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ABSTRACT 

      The importance of the beam in the service of our life and how the damaged beam costly influence the 

economy and even endanger the human life itself, draws our attention to study the specific methods to 
detect crack and damage by using free vibration analysis of mechanical beam structures. In the present 
research, three kinds of beam structures have been investigated namely (simply supported beam, portal 

frame and crane frame) by using finite element method.  Six cases of damage are modeled for simply 
supported beam and portal frame and with seven cases for crane frame. The damage is simulated by 

reducing the stiffness of assumed elements with ratios (25% and 50 %) in mid- span of the simply 
supported beam and by introducing cracked elements at different locations with ratio of depth of crack to 
the height of the beam (a/h) 0.1, 0.25 for simply supported beam and 0.1 and 0.2 for portal and crane 

frames. A program coded in Matlab 6.5 was used to model the numerical simulation of the damage 
scenarios. The results showed a decreasing in the five natural frequencies with shifting in the damaged 

mode shape associated with their frequencies from undamaged beam which means the indication of 
presence of the damage. The direct comparison gives an indication of the damage but the location of the 
damage, is not detected. Four structural damage identification methods based on changes in the dynamics 

characteristics of the beam structures are examined and evaluated for damage scenarios for the three 
structures considered. The results of the analysis indicate that the curvature energy damage index method 

performs well in detecting, locating and quantifying damage in single and multiple damage scenarios for 
the three structures.  
 

 الخلاصة

 

ان نفسها ثرسلبا عاى  الاقتصاد بل  وتهدد حةاة الانسفان العتب  اليتضررة تو   , في خدم  حةاتنا  beam العتب   همية نظرا لأ            
في . اليتضرره ةكانةكة ب  اليباستخدام الاهمتزاز الحر لتراكةب العت طرق معةن   لتحديد الشق و الضرر ذب اهمتيامنا نحو دراس ميا ج

والهةكل  beam simple supported  العتب  البسةط  اليدعي )  عتبه واليسياةتراكةب المن   انواع ثلاث دراس    تم   ثحبال ا همذ

  هةكل البابيوالتم تيثةل الضرر بست  حالات في العتب  البسةط   اليدعي    crane frame ) . الهةكل الرافع و  portal frame البابي
وسط  في%  25و%  52العناصر اليفترض  بنسب   متانهبتخفةض  يتيثل ( Damage)رإنّ الضر .الهةكل الرافع   وسبع  حالات في

 العتبه اليفترض  في اليواقع اليختلف  بنسب  عيق الشقّ إلى إرتفاع العناصر كذلك يتيثل عن طريق شق عيودي في و هالبسةط لعتب ا
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(a/h) 5.0 ,5.52  تم استخدام برنامج   .الهةكل الرافع و  في الهةكل البابي 5.0,5.5و هالبسةط للعتبMatlab   لتيثةل اليحاكاة العددي

 damage modeفي شكل النيط اليتضرّر بوجود زحفالنتائج نقص في الترددات الطبةعة  الخيس  و اظهرت .لسةنةوهمات الضرر
shape  الضرر لكن موقع الضرر  الى وجود تعطي اليقارن  اليباشرة إشارة. الضررلوجود إشارة  هموالذي   ه والسلةي نسبه للعتبه

تراكةب   مستندة على التغةةرات في خصائص دينامةك طرق اربعه همي التي تم استخدامها ضررال اليحدده لايجاد طرق ال. محدد غةر
 طريق  دلةل ضرر طاق  التقوس ان نتائج التحلةل تشةر إلى.  حالات الضرر للتراكةب الثلاثت وقةيّ تفحص اليحددهطرق لعتب  و الا

curvature- energy damage index في إكتشاف وتحديد مكان الضرر في سةناريوهمات الضرر  همي الافضلdamage 

scenarios ثلاث ال تراكةبلل اليواقع واليتعدّد اليوقع الوحةدة. 
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INTRODUCTION 

 

