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By 
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ABSTRACT 
The radial mapping version of the bounding surface plasticity model is implemented in a computer 

program to predict the response of cohesive soils. The eight-noded isoparametric element and 

Biot’s theory are used in this study for analyzing soil consolidation problems. The model has been 

used in the analysis for two classes of problems. The first involves the comparison of model 

predictions with the results of laboratory tests in compression and extension for normally and 

overconsolidated clays. The second class involves using the model to predict the results of one- and 

two-dimensional finite element problems of soil consolidation. The comparisons with experiments 

demonstrate that the model, through its simplicity, can describe realistically the soil response under 

different monotonic loading conditions at any overconsolidation ratio. The comparison between the 

bounding surface plasticity model with the classical modified Cam clay model shows considerably 

different rates and magnitudes of settlement, and different pore pressure behavior during the 

consolidation process. 

 

 الخلاصة

لقددت ترددالتة  . بيددن خةددلم تلم  ةدد  تلعدد نمو م ددو خمددسطح لتمخددم تلةدد م تلمسددي  تددو ا خددنة  لنرددساو لاسكدد  ترددا نام تلادد   تلمامنردد ملقددت  دد    
لقددت  دد  ترددالتت  تلنمددسطح لاس يدد  صددن ي  ةدد   .طتت ثمنخيددم مقددت ةدد  خي  ددم ايددس تددو لددلي تلتاترددم لاس يدد  ةةددن   ت خ ددمن  تددو تلا اددم ةسددت   مننصدد 
تلصنف ت مل تلو ةقناخم  سك دنت تلنمدسطح ةد  خادن   تسدسب ةلاب  دم  سد  ت خ دسنط م ت ردا نلم  ةيدنت ةن دمم تماين  دن  م ت د    ا  ق . تلمةن  

 يهد  تلمقناخددنت ةدد  . ب ددت  متلدت م ا ب ددتمننصد  ام يددم  بسد  تلصددنف تليدنخو انرددالتت  تلنمدسطح لاسكدد  خادن   ةةددن   تخ ددمن  تلا ادم ا. ةن دمم اي ددن  
 يه  ةقناخدم ادي  . ا  تلنمسطح تلبةي  م و  سك  ترا نام تلا ام تلسقيقيم  س  ظ مف  سمي  ا يبم ةلا  م م ان م خةبم ة  ت خ من  تليت تتلا نا  كت

تلدو ت دا ف تدو  صد ف تل دس  تلمةدنةو  تلم تل تلاق يتي ة دت ت م كدي  ةلا  دم ةد  ت خ دمن  ت دنتم خمسطح تلة م تلمسي  ة  خمسطح ةي  كن 
 .مم يم ت خ من  تثننء

 

KEYWORDS 
Clays, consolidation, bounding surface, constitutive relations, numerical modeling and 

analysis. 

 

INTRODUCTION 

Consolidation plays an important role in many soil mechanics problems. This is evident by the vast 

amount of literature devoted to the solution of this problem since the pioneering work of Terzaghi. 

Probably the most difficult problems that a soil engineer is asked to solve, is the accurate prediction 

of the settlement of a finite loaded foundation on a thick compressible stratum. 

A major problem in applying any solution procedure to geotechnical engineering problems is to 

provide a realistic representation of the stress- strain characteristics for the porous medium. The 
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choice of appropriate constitutive or stress-strain laws or models may have a significant influence 

on the numerical results obtained. Their importance has been enhanced significantly with the great 

increase in development and application of many modern computer-based techniques such as the 

finite element, finite difference, and boundary integral equation methods. It has been realized that 

the advances and sophistication in the solution techniques have far exceeded our knowledge of the 

behavior of materials defined by constitutive laws. As a consequence, very often, results from a 

numerical procedure that may have used less appropriate constitutive laws can be of limited or 

doubtful validity. 

The objective of this study is to implement one of the several relatively new and very promising 

plasticity models for soils (the bounding surface plasticity model) in a general nonlinear analysis 

program to establish the accuracy and limitations of the model formulation. The model has been 

used in the analysis of two classes of problems. The first involves the comparison of model 

predictions to the results of laboratory tests. The second class involves using the model to predict 

the results of one- and two-dimensional finite element problems of soil consolidation. 

