectangular beam having width b and height h the additional strain energy

W @ due to the crack, (Dewen 2004) can be written as

Ac @) Ac
wo = [P ga- [1da 1)
oA 0

0
Where Ac is the area of the crack surface. The idea of relating J , strain energy release rate to the

stress intensity factor K was proposed by (Hellan 1984) for the three modes, who gave the general
formula of J as a function of stress intensity factor K as:
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B .. B, l+v _, 1 for plane stress
J==Ki+= Ky + K B = 2 .
E E E 1-v for plane strain (22)
Where K, ,K, ,K is the stresses intensity factors for fracture mode of 1,11 , Il which are
| 1 1 y

opening, sliding and tearing types respectively, and v is the Poisson's ratio. The stress intensity factor
K, from (Hellan 1984) is:

K, =0,\/7a F(a/h) (23)
Where o, is the stress for the corresponding fracture mode, a is the depth of the crack, F(a/h) is

the correction factor for the finite specimen.
Substituting Eq. (22) into Eq. (21) gives the additional strain energy due to the crack W @

(<F 4K | @K
E E

p

w® = bj( da where dA=Dbxda (24)
0

E, =E Forplanestress, E, = E/(1-v®) forplane strainand b is the width of the beam.

The case of plane stress or plane strain, it depends on the dimensions of the beam, and this study take
into account the plane stress since the beam is thin (slender) when the length is more than (10) times its
least lateral dimensions (Singor 1951).

Taking into account only bending including the opening (1) and sliding (11) modes, the Eq. (24)
becomes;

W @ =b_?'{ (K +Ke P +K2 [7EL da @5
o

Where K,,,Kp,K,, are stress intensity factors for opening-type and sliding mode cracks due
to M and P, respectively and by using Eqg. (23)

K,, =(6M/bh?)Jra F, (s) where a:Ml:ﬂQii (26)
| bh®/12

K,» =(3PL/bh?) Jza F(s) where a:My:PLf /2 (27)
| bh* /12

K =(P/bh)Jza F,(s)  where a=%=£% (28)
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Where F,(s) and F, (s) are the correction factors for crack mode | and mode Il , (s=a/h) is

defined as the ratio between the crack depth a and the height of the elementh, the correction factor
from (Kisa 2000) as

0.923+0.199[1—sin(z s/ 2)]*

F.(s)=+(2/ zs)tan(zs/2 29
1(3) =+/(2/ zs)tan(x s/ 2) cos(r 5/2) (29)
_ 2 3
F, (s):(35—252)1'122 0.5615;0.0855 +0.18s (30)
-S

And the additional flexibility coefficients due to the presence of the crack Cigl) are
A ()

Cigl) =% (31)
oP,0P,

R=P, PB,=M, i,j=12

Substituting Eq. (33) into Eqg. (39) and integrate over the crack height, we get the coefficients Ciﬁl’
which can be expressed in matrix form as

212 2 2
E, | 185(L 36,3
Where B, =F,(s)/bh?> and g, =F,(s)/bh
The total flexibility coefficients C; for the element with an open crack are
—CcO L co
C; _Cijo +Cijl (33)

The total flexibility matrix [C] for the element with an open crack can be expressed as
[c]=[c®]+[c®] (34)

The stiffness matrix of the cracked element [K_ ] can be written as

K J=[T]le]* [r] (35)

With program coded in Maple 7, the coefficients of the stiffness matrix [K_] are
calculated as :
k11 k12 k13 kl4

2

k,, Kk
Ky Kq
k,, Kk

N

2

k
K
k

w

24

“ 36
) (36)
k

N
w
N

42 43 44
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EIE
ky, =12— P
L°E, +12bza“El S,
E,EIL
k12 =6 3 - 2 2
L"E, +12bzra“El g,
EIE
k13:_12 3 PZ 2:_k11
L"E, +12bza“El g,
E,EIL
kl4 =6 3 - 2 2
L"E, +12bza“El g,
k21 = k12

:4(|_3 E.+27bza’El g°L? +3bra’El B,°)EI E,
#  (LE,+36br B a’EIN)(L°E, +12bra’El B,)
E.EIL
L*E, +12bza’E|l g,°
) (L°E, +54bza’El 1> -6bzra’El B,°)EI E,
(LE, +36bz B °a’E1)(L°E, +12bra’El s,%)