               The ability to monitor a structure and detect damage at the earliest possible stage is of 
outmost importance in mechanical, civil and aerospace engineering communities. Structural damage is 
considered as a weakening of the structure that negatively affects its performance. Damage may be also 

defined as any deviation in the structural original geometric or material properties that may cause 
undesirable stresses, displacements, or vibrations on the structure. These weakenings and deviation 

may be due to cracks, loose bolts, broken welds, corrosion, fatigue, etc. (Ren, 2002). Many structural 
components are now decaying because of age, deterioration, and lack of maintenance or repair.  
              Current nondestructive damage detection (NDD) technique are either visual or are based on 

experimental methods. Visual inspection has always been the most common method used in detecting 
damage in a structure, but the size and degree of complexity of today’s structures being built provide 

less scope for visual inspections. The experimental methods such as acoustic or ultrasonic techniques, 
magnetic field procedure, radiography, eddy current, etc. All of these experimental methods require 
that the damaged region be identified a priori, and that the segment of the structure being examined 

must be easily accessible, subjected to these limitations, these methods can detect on or near the 
surface of the structure. The methods are obviously “local” inspection approaches (Dewen, 2004). 

             One way to overcome the previously mentioned limitations is by using global damage 
detection methods. Structural damage identification based on changes in dynamic characteristics 
provides a global way to evaluate the structural condition. These methods are based on the idea that 

modal parameters (i.e., natural frequencies, mode shapes and modal damping ratio) are a function of 
the physical properties of the structure stiffness, damping, mass and boundary conditions (Herrera, 

2005). Therefore, changes in the physical properties will cause detectable changes for the changes in 
the modal parameters. 
 

MODELING THE STIFFNESS MATRIX OF THE CRACKED ELEMENT 

 

           It is assumed that the damage in the beam structure will affect only the stiffness matrix and not 
to the mass matrix. This assumption is consistent with those used by (Yuen 1985, Qian 1990 and Kisa 

2000). 

         The beam is divided into elements and the behavior of the elements located to the right of the 
cracked element regarded as external forces applied to the cracked element, while the behavior of 

elements situated to its left as constraints, see Fig.1. Thus the flexibility matrix of a cracked element 
with constraints can be calculated. The strain energy of undamaged element in case of bending 
(Singor, 1951), is: 
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As shown in Fig. 1,   
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Where: 

:)0(W   The strain energy of undamaged element.  

:E        Elastic modulus.  

:I       Moment of inertia of undamaged element. 

:L       Length of the finite element.  

:p       Internal shear force at the right end of beam. 

:M     Internal bending moment at the right end of beam.  
And by using the relation below, (Thomson 1988).  

                 

    PCu                                                                                             (5)    

 

 C  , ,u   P     are the influence coefficient flexibility matrix, displacement and force vectors, 

respectively.  

The component of flexibility matrix  C  can be written as, (Thomson 1988).   

                                                                      

j
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
                                                                                                        (6)                    

 

And the displacement iu  computed by using Castigliano's theorem (Singor, 1951). As  

                        

i
i P

Wu



)0(

                                                                                               (7)     

 

Substitute Eq. (7) into (6), the flexibility coefficient of undamaged element evaluated as  
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pp

W
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
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)0(2
)0(

                                                                                                 (8) 

 
where:                                                                         

Mppp  21 ,     2,1, ji    

And using Eq. (4) in Eq. (8) gives: 
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The flexibility matrix of the uncracked element can be expressed as  
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From the equilibrium conditions shown in Fig (2), the following relationships hold: 

  0Fy                                                                                                          (10) 

 

11 0   iiii PPorPP                                                                        (11)   

  

0 AM                                                                                                        (12)   

 

011   iii MLPM                                                                                         (13) 

 

11   iii MLPM                                                                                             (14) 

 
From Eq. (11) and (14) we get in matrix form 
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Where 

 
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The element stiffness matrix in base system is obtained by the inversion of the flexibility matrix as  
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    1
 CK                                                                                                           (17) 

 

The stiffness matrix of undamaged element can be written as 
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          The stiffness matrix of undamaged element  uK   is the same that developed by (Merovitch 1975), 

for undamaged beam element with rectangular cross-section given by Bernoulli-Eular theory have two nodes 

with two degree of freedoms (2 d. o.f.s),  ,u  at each node, as seen in Fig. 2, the mass matrix for an 

element without crack is  

 
  

 
                                             (20) 
 

 
 

 

Where 
_

m  is the mass per unit length. 
          According to the principle of Saint-Venant, the stress field is affected only in the region adjacent 

to crack. However, the calculation of the additional stress energy of a crack has been studied in fracture 
mechanics and the flexibility coefficient expressed by a stress intensity factor can be derived by 
applying the Castigliano's theorem in linear-elastic range. 

