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ABSTRACT

This paper presents a theoretical investigation of the axisymmetric free vibrations of
an isotropic thin oblate spheroid shell. The analysis depends on the Rayliegh — Ritz's method.
The non — shallow shell theory is used for the analysis. The analysis based on considering the
oblate spheroid as a continuous system constructed from two spherical shell elements matched
at the continuous boundaries.

Throughout the results, it is shown that when the eccentricity reaches zero, an exact
thin sphere solution is emerged and when the eccentricity equals one an exact thin circular
plate solution is emerged. Therefore, the eccentricity of an oblate shell at medium value lies
between these two values.

It was found that the Rayleigh — Ritz's method is suitable for all eccentricities, while
the literature showed that the Rayleigh's method is suitable for eccentricities less than 0.6.
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LIST OF SYMBOLS

a Major semi — axis of an oblate spheroid shell.

b Minor semi — axis of an oblate spheroid shell.

E Young's modulus of elasticity