K3 =6

24

k31 = k13:_k12
32 =k23
EIE
Ky = ki =12 . Pz 5
L E; +12bra“El B,
E-EIL
k34 =797 2 2 :_k14
L E; +12bra“El B,
k41:k14
k42 :k24
k43 = k34:_k14

_4(L3 E, +27bra’El B°L* +3bzra’El B,°)EIE,

(LE, +36bz Ba’E1)(L°E, +12bra’El B,°)

44 22

Therefore:
k11 k12 - k11 k14

[Kc ] _ k12 kzz - k12 k24 (37)
- k11 - klZ k11 - k14

- k14 k24 - k14 k22
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Fig.1: Diagram of a generic element Fig. 2: Equilibrium condition of a generic element

FREE VIBRATION ANALYSIS AND DAMAGE DETECTION METHODS

EIGENVALUES AND EIGENVECTORS
For free vibration with undamped system, the equation of motion expressed by matrix form is

M1{x|+[] -0 &

Where:
K : Stiffness matrix of the system.
M : Mass matrix of the system.
{x} : Mode shape vector.

M X+KX =0 (39)
By using Eigen Value Problem algorithm EVP , the natural frequencies and mode shapes are obtained.

DAMAGE EFFECT ON MODAL PARAMETERS

Three structures of beam (simply supported and two plane frames: portal and crane frames) had been
used to study the damage effect on modal parameters (frequencies and mode shapes).

- Simply Supported Beam

The free vibration of a simply supported beam with and without damage is performed. Modal
responses of the beam are generated using finite element models before and after damaging episode
cases. The dimensions and material properties of the simply supported steel beam are listed in Table 1
and Fig .3 illustrates the model of the simply supported beam.

For Finite Element Analysis purposes, the beam is divided into 40 elements. Here, six damage
scenarios are investigated, as summarized in Table 2. In the first two cases (1, 2), the damage is
simulated by reducing the stiffness of assumed elements. In cases (3 to 6), damage is simulated in the
form of cracks. The finite element model of the beam uses the stiffness matrix of the cracked element
described Eq. (37).
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Table 1: Dimensions and material properties for beam
JITTTTTTTTTTITITT) Length of the beam L=254 cm.
[ " Height of the cross section h=10.16 cm.
f Mass density p=7808 kg/m?®
: Wi dth of the cross section b=5.08 cm.
] ] Elastic modulus E =199.95 GPa.
Fig.3: Simply supported beam
Table 2: Damage scenario for simply supported beam
Damage Damaged Stiffness Crack depth ratio
scenario Position Reduction (%) a/h
D1 21~ (0.5L) 25
D2 21~ (0.5L) 50
C1 21~ (0.5L) 0.1
C2 21~ (0.5L) 0.25
C3 9~ (0.2L), 21~ (0.5L) 0.1
C4 9~ (0.2 L), 21~ (0.5L) 0.25
- Portal Frame

The free vibration analysis of a portal frame with and without damage was performed. The modal
quantities of the portal frame were numerically generated using finite element without and with
damage episodes. The dimensions of the portal frame are listed in Table 3; Fig 4 illustrates the model
of the frame. For modal analysis purpose, the beam and the columns were divided into 40 elements. As
in the case of the simply supported beam, the dynamic characteristic (frequencies and mode shapes)

before and after the damage were calculated for each damage scenario in Table 4.

Table 3: Dimensions and material properties for portal frame

Length of the beam in the frame L=243.84 cm
Column height Hc = 243.84 cm
Cross section width b=5.08 cm
Cross section Height h=127 cm
Mass density p=7808 kg / m’
Elastic modulus E =199.95 GPa
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Table 4: Damage scenarios for portal frame.

Damage scenario Damage member Damaged position a/h
PC1 Right column 4 (from col. base) ~ (0.1 L) 0.1
PC2 Right column 4 (from col. base) ~ (0.1 L) 0.2
PC3 Beam 21~ (0.5L) 0.1
PC4 Beam 21~ (0.5L) 0.2
PC5 Beam 21,36 ~(0.5L,0.9L) 0.1
PC6 Beam 21,36 ~ (0.5L,0.9L) 0.2

- Crane Frame

The modal quantities of the crane frame were numerically generated using finite element without
and with damage episodes. The dimensions and material properties of the crane frame are listed in
Table 5, Fig. 5 illustrates the model of the crane frame. For modal analysis purpose, the vertical
column was divided into 40 elements while the horizontal column divided into 20 elements. Seven
damage scenarios were investigated and are summarized in Table 6.