           From the condition of equilibrium, the stiffness matrix of the cracked element in the free-free 

state can be derived. For a rectangular beam having width b and height h  the additional strain energy 
)1(W due to the crack, (Dewen 2004) can be written as 
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Where  Ac  is the area of the crack surface.  The idea of relating J , strain energy release rate to the 
stress intensity factor K  was proposed by (Hellan 1984) for the three modes, who gave the general 

formula of J as a function of stress intensity factor K  as: 
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Where IIIIII KKK ,,   is the stresses intensity factors for fracture mode of III ,  , III  which are 

opening, sliding and tearing types respectively, and   is the Poisson's ratio. The stress intensity factor 

iK  from (Hellan 1984) is:  

 

)/( haFaK ii                                                                                          (23) 

 

Where   i    is the stress for the corresponding fracture mode, a  is the depth of the crack, )/( haF  is 

the correction factor for the finite specimen.  

Substituting Eq. (22) into Eq. (21) gives the additional strain energy due to the crack )1(W  
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EEp    For plane stress, )1/( 2vEEp    for plane strain and b is the width of the beam. 

The case of plane stress or plane strain, it depends on the dimensions of the beam, and this study take 
into account the plane stress since the beam is thin (slender) when the length is more than (10) times its 

least lateral dimensions (Singor 1951). 
Taking into account only bending including the opening ( I ) and sliding ( II ) modes, the Eq. (24) 

becomes; 
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Where IIPIPIM KKK ,,  are stress intensity factors for opening- type and sliding mode cracks due 
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Where )(sFI
 and )(sFII

 are the correction factors for crack mode I and mode II  , )/( has   is 

defined as the ratio between the crack depth a  and the height of the element h , the correction factor 
from (Kisa 2000) as 
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And the additional flexibility coefficients due to the presence of the crack 
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Substituting Eq. (33) into Eq. (39) and integrate over the crack height, we get the coefficients 
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which can be expressed in matrix form as 
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Where   2

11 /)( bhsF     and   bhsFII /)(2   

The total flexibility coefficients ijC  for the element with an open crack are 
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The total flexibility matrix  C  for the element with an open crack can be expressed as 
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The stiffness matrix of the cracked element  cK  can be written as  

 

       T

c TCTK
1

                                                                                           (35 )               

 

With program coded in Maple 7, the coefficients of the stiffness matrix  cK  are 
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Fig.1: Diagram of a generic element                         Fig. 2: Equilibrium condition of a generic element 
 

 

FREE VIBRATION ANALYSIS AND DAMAGE DETECTION METHODS   

     

EIGENVALUES AND EIGENVECTORS  
       For free vibration with undamped system, the equation of motion expressed by matrix form is 
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Where: 
  K :  Stiffness matrix of the system. 

 M :  Mass matrix of the system. 

  x  : Mode shape vector. 

0
..

 KXXM                                                                                                     (39)   
By using Eigen Value Problem algorithm EVP , the natural frequencies and mode shapes are obtained. 
 

 

DAMAGE EFFECT ON MODAL PARAMETERS      

 

         Three structures of beam (simply supported and two plane frames: portal and crane frames) had been 
used to study the damage effect on modal parameters (frequencies and mode shapes).  

 

- Simply Supported Beam 

         The free vibration of a simply supported beam with and without damage is performed. Modal 
responses of the beam are generated using finite element models before and after damaging episode 
cases. The dimensions and material properties of the simply supported steel beam are listed in Table 1 

and Fig .3 illustrates the model of the simply supported beam. 
           For Finite Element Analysis purposes, the beam is divided into 40 elements. Here, six damage 

scenarios are investigated, as summarized in Table 2. In the first two cases (1, 2), the damage is 
simulated by reducing the stiffness of assumed elements. In cases (3 to 6), damage is simulated in the 
form of cracks. The finite element model of the beam uses the stiffness matrix of the cracked element 

described Eq. (37).                                                   
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                                                                      Table 1: Dimensions and material properties for beam 

 
Fig.3: Simply supported beam  
 

           
 Table 2:  Damage scenario for simply supported beam 

 
 
 

 
 

 
 
 

 
 

 

-  Portal Frame 

        

        The free vibration analysis of a portal frame with and without damage was performed. The modal 
quantities of the portal frame were numerically generated using finite element without and with 

damage episodes. The dimensions of the portal frame are listed in Table 3; Fig 4 illustrates the model 
of the frame. For modal analysis purpose, the beam and the columns were divided into 40 elements. As 
in the case of the simply supported beam, the dynamic characteristic (frequencies and mode shapes) 

before and after the damage were calculated for each damage scenario in Table 4. 
 