 

THE GOVERNING EQUATIONS FOR SINGLE FLOW IN A DEFORMING POROUS 

MEDIUM 

In this section, the governing equations for single flow in a deforming porous medium are 

developed. The governing equations are developed in line of Biot’s self consistent theory (Biot, 

1941; Biot, 1955; Biot, 1956). The solid phase is assumed to be comprised of a porous skeleton of 

particles surrounded by one fluid. The small strain theory is considered to be applicable, and so 

Darcy’s law is assumed valid in terms of absolute fluid velocity. 

It is assumed that a pure fluid pressure p causes only a uniform, volumetric strain by 

compressing the grains and that the major deformation of the porous skeleton is governed by the 

effective stress  . This is defined as follows, with the sign convention that tension is positive: 

 
mp                                                                                                         (1) 

 

where is the total stress and m is equal to unity for the normal stress components and zero for the 

shear stress components. 

The constitutive equation relating effective stress   to the strains of the skeleton is now 

independent of the pore pressure p, and for a general non-linear material can be written in a 

tangential form, thus allowing plasticity to be incorporated. If creep strain is present, the expression 

is written in a general form as (Lewis and Schrefler, 1987): 

 
)dddε(dDσd opcT                                                                                 (2a) 

 

where d  represents the total strain of the skeleton, 

 
dt.cd c                                                                                                           (2b) 

 
is the creep strain, 

 
)K3/dp(md sp                                                                                               (2c) 

 

represents the overall volumetric strains caused by uniform compression of the particles by the 

pressure of the pore fluid, with sK  being the bulk modulus of the solid phase. 
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Finally, o  represents all other strains not directly associated with stress changes (swelling, 

thermal, chemical, etc.). These types of strains are defined as “autogeneous” strains (Zienkiewicz et. 

al., 1977). 

The matrix TD  and the creep function c are dependent on the level of effective stress   and 

also, if strain effects are considered, on the total strain of the skeleton   (Lewis and Schrefler, 

1987). 

The equilibrium equation relating the total stress   to the body forces b and the boundary 

traction t̂  specified at the boundary   of the domain   is formulated in terms of the unknown 

displacement vector u. Using the principle of virtual work (Zienkiewicz, 1977), the general 

equilibrium statement can be written as: 

 

  
  

 0dt̂udbudσε TTT                                                                       (3) 

 

for virtual displacement u  such that on the boundary part u , where displacements are prescribed, 

these are not varied. Equation 3 is already a weak statement of the equilibrium relationship which 

also incorporates the boundary conditions. 

The equilibrium statement (Eq. 3) is also valid in incremental form: 

 

0dt̂dudbdudd TTT

  
  

                                                                      (4) 

 

The effective stress relationship given by the equation 1 is now incorporated into this equation 

and the following expression is obtained: 

 

 
 

 0f̂dmdpdddd TT                                                                            (5) 

 

where 

 

 
 

 dt̂dudbduf̂d TT                                                                                     

(6) 

 

f̂d  represents the change in external force due to boundary and body force loadings. 

Further, on taking into account the constitutive relationship given by equation 2 and dividing by 

dt, the following equation is obtained: 

 

  
  















 d

K3

1

t

p
mDd

t

p
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t
D

s

T
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T

T  

 
 










 0

t

f̂
d

t
DcdD o

T

T

T

T                                                                    (7) 

 

The geometrical complexity of a porous medium renders impossible a strict analytical treatment 

of the fluid velocity within the porous space. To overcome this obstacle, the fictitious seepage 
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velocity (also known as bulk or Darcy’s velocity) is defined as (Bear, 1972): 

 

)ghp(k
1

q 


                                                                                               (8) 

 

where k is the absolute permeability matrix of the medium,   the dynamic viscosity of the fluid, p 

the fluid pressure,   the density, g the gravity, and h is the head above some arbitrary datum. 

The continuity of flow requires that the following expression is valid (Crichlow, 1977): 

 

(rate of fluid accumulation) 0)q.(                                                                                             (9) 

 

which, on combining with Darcy’s law given by the equation 8, results in: 

 

(rate of fluid accumulation) 0)ghp(
k

. 