Table 5: Dimensions and material properties for crane frame

- —"‘Il—_— """""""" ’HDL Vert_ical column Ly =254 cm

FH > Horizontal column Ly, =127 cm

i i Cross section width b=5.08cm

L Cross section Height h=12.7cm

] Elastic modulus E =199.95 GPa
i Mass density p =7808 kg/m’

Fig.5: Crane frame model

Table 6: Damage scenarios for crane frame

Damage Dama_ge
; Damaged element Damaged element severity

scenarios a/h

C1 Vertical column 8 (from col.base)~ 0.2L 0.1

C2 Vertical column 8 (from col.base)~ 0.2L 0.2

C3 Vertical column 8,30~ (0.2L,0.75L) 0.1

C4 Vertical column 8,30~ (0.2L,0.75L) 0.2

C5 Horizontal column 10 ~ (0.5L) 0.1

C6 Horizontal column 10 ~ (0.5L) 0.2

C7 Horizontal column 10 ~ (0.5L) 0.5
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DAMAGE DETECTION METHODS FOR BEAM STRUCTURES

In this research a different methods have been monitored here to detect damage in the beam
structures which can be classified into two categories:

e Methods based on changes in mode shapes and frequencies.
o Eigenparameter method.
o Mode shape relative difference method.

e Methods based on the mode shape curvature.

A. Absolute difference curvature mode shape method.

B. Curvature-energy damage index method.

1. Methods Based on Changes in Mode Shapes and Frequencies

A. Eigenparameter Method
The eigenparameter method was proposed by (Yuen 1985) and (Salawe 1993) to detect the
presence and location of damage in a cantilever beam. It is based on the premise that the mode
displacements associated with each of the dynamic degrees of freedom would be affected differently by
presence of damage and the changes in the mode shapes should reflect the location and extent of the
damage.

([K]-4 [M] {g}, =0 (40)

(k*]-2 M) =0 (41)

A parameter that accounts for the changes in the frequencies and mode shapes of the structure is
proposed to be used for damage detection. For the i —th mode shape, the eigenparameter is defined by

U} = {Z—z} - {:% (42)
A, : Theeigenvalue, 4 = w,”.

{U} :Eigenparameter vector.

{gzﬁ}i : Undamaged mode shape vector.

{¢*}i : Damaged mode shape vector.

Undamaged eigenvalue.
Damaged eigenvalue.

B. Mode Shape Relative Difference Method.
In this formulation, a comparison of the displacement mode shapes is used as an indicator of the
damage location. The parameter used is the relative difference (RD) between the mode shapes for the
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undamaged and damaged structure. For the i-th mode shape the parameter is a vector defined as (Fox
1992):

)
{RD}; = 7 (43)

Where:
{#}, : Normalized undamaged mode shape vector.

{¢"‘}i : Normalized damaged mode shape vector.

In theory a plot of the vector {RD} as a function of the measurement locations should show a
definite trend with distinct discontinuity at the damage locations.

- Methods based on the mode shape curvature

A. Absolute Difference Curvature Mode Shape.

It has been evaluated by (Pandy 1991) and (Shakkar 2006). Curvature mode shape is related to
the flexural stiffness of the beam cross-sections. By definition, (Black 1966), the curvature at a point of
an element with bending deformation, is given by:

M

v o= —
El

(44)

In which v is the curvature at a section, M is the bending moment at a section, E is the modulus of
elasticityand | is the second moment of the cross-sectional area.

If crack or other damage is introduced in a structure, it reduces the flexural stiffness El of the
structure at the cracked section in the damaged region. This in turn increases the magnitude of
curvature at that section of the structure. The change in the curvature increases with the reduction in the
value of the flexural stiffness EI .

Starting with the displacement mode shapes obtained from the finite element analysis, the curvature
mode shapes for the undamaged structure can be obtained numerically using a central difference
approximation as

v ¢i—1 B 2¢i +¢i+1
¢i - H 2 (45)

Where:
H : Distance between the measurement points (i) and (i +1) .