 

Table 3: Dimensions and material properties for portal frame          

                 
 

                                                                                                                Fig.4: Portal frame 
                         

Length of the beam .254 cmL   

Height of the cross section     .16.10 cmh   

Mass density     3/7808 mkg  

Width of the cross section    .08.5 cmb   

Elastic modulus   
 

.95.199 GPaE   

Damage 
scenario 

Damaged 
Position 

Stiffness 
Reduction (%) 

Crack depth ratio   
a/h 

D1 21~ (0.5L) 25  

D2 21~ (0.5L) 50  

C1 21~ (0.5L)  0.1 

C2 21~ (0.5L)  0.25 

C3 9~ (0.2 L), 21~ (0.5L)  0.1 

C4 9~ (0.2 L), 21~ (0.5L)  0.25 

Length of the beam in the frame  L = 243.84   cm 

Column height    Hc = 243.84  cm 

Cross section width  b = 5.08   cm 

Cross section Height    h = 12.7  cm 

Mass density    = 7808 kg / m3 

Elastic modulus   E = 199.95 GPa 

Hc  

L          

Beam  

Column 

L 

h 

b 
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  Table 4: Damage scenarios for portal frame. 
 

Damage scenario Damage member Damaged position a/h 

PC1 Right column 4 (from col. base) ~ (0.1 L) 0.1 

PC2 Right column 4 (from col. base) ~ (0.1 L)  0.2 

PC3 Beam 21~ (0.5L) 0.1 

PC4 Beam 21~ (0.5L) 0.2 

PC5 Beam 21‚ 36 ~ (0.5L, 0.9L) 0.1 

PC6 Beam 21, 36 ~  (0.5L, 0.9L) 0.2 

 

- Crane Frame 

        The modal quantities of the crane frame were numerically generated using finite element without 

and with damage episodes. The dimensions and material properties of the crane frame are listed in 
Table 5, Fig. 5 illustrates the model of the crane frame. For modal analysis purpose, the vertical 

column was divided into 40 elements while the horizontal column divided into 20 elements. Seven 
damage scenarios were investigated and are summarized in Table 6.  
 

 
                                                          Table 5: Dimensions and material properties for crane frame 

                         
Fig.5: Crane frame model  
                                  
                             Table 6: Damage scenarios for crane frame 

Damage 
scenarios 

Damaged element Damaged element 

Damage 

severity 
a/h 

C1 Vertical column 8 (from col.base)~ 0.2L 0.1 

C2 Vertical column 8 (from col.base)~ 0.2L 0.2 

C3 Vertical column 8,30~ (0.2L,0.75L) 0.1 

C4 Vertical column 8,30~ (0.2L,0.75L) 0.2 

C5 Horizontal column 10 ~ (0.5L) 0.1 

C6 Horizontal column 10 ~ (0.5L) 0.2 

C7 Horizontal column 10 ~ (0.5L) 0.5 

 

 

Vertical column   Lv = 254 cm 

Horizontal column   Lh =127 cm 

Cross section width   b = 5.08 cm 

Cross section Height   h = 12.7 cm 

Elastic modulus    E = 199.95 GPa 

Mass density   = 7808  kg / m3 

 h 

b 
Lv 

Lh  
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DAMAGE DETECTION METHODS FOR BEAM STRUCTURES 

       
       In this research a different methods have been monitored here to detect damage in the beam 

structures which can be classified into two categories: 
 

 Methods based on changes in mode shapes and frequencies.  

o Eigenparameter method.  
o Mode shape relative difference method.  

 Methods based on the mode shape curvature.  
     A.  Absolute difference curvature mode shape method.  