                                                                   (10) 

 

There are many factors which contribute to the rate of fluid accumulation and these are 

enumerated as follows (Lewis et. al., 1976): 

a. Rate of change of total strain 

 

t
m

t

Tv









                                                                                                                                 (11a) 

b. Rate of change of the grain volume due to pressure changes 

 

t

p

K

n1

s 


                                                                                                                                         (11b) 

where n is the porosity. 

c. Rate of change of saturation 

 

t

s
n




                                                                                                                                              (11c) 

where s is the degree of saturation. 

d. Rate of change of fluid density 

 

t
ns




                                                                                                                                             (11d) 

e. Finally, the change of grain size due to effective stress changes t  

 

t
m

K3

1 T

s 


                                                                                                                                (11e) 

Substituting for t  from equation 2a into 11e yields the following expression: 

 





















 c

t

p

K3

m

t
Dm

K3

1

s

T

T

s

                                                                                                   (11f) 

 

The continuity equation for water (with no source term) therefore becomes: 
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Equation 12 can be simplified by assuming water flowing at saturated conditions and dividing by   

results in equation 11d for water being written as: 

 

t
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
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                                                                                                         (13) 

 

where wK  is the bulk modulus of water. 

Equation 12 then becomes: 

 


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
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                                                                                         (14) 

 

FINITE ELEMENT APPLICATION IN SOIL CONSOLIDATION 

The fully coupled solution of the one-phase flow equation in an elastoplastic porous medium will 

now be discussed in this section. The particular form of the continuity equation 14, together with 

the equilibrium equation 7, form the governing equations for soil mechanics problems within the 

line of Biot’s self consistent theory. 

The consolidation problem is a boundary value problem, and this type of problems requires that 

the governing equations are satisfied within all points of a continuum (domain  and that the 

boundary conditions are satisfied on the boundary of the domain. 

The equilibrium equation 7 has the boundary condition already incorporated. Attention is 

therefore focused on the continuity equation. In this case the boundary conditions satisfy: 

a. The continuity of flow across the boundary, 

 

  0qghp
k

nB T 


                                                                                                          (15) 

 

where n is the unit normal vector and q is the outflow rate per unit area of the boundary surface. 

b. Prescribed pore pressure. 

The condition that the continuity equation 14 applies throughout the continuum and that equation 

15 applies on the boundary requires that: 

 

 
 

 0dBbdAa TT                                                                                                                   (16) 

 

where a and b are a set of arbitrary functions since A  and B  are identically satisfied throughout 

their respective domains. 
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Conversely, if equation 16 is valid for any arbitrary values a and b, then the differential 

equations 14 and 15 must be satisfied at all points within and on the boundary of the continuum. 

The finite element method will be applied to equations 7 and 16 in terms of displacements and 

pore pressures. In equation 14 the appearance of second derivatives for )ghp(   necessitates a 

smooth distribution in space due to the integration of these variables. In order to overcome this 

limitation, a weak form of equation 14 is obtained by means of Green’s theorem. 

Upon substitution of equation 14 and equation 15, equation 16 becomes: 
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
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
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k
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k

na TTTTT                                                           (17) 

 

Since the values of a and b are arbitrary, it can be made: 

ab   

and thus eliminate some of the terms of the boundary integrals. Equation 17 therefore reduces to: 
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                                                             (18) 

The finite element approximation is now applied to equations 7 and 18. The displacements and 

pore pressures are expressed in terms of their values u  and p  at a finite number of points in space. 

The expressions for u, p, and   take the form: 

 

uNu                                                                                                                                            (19a) 

 

pNp                                                                                                                                            (19b) 

 

uB                                                                                                                                            (19c) 

in which N, N  are the shape functions of displacement and pore pressure, respectively and B is the 

strain-displacement transformation matrix. Substituting equations 19 into equations 7 and 18, the 

finite element discretization gives the result: 
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                                                           (20) 
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Equation 20 is valid for any value of the virtual displacement u  and can hence be written as: 

 

0
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df
C
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where 
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  cdDBC T

T                                                                                                                           (23c) 

 

  
  

 ddDBdt̂dNdbdNdf oT

TTT                                                                              (23d) 

 

in which K= the tangential spatial stiffness matrix; L = the coupling matrix representing the 

influence of pore pressure in force equilibrium; C = the creep matrix and df = load vector 

equivalent to the body force, surface traction and autogeneous strain, respectively. 