¢, - Mass normalized mode shape of the undamaged structure associated with a given frequency.
Similarly, the curvature mode shape for the damaged structure can be obtained as

¢i*—l — 2¢i* + ¢i*+1 (46)

¢*,i = H 2

Where,
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¢ . Mass normalized mode shape of the damaged structure corresponding to specific natural

frequency.
For mode j the absolute difference between the curvatures of the damaged and undamaged structure is

calculated as

g} =) - (47)

B. Curvature-Energy Damage Index Method
The presence of the damage in a beam structure increases the magnitude of the curvature at that
section of the structure. In this section a damage index based on the modal curvature is proposed by
(Herrera 2005). It is based on the concept of the pseudo flexibility matrix. The proposed modal

curvature-energy based matrix can be defined by

X]oo =@ |0 [A]L, (@)L, (48)

Where nthe number of points for mode is shape measurement and m is the number of measured
modes. [(1)"] Is the modal curvature matrix formed by the curvature mode shapes {¢i"}:

o’ ]=lie} W} -~ Wl (49)

[A] : Matrix contains diagonal Eigenvalues.
For the damaged structure, the proposed curvature-energy matrix can be expressed as

X =@l (AL, @] (50)

For the undamaged structure, the corresponding curvature-energy matrix is given by Eq. (48). In terms
of these curvature-energy matrices, the relationship between damaged and undamaged states, is defined

by
)= {x).0{%, } (51)

Where the symbol -/ is used to indicate that the division of the vectors is done by element.
{x,}: Diagonal of matrix [X ].

{x, }: Diagonal of matrix [X .

It is proposed to define the damage index for the jth location as

kj:‘xj —ﬂ (52)
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RESULTS AND DISCUSSION

The Results and Discussion for Simply Supported Beam

The results for the first five frequencies are listed in Table 7 for the damage scenarios considered

in Table 2 for simply supported beam.

Table 7: Natural frequencies of the simply supported beam

Damage Natural Frequency (rad/sec)

Scenario Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
Exact 227.0616 908.7063 2.0452*10% | 3.6329*10° | 5.6764*10°
undamaged
Present 227.0525 908.2102 | 2.0435*10° | 3.6329*10° | 5.6764*10°
undamaged

D1 225.1870 908.1489 2.0272*10° | 3.6319*10° | 5.6331*10°
D2 221.5876 908.0297 1.9969*10° | 3.6301*10° | 5.5558*10°
C1 226.3955 908.198 2.0377*10° | 3.6328*10° | 5.6609*10°
C2 222.2865 894.2703 2.0027*10° | 3.6177*10° | 5.5702*10°
C3 225.9728 905.0045 2.0286*10° | 3.6300*10° | 5.6540*10°
C4 211.5363 875.7897 1.9674*10° | 3.5918*10° | 5.5540*10°

The Results and Discussion for Portal Frame and Crane Frame

The results for the first five natural frequencies are listed in Table 8 for the damage scenarios
considered in Table 4 for portal frame. It can be noted that the highest variation for the first modal
frequency caused by simulated damage (crack) scenario was 0.46% and the highest decreasing for
mode 2, 3, 4 and 5 were 0.99, 0.26, 1.1 and 0.18 %, respectively. It can be noted that the highest
variation for the damage scenarios from C1 to C6 for the first modal frequency cased by simulated
damage scenario was 2 % and the highest decreasing for mode 2, 3, 4 and 5 were 1.44, 0.33, 6.3 and
9.4 %, respectively for crane frame as in Table 9.

Table 8: Natural frequencies for portal frame

Damage Natural Frequency (rad/sec)
Scenario Mode 1 Mode 2 Mode 3 Mode 4 Mode5
Undamaged | 101.9480 | 394.4309 | 653.5440 | 699.6075 | 1.3341x10°
PC1 101.8173 | 393.7627 | 653.4660 | 698.1770 1.3269 x 10°
PC2 101.4750 | 392.7021 | 653.4069 | 695.7772 1.3218 x 10°
PC3 101.9471 | 393.4324 | 653.3958 | 698.2410 1.3339 x 10°
PC4 101.9456 [ 390.5907 | 653.0997 | 696.3602 1.3338 x 10°
PC5 101.8433 | 393.3805 | 653.0262 | 696.3385 1.3334 x 10°
PC6 101.5538 | 390.4968 | 651.8200 | 691.6682 1.3317 x 10°
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Table 9: Natural frequencies for Crane frame

Damage Natural Frequency (rad/sec)