B.  Curvature-energy damage index method. 

 

1.   Methods Based on Changes in Mode Shapes and Frequencies  

 

A.    Eigenparameter Method  

     The eigenparameter method was proposed by (Yuen 1985) and (Salawe  1993) to detect the 
presence and location of damage in a cantilever beam. It is based on the premise that the mode 
displacements associated with each of the dynamic degrees of freedom would be affected differently by 

presence of damage and the changes in the mode shapes should reflect the location and extent of the 
damage. 

 

 

      0)(  

ii MK                                                                                  (41) 

 
A parameter that accounts for the changes in the frequencies and mode shapes of the structure is 

proposed to be used for damage detection. For the thi   mode shape, the eigenparameter is defined by  
 

 
   

22

i

i

i

i
iU














                                                                                          (42)    

     

i    :  The eigenvalue,
2

ii   . 

 
i

U : Eigenparameter vector. 

 i   :  Undamaged mode shape vector.  

 i

  :  Damaged mode shape vector.  
2

i   :   Undamaged eigenvalue. 
2

i  :   Damaged eigenvalue. 

 
B. Mode Shape Relative Difference Method. 

         In this formulation, a comparison of the displacement mode shapes is used as an indicator of the 
damage location. The parameter used is the relative difference (RD) between the mode shapes for the 

        0)(  ii MK                                                                                  (40) 
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undamaged and damaged structure. For the i- th  mode shape the parameter is a vector defined as (Fox 

1992): 
 

 
   

 i

ii

iRD


 
                                                                                                              (43)                           

 
Where: 

 i   :  Normalized undamaged mode shape vector.  

 i

  :  Normalized damaged mode shape vector.  

           In theory a plot of the vector  RD  as a function of the measurement locations should show a 

definite trend with distinct discontinuity at the damage locations.  

  
- Methods based on the mode shape curvature 

 

A. Absolute Difference Curvature Mode Shape.  

       It has been evaluated by (Pandy 1991) and (Shakkar 2006). Curvature mode shape is related to 

the flexural stiffness of the beam cross-sections. By definition, (Black 1966), the curvature at a point of 
an element with bending deformation, is given by: 

 

EI

M
"                                                                                                                 (44) 

 

In which "  is the curvature at a section, M  is the bending moment at a section, E  is the modulus of 
elasticity and I  is the second moment of the cross-sectional area. 

      If crack or other damage is introduced in a structure, it reduces the flexural stiffness EI of the 
structure at the cracked section in the damaged region. This in turn increases the magnitude of 
curvature at that section of the structure. The change in the curvature increases with the reduction in the 

value of the flexural stiffness EI . 
      Starting with the displacement mode shapes obtained from the finite element analysis, the curvature 

mode shapes for the undamaged structure can be obtained numerically  using a central difference 
approximation as  
 

2

11" 2

H

iii

i

 



                                                                                               (45)    

 

Where: 
H : Distance between the measurement points )(i  and )1( i . 

i : Mass normalized mode shape of the undamaged structure associated with a given frequency.  

 Similarly, the curvature mode shape for the damaged structure can be obtained as  
 

2

11"

,

2

H

iii

i










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Where, 
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

i : Mass normalized mode shape of the damaged structure corresponding to specific natural 

frequency. 
For mode j  the absolute difference between the curvatures of the damaged and undamaged structure is 

calculated as 
 

     jjj

"""   
                                                                                             (47) 

 
B. Curvature-Energy Damage Index Method 
      The presence of the damage in a beam structure increases the magnitude of the curvature at that 

section of the structure. In this section a damage index based on the modal curvature is proposed by 
(Herrera 2005). It is based on the concept of the pseudo flexibility matrix. The proposed modal 

curvature-energy based matrix can be defined by 
 

        T

nmmmmnnnX 



  "1"
                                                                        (48) 

 
Where n the number of points for mode is shape measurement and m  is the number of measured 

modes.  "  Is the modal curvature matrix formed by the curvature mode shapes  "i : 

 

        ""

2

"

1

"

m                                                                                          (49) 

 

   : Matrix contains diagonal Eigenvalues. 

For the damaged structure, the proposed curvature-energy matrix can be expressed as 

 

       T

nmmmmnnnX 





  "1"
                                                                          (50) 

 
For the undamaged structure, the corresponding curvature-energy matrix is given by Eq. (48). In terms 

of these curvature-energy matrices, the relationship between damaged and undamaged states, is defined 
by 

 

     uxxx /.                                                                                                               (51) 

 

Where the symbol /  is used to indicate that the division of the vectors is done by element.  