The form of the function a in equation 21 is still quite arbitrary and must be specified before 

equation 21 can be solved. It is desirable to choose a form which will increase the accuracy of the 

approximation used. For this purpose, the method of weighted residuals procedure has been applied, 

using the Galerkin method (Zienkiewicz, 1977). 

The function a is replaced by a finite number of functions within each element, which is in the 

Galerkin method are identical to the shape functions N . Equation 21 now becomes: 
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in which H = is the spatial flow (or seepage) matrix; S = the compressibility matrix and f = the load 

vector equivalent to fluid flow of source elements, creep function and gravity load, respectively. 

It can be easily verified that the complete set of equations is symmetric if the matrix TD  is 

symmetric. 

The integration of these equations usually requires the use of numerical techniques, and a 

standard method is that of Gaussian quadrature (Zienkiewicz, 1977), where the integrands are 

evaluated at specific points of the element and boundary surface and then weighted and assumed. 

The procedure is carried out in terms of a set of local coordinates   and   having values of 1  on 

the element boundaries. 

Since the discretization in space has been carried out, equations 22 and 24 now represent a set of 

ordinary differential equations in time. For convenience, the equations are written in the following 

form: 
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The values of u  and p  at different values in time may now be obtained by means of appropriate 

time-stepping algorithms. 

The method used for the time discretization may be regarded as a one- dimensional finite 

element scheme as distinct from the spatial discretization, Kantorovich type approach, (Zienkiewicz, 

1977). 

The time domain is divided into a number of elements or steps and integration is carried out for 

each step to obtain the change of the parameters u  and p . The step-by-step integrations may then 

be summed to determine the total change of the parameters. The integration takes the same form as 

used for the spatial integration, i.e., 

if   F = 0   then     0Fdtg  

where g  is an arbitrary function of time. 

When applying this method to equation 26, yields the following equations: 
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where kt  is the length of the k-th time step. 

The first order-time derivatives of u  and p  may be approximated by assuming a linear variation 

of u  and p  within each step. 
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where 1N1 , 2N  and kk t/)tt(  . 

The derivatives with respect to time of 1N  and 2N  are given as: 
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By substituting equations 28 and 29, equations 27 take the form: 
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Equation 30 may now be integrated, using the point collocation method, then divided by g , and 

finally rearranged in the form: 
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Equations 31 are formed for all internal nodes of the domain and those boundary nodes where 

pore pressure value and/or displacement are not prescribed. The number of equations is thus equal 

to the number of unknown variables. 

The complete set of equations may be used in the time-stepping procedure outlined above to 

determine the values of u  and p  at any point in time relative to their initial values. 

The eight-noded isoparametric element is used in this study. The nodes in the elements used 

represent both displacements and pore fluid pressures, which vary quadratically over the element, as 

field variables on the same mesh. In other words, the nodes represent displacements and pore 

pressures at the same time as if there are two concurrent meshes. 

 

NUMERICAL IMPLEMENTATION OF THE BOUNDING SURFACE PLASTICITY 

MODEL 

Soil plasticity problems are nonlinear and history-dependent and thus require more elaborate 

solution schemes for boundary value problems than simple linear elasticity problems. All the 

techniques for nonlinear analysis can, with certain qualifications, be applied irrespective of the 

constitutive law, although some techniques are better suited to particular laws than others (Naylor 

and Pande, 1981). 
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The bounding surface plasticity model can be used to supply properties for most numerical 

solution schemes applicable to soil stress analysis problems. In general, the use of a history 

dependent constitutive model (such as the bounding surface plasticity) in a stress analysis program 

requires some form of an incremental solution procedure. In addition, in order to be able to employ 

reasonably sized solution steps (for implicit implementation), iteration within each step is also 

usually necessary. 