Scenarios | Mode 1 | Mode 2 Mode 3 Mode 4 Mode 5

Undamaged | 54.6114 | 221.3366 | 644.4290 | 1.5358*10° | 1.7672*10°
C1 54.3582 | 221.0727 | 644.0045 | 1.4969*10° | 1.6594*10°
C2 53.6443 | 220.6903 | 643.6281 | 1.4762*10° | 1.6363*10°
C3 54.2939 | 220.3281 | 643.4483 | 1.4710*10° | 1.6362*10°
C4 53.5103 | 218.1355 | 642.2623 | 1.4376*10° | 1.6010*10°
C5 54,5648 | 221.1289 | 643.7407 | 1.5301*10° | 1.7644*10°
C6 54.5630 | 220.7885 | 642.3609 | 1.5150*10° | 1.7596*10°
Cc7 54,5612 | 215.3734 | 621.4992 | 1.3088*10° | 1.7232*10°

The Results and Discussion of Damage Detection Method

The Results and Discussion of Eigenparameter

The eignparameter was calculated for the first two mode shapes. The parameter for the first mode
shows the largest change at this location of the damage, i.e. the peak value occurs in the damaged
region. Also at the location the slope changes sign. The damage scenarios D1, D2, C1 and C2
correspond to a single crack at the mid-span for simple beam. It can be observed that the absolute value
of the parameter increases with an increase in the severity of the damage. The peak observed in Fig .6
for single damage as in (a) and (b). For multiple damage, the peak is clear for one location of damage
for portal frame and crane frame in Fig .6, for (c) and (d) for cases PC5, PC6 for portal frame and C3,

C4 for crane frame respectively.
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Fig. 6: Eigenparameter for 1st and 2nd modes of the simply supported beam (a, b), portal (c) and crane

frames (d).
The Results and Discussion of Relative Difference Method

The peaks occur at damage location in Fig. 7 for simply supported in (a) for single damage and (b)
for multiple damage. The peak observed for one location for portal frame as in (¢) and it’s observed in
(d). In Figures illustrated the mode difference was normalized with respect to the maximum absolute
value of the mode shape of the undamaged system as in previous sections in simply supported, portal
frame and crane frame. As expected, the differences are larger for case damage C2, since this
correspond to a larger crack depth for the same cross section.
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The Results and Discussion for Absolute Difference Curvature Mode Shape

Fig. 8 Shows the results for damage scenarios D1, D2, C1, C2 for simple beam, PC5, PC6 for
portal frame and C5, C6 for crane frame. As it can be seen in Fig. 8, the maximum difference for each
curvature mode shape occurs in the damaged region, which is at location 0.5L for these damage
scenarios. In the multiple damage scenarios (C3 and C4), the presence of two cracks at the vertical
column is simulated. The defects are at position (0.2L=50.8cm and 0.75L=190.5cm) measured fromthe
fixed end of the column. It is evident from the graphs displayed that the peak observed in the damage
location as in (a), (b), (c) and (d).
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Fig. 8: Absolute difference curvatures for the three modes of the simply supported beam (a, b), portal

frame (c) and crane frame (d).

The Results and Discussion of Curvature-Energy Damage Index Method

The results of the proposed damage index for the damage scenarios D1 to C4 are shown in Fig. 9 is
calculated using only two curvature mode shapes. When two cracks are induced in the beam (damage
scenarios C3 and C4), the proposed method is capable of detecting the location of the two cracks, as

evidenced by the peaks in the index k; in Fig 9.
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Fig. 9: Curvature-Energy damage index method for the three modes of the simply supported beam (a,
b), portal frame (c) and crane frame (d).

CONCLUSION

The main conclusions from the present work according to the adopted data may be stated as

follows:

Based on assumption that the damage will change the stiffness reduction only and the mass of
the beam be consistent, the increased severity of the damage will decrease the frequencies of
the damaged beam.

It’s observed that, the damage representation as stiffness reduction 25% is not equal to the
damage represented by crack ratio 25%, accordingly it’s obvious that the crack is more
sensitive than stiffness reduction in representing the damage.

Changes on mode shape are much more sensitive to local damage when compared with changes
in natural frequencies. However, using mode shapes also has some limitations, as the damage is
a local phenomenon, it may not significantly influence the mode shapes of the lower modes,
that are usually those measured from vibration tests, and it’s obvious in large structures, as in
portal frame.

The structural damage identification technique based on changes in the displacement mode
shapes, referred to eigenparameter was able to indicate the location of damage with only one
crack in the three structures. For multiple damage scenarios, the eigenparameter was not
locating the damage zones.

The methodologies based on the modal curvatures energy exhibited superior performance in
detecting and locating the damage. The curvature- energy damage index method is the best
method used since; it does detect and locate the single or multiple damage in the three
structures which considered in this study.
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