 :ux  Diagonal of matrix  X . 

 x : Diagonal of matrix  X . 

It is proposed to define the damage index for the j th  location as 
 

1 jj xk                                                                                                                    (52) 
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RESULTS AND DISCUSSION 

 
The Results and Discussion for Simply Supported Beam 

      The results for the first five frequencies are listed in Table 7 for the damage scenarios considered 
in Table 2 for simply supported beam. 
 

Table 7: Natural frequencies of the simply supported beam 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Results and Discussion for Portal Frame and Crane Frame  

         The results for the first five natural frequencies are listed in Table 8 for the damage scenarios 

considered in Table 4 for portal frame. It can be noted that the highest variation for the first modal 
frequency caused by simulated damage (crack) scenario was 0.46% and the highest decreasing for 
mode 2, 3, 4 and 5 were 0.99, 0.26, 1.1 and 0.18 %, respectively. It can be noted that the highest 

variation for the damage scenarios from C1 to C6 for the first modal frequency cased by simulated 
damage scenario was 2 % and the highest decreasing for mode 2, 3, 4 and 5 were 1.44, 0.33, 6.3 and 

9.4 %, respectively for crane frame as in Table 9. 
 

Table 8: Natural frequencies for portal frame 
Damage Natural Frequency  (rad/sec) 

Scenario Mode 1 Mode 2 Mode 3 Mode 4 Mode5 
Undamaged 101.9480 394.4309 653.5440 699.6075 1.334110

3
 

PC1 101.8173 393.7627 653.4660 698.1770 1.326910
3
 

PC2 101.4750 392.7021 653.4069 695.7772 1.321810
3
 

PC3 101.9471 393.4324 653.3958 698.2410 1.333910
3
 

PC4 101.9456 390.5907 653.0997 696.3602 1.333810
3
 

PC5 101.8433 393.3805 653.0262 696.3385 1.333410
3
 

PC6 101.5538 390.4968 651.8200 691.6682 1.331710
3
 

 
 
 

 
 

Damage Natural Frequency (rad/sec) 

Scenario Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Exact 
undamaged  

227.0616 908.7063 2.0452*103 3.6329*103 5.6764*103 

Present 

undamaged  
227.0525 908.2102 2.0435*103 3.6329*103 5.6764*103 

D1 225.1870 908.1489 2.0272*103 3.6319*103 5.6331*103 

D2 221.5876 908.0297 1.9969*103 3.6301*103 5.5558*103 

C1 226.3955 908.198 2.0377*103 3.6328*103 5.6609*103 

C2 222.2865 894.2703 2.0027*103 3.6177*103 5.5702*103 

C3 225.9728 905.0045 2.0286*103 3.6300*103 5.6540*103 

C4 211.5363 875.7897 1.9674*103 3.5918*103  5.5540*103 



Nabil H. H.                                                                                       Evaluation Of Specific Methods To Detect Crack And 

Iqbal A. R.                                                                                        Damage Of Mechanical Beam Structures Using Free 

                                             Vibration Analysis  

 

  4273 

 

 
Table 9: Natural frequencies for Crane frame 

 
 

 

 

 

 

 

 

 

 

 

 

The Results and Discussion of Damage Detection Method     

                                        

The Results and Discussion of Eigenparameter  

 

        The eignparameter was calculated for the first two mode shapes. The parameter for the first mode 
shows the largest change at this location of the damage, i.e. the peak value occurs in the damaged 

region. Also at the location the slope changes sign. The damage scenarios D1, D2, C1 and C2 
correspond to a single crack at the mid-span for simple beam. It can be observed that the absolute value 

of the parameter increases with an increase in the severity of the damage.  The peak observed in Fig .6 
for single damage as in (a) and (b). For multiple damage, the peak is clear for one location of damage 
for portal frame and crane frame in Fig .6, for (c) and (d) for cases PC5, PC6 for portal frame and C3, 

C4 for crane frame respectively. 
 