The constitutive relation in inverse form is given by the following equation: 

 

klijklij D                                                                                                                                        (32) 

The determination of the explicit form of the ijklD  tensor, equation 6 of reference (Dafalias, 

1986) involves the use of equations 1, 7-10, 22, 28, 29, 35a, and 35b of reference. (Dafalias and 

Herrmann, 1986). Because the associated flow rule has been adopted, the ijR  is equal to ijL  and 

the 
I'

U  is equal to 
I'

F , etc. Combining these expressions gives: 
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In the above expressions, the elastic bulk modulus K is given by equation 29 of reference (Dafalias 

and Herrmann, 1986). The elastic shear modulus G is either defined independently or is computed 

from K and a specified value of Poisson’s ratio. The plastic modulus pK  is obtained from equation 

30 of reference (Dafalias, 1986) in which the hardening function Ĥ  and the bounding plastic 

modulus are defined by equations 30 of reference (Dafalias, 1986) and 28 of reference (Dafalis and 

Herrmann, 1986), respectively. )(h  is the heavy-side step function. The quantities related to the 

bounding surface such as b, 
I'

F , etc., are given in Appendix I of reference (Dafalias and Herrmann, 

1986). The stress invariants are defined in equation 2 of reference (Dafalias and Herrmann, 1986). 

The size of the bounding surface is controlled by the measure of the preconsolidation history oI . 

The evolutionary law for oI  is given by the second equation of 27b in reference (Dafalias and 

Herrmann, 1986), i.e.: 
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The parameters and lI  are described in reference (Dafalias and Herrmann, 1986). Using 

equation 26 of reference (Dafalias and Herrmann, 1986) and expressing the elastic volume change 

in terms of the bulk modulus K and the change in I gives: 
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Two cases must be considered in integrating equation 37. 

If lo II  , equation 37 becomes: 
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Dividing by oI  and integrating over substep m gives: 
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The first two integrals may be evaluated exactly, while the third is approximated by the trapezoidal 

rule (K is given by equation 29 of reference (Dafalias and Herrmann, 1986)). Integrating and 

solving for 
moI  yields: 
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If lo II  , equation 37 becomes: 
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Integrating this expression yields: 
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EXAMPLES 

In this section, in order to check the validity of the numerical implementation of the bounding 

surface plasticity model, a comparison is made with the experimental results of soft clay response 

under undrained monotonic deviatoric loading in compression and extension for normally and 

overconsolidated clays published by Banerjee and Stipho (1978; 1979). 

The solutions for one- and two-dimensional plane strain consolidation problems are shown in 

this section. In this case, a comparison has been made between the settlement predictions obtained 
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by Siriwardane and Desai (1981) and those obtained by using the bounding surface plasticity 

model that is used in this study. The conventional modified Cam clay model was used by 

Siriwardane and Desai for the elastoplastic analysis. 

 

Model Response and Comparison with Experiments 

The predictions of the bounding surface plasticity model at the constitutive matrix level (Eq. 33) 

and comparisons with experimental data for different overconsolidation ratios in compression and 

extension tests are now presented. 

A series of comparisons between the experimental observations of the stress-strain in addition to 

pore water pressure and those predicted by the theoretical model are presented in Figs. 1, 2, 3, 4, 

and 5. These figures show by discrete symbols the experimental data for a triaxial undrained 

loading at overconsolidation ratios OCR = 2, 5, and 12 in compression tests and at OCR = 2 and 10 

in extension tests and by continuous lines for the model simulation. All the theoretical results have 

been obtained by using the values of the input material parameters listed in Table 1. 

The experimental data are taken as reported by Banerjee and Stipho (1978; 1979) where samples 

of kaolin (LL = 52, PL = 26) were tested under undrained conditions. The method of preparation of 

these samples and details of the testing procedure are given by Banerjee and Stipho (1978). 

Comparison with experiments demonstrates that the predicted response by using the bounding 

surface plasticity model is in good agreement with experimental data and that the model can 

describe realistically the soil response under different loading conditions at any overconsolidation 

ratio. 
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Table 1: The Input Parameters Used to Predict the Response of the Bounding Surface Plasticity 

Model 

 

Parameter Value 

 0.14 

 0.05 

 0.20 

cM  1.05 

eM  0.85 

cR  2.68 

eR  2.25 

cA  0.06 

eA  0.05 

T -0.10 

C 0 

s 1.0 

ch  2.0 

eh  1.5 

oh  1.75 

 ll P3I   101.4 kN/m
2
 

m 0.02 

 

One-Dimensional Consolidation 

In this section, the solution for a one-dimensional plane strain consolidation problem is shown. The 

results obtained from the bounding surface plasticity model are compared with those of 

Siriwardane and Desai (1981). Isoparametric eight-noded elements have been used instead of 

triangular elements that were used by Siriwardane and Desai. 

The finite element mesh is shown in Fig. 6. The width of loading B is assumed to be equal to 

0.102 m. An external surface load (po = 47.9 kN/m
2
) is applied at the top surface of the model. The 

input material parameters used in this problem are shown in Table 2. Some of these parameters are 

the classical material parameters within the critical-state soil mechanics context. So these material 

parameters are taken as reported by Siriwardane and Desai (1981). The others are the new material 

parameters related to the bounding surface plasticity model. The typical values of these parameters 

in the more limited ranges for practical applications are used in the analysis of this problem. 



O.Al-Farouk                                                                            Bounding surface coupled finite element consolidation 

A. N. Al-Ebady                                                                       Analysis of normally and overconsolidated clays  

 

 1841 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Predictions of the Bounding Surface Plasticity Model for Lightly Overconsolidated Clay 

(OCR = 2) in Compression Test 

a. Undrained Stress Path 

b. Stress-Strain Behavior 

c. Pore Water Pressure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Predictions of the Bounding Surface Plasticity Model for Heavily Overconsolidated Clay 

(OCR = 5) in Compression Test 

a. Stress-Strain Behavior 

b. Pore Water Pressure 
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Fig. 3: Predictions of the Bounding Surface Plasticity Model for Heavily Overconsolidated Clay 

(OCR = 12) in Compression Test 

a. Stress-Strain Behavior 

b. Pore Water Pressure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Predictions of the Bounding Surface Plasticity Model for Lightly Overconsolidated Clay 

(OCR = 2) in Extension Test 

a. Undrained Stress Path 

b. Stress-Strain Behavior 

c.  
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Fig. 5: Predictions of the Bounding Surface Plasticity Model for Heavily Overconsolidated Clay 

(OCR = 10) in Extension Test 

a. Stress-Strain Behavior 

b. Pore Water Pressure 

 

 

Fig. 7 shows the comparison between the calculated settlement at a typical node (107) using the 
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Again, it is worthy to notice that the classical material parameters, which have been used by 

Siriwardane and Desai, are taken as the same as reported by them. The other parameters are taken 

as typical values in the more limited ranges for practical applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Finite Element Mesh for the One-Dimensional Consolidation Problem 
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Table 2: Input Material Parameters for the One-Dimensional Consolidation Problem 

 

Parameter Value 

 0.14 

 0.05 

 0.4 

cM  1.05 

eM  0.89 

cR  2.72 

eR  2.18 

cA  0.1 

eA  0.08 

T -0.10 

C 0.4 

s 1.0 

ch  4.0 

eh  4.0 

oh  4.0 

 ll P3I   101.4 kN/m
2
 

m 0.02 

hK  1.22 x 10
-6

 m/day 

vK  1.22 x 10
-6

 m/day 

ein 0.9 

Eo 287.3 kN/m
2 

 

The predicted pore pressures are non-dimensionalized with respect to po, where po is the 

externally applied surface loading. The initial modulus Eo is used to compute the coefficient of 

consolidation cv value for use in the non-dimensional time factor Tv. The predicted settlements are 

non-dimensionalized with respect to width of loading B. 

Fig. 11 shows a comparison of timewise variation of surface settlement from the bounding 

surface plasticity model with those from a problem that was solved by Siriwardane and Desai 

(1981) using the conventional modified Cam clay model. It can be seen that the settlements from 

the two models do not differ significantly at initial time levels. However, at higher times the 

bounding surface plasticity model shows higher settlements but a smaller final settlement. 
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Dissipations of pore water pressure at section (B-B) in Fig. 10 are compared in Fig. 12. The 

bounding surface plasticity model shows higher dissipation of pore water pressures at earlier times, 

while, at higher time levels, the two results tend to be similar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: Surface Settlement versus Time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: Pore Pressure versus Time at a Typical Node (Node 31) 