 
                          (a)                                                                     (b) 

Damage 
Scenarios 

Natural Frequency   (rad/sec) 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Undamaged 54.6114 221.3366 644.4290 1.5358*103 1.7672*103 

C1 54.3582 221.0727 644.0045 1.4969*103 1.6594*103 

C2 53.6443 220.6903 643.6281 1.4762*103 1.6363*103 

C3 54.2939 220.3281 643.4483 1.4710*103 1.6362*103 

C4 53.5103 218.1355 642.2623 1.4376*103 1.6010*103 

C5 54.5648 221.1289 643.7407 1.5301*103 1.7644*103 

C6 54.5630 220.7885 642.3609 1.5150*103 1.7596*103 

C7 54.5612 215.3734 621.4992 1.3088*103 1.7232*103 
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                         (c)                                                           (d) 

Fig. 6: Eigenparameter for 1st and 2nd modes of the simply supported beam (a, b), portal (c) and crane 
frames (d). 

 

The Results and Discussion of Relative Difference Method 

  

                    The peaks occur at damage location in Fig. 7 for simply supported in (a) for single damage and (b) 
for multiple damage. The peak observed for one location for portal frame as in (c) and it’s observed in 
(d). In Figures illustrated the mode difference was normalized with respect to the maximum absolute 

value of the mode shape of the undamaged system as in previous sect ions in simply supported, portal 
frame and crane frame. As expected, the differences are larger for case damage C2, since this 

correspond to a larger crack depth for the same cross section.  
 

 

      
                            (a)                                                             (b) 
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                                  (C)                                                                         (d) 

   
Fig. 7: Relative difference for first and second modes of the simply supported beam (a, b), portal (c) 

and crane frames (d). 
 

The Results and Discussion for Absolute Difference Curvature Mode Shape  

 

       Fig. 8 Shows the results for damage scenarios D1, D2, C1, C2 for simple beam, PC5, PC6 for 
portal frame and C5, C6 for crane frame. As it can be seen in Fig. 8, the maximum difference for each 
curvature mode shape occurs in the damaged region, which is at location 0.5L for these damage 

scenarios. In the multiple damage scenarios (C3 and C4), the presence of two cracks at the vertical 
column is simulated. The defects are at position (0.2L=50.8cm and 0.75L=190.5cm) measured from the 

fixed end of the column. It is evident from the graphs displayed that the peak observed in the damage 
location as in (a), (b), (c) and (d). 

 

 
                                   (a)                                                                                (b) 
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                                (c)                                                                                 (d) 

Fig. 8: Absolute difference curvatures for the three modes of the simply supported beam (a, b), portal 
frame (c) and crane frame (d). 

 
  

The Results and Discussion of Curvature-Energy Damage Index Method 

 

      The results of the proposed damage index for the damage scenarios D1 to C4 are shown in Fig. 9 is 

calculated using only two curvature mode shapes. When two cracks are induced in the beam (damage 
scenarios C3 and C4), the proposed method is capable of detecting the location of the two cracks, as 

evidenced by the peaks in the index  jk  in Fig 9. 

                 
                              (a)                                                                                      (b) 
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                                (c)                                                                                 (d) 
Fig. 9: Curvature-Energy damage index method for the three modes of the simply supported beam (a, 

b), portal frame (c) and crane frame (d). 
 

CONCLUSION  
 
         The main conclusions from the present work according to the adopted data may be stated as 

follows: 

 Based on assumption that the damage will change the stiffness reduction only and the mass of 

the beam be consistent, the increased severity of the damage will decrease the frequencies of 
the damaged beam. 

 

 It’s observed that, the damage representation as stiffness reduction 25% is not equal to the 
damage represented by crack ratio 25%, accordingly it’s obvious that the crack is more 

sensitive than stiffness reduction in representing the damage.  
 

 Changes on mode shape are much more sensitive to local damage when compared with changes 
in natural frequencies. However, using mode shapes also has some limitations, as the damage is 

a local phenomenon, it may not significantly influence the mode shapes of the lower modes, 
that are usually those measured from vibration tests, and it’s obvious in large structures, as in 
portal frame. 

 

 The structural damage identification technique based on changes in the displacement mode 

shapes, referred to eigenparameter was able to indicate the location of damage with only one 
crack in the three structures. For multiple damage scenarios, the eigenparameter was not 
locating the damage zones.  

 

 The methodologies based on the modal curvatures energy exhibited superior performa nce in 

detecting and locating the damage. The curvature- energy damage index method is the best 
method used since; it does detect and locate the single or multiple damage in the three 

structures which considered in this study.  
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