0.001 0.010 0.100 1.000 10.000

Time Factor 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

S
e

tt
le

m
e

n
t 
/ 

F
in

a
l 
S

e
tt
le

m
e

n
t

Bounding Surface Plasticity Model

Modified Cam Clay Model

 

0.001 0.010 0.100 1.000 10.000

Time Factor 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

P
o

re
 P

re
s
s
u

re
 /

 A
p
p

lie
d

 S
tr

e
s
s

Bounding Surface Plasticity Model

Modified Cam Clay Model



O.Al-Farouk                                                                            Bounding surface coupled finite element consolidation 

A. N. Al-Ebady                                                                       Analysis of normally and overconsolidated clays  

 

 1444 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: Pore Pressure versus Depth along Section A-A at Three Different Time Values Using the 

Bounding Surface Plasticity Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10: Finite Element Mesh for the Two-Dimensional Consolidation Problem 
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CONCLUSIONS 

The main conclusions that can be drawn from the present study are: 

 The bounding surface plasticity model shows very good agreement with experimental 

results (published by Banerjee and Stipho) of soft clay response in compression and 

extension for any overconsolidation ratio. 

 The study shows that if the medium follows the bounding surface plasticity model as a 

constitutive law, the soil response would show considerably different rates and magnitude of 

settlement, and different pore pressure behavior during the consolidation process. This 

appears to be an important useful result; perhaps the comparison with the actual reliable 

observations can provide further verification of its validity. 

 The ranges of overconsolidation ratio used in this study show the capability of the model to 

describe realistically the soil response under monotonic loading conditions at different 

overconsolidation ratios which cannot be properly predicted by classical isotropic yield 

surface models. This aspect distinguishes this model from other isotropic yield surface 

formulations. 

 

Table 3: Input Material Parameters for the Two-Dimensional Consolidation Problem 

 

Parameter 
Value 

 0.14 

 0.05 

 0.4 

cM  1.05 

eM  0.89 

cR  2.72 

eR  2.18 

cA  0.1 

eA  0.08 

T -0.10 

C 0.4 

S 1.0 

ch  4.0 

eh  4.0 

oh  4.0 

 ll P3I   101.4 kN/m
2
 

M 0.02 

hK  1.22 x 10
-5

 m/day 



O.Al-Farouk                                                                            Bounding surface coupled finite element consolidation 

A. N. Al-Ebady                                                                       Analysis of normally and overconsolidated clays  

 

 1448 

vK  1.22 x 10
-5

 m/day 

ein 0.9 

Eo 622.7 kN/m
2 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11: Surface Settlements versus Horizontal Distance at Three Different Time Values 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12: Pore Water Pressures versus Depth along Section B-B at Three Different Time Values 
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LIST OF SYMBOLS: 
B  is the strain-displacement transformation matrix. 

b  body forces 

C the creep matrix 

TD  the creep function 

df load vector equivalent to the body force, surface traction and autogeneous strain, 

respectively. 

f̂d   represents the change in external force due to boundary and body force loadings. 

d   represents the total strain of the skeleton, 

dt.cd c   is the creep strain 

)K3/dp(md sp   the overall volumetric strains caused by uniform compression of the particles by 

the pressure of the pore fluid  
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f  the load vector equivalent to fluid flow of source elements, creep function and 

gravity load 

g the gravity 

g   is an arbitrary function of time 

H  is the spatial flow (or seepage) matrix 

h is the head above some arbitrary datum. 

)(h   is the heavy-side step function 

K  bulk modulus of the solid phase. 

k is the absolute permeability matrix of the medium 

wK   is the bulk modulus of water 

K  the tangential spatial stiffness matrix 

L the coupling matrix representing the influence of pore pressure in force 

equilibrium; 

N, N   are the shape functions of displacement and pore pressure, respectively 

n  is the porosity 

n  is the unit normal vector 

p Pressure 

p the fluid pressure 

q is the outflow rate per unit area of the boundary surface 

S the compressibility matrix 

s  is the degree of saturation 

t̂  and the boundary traction 

u the unknown displacement vector 

kt   is the length of the k-th time step 

o  all other strains not directly associated with stress changes 

  the dynamic viscosity of the fluid 
  the density 

  effective stress 

  domain  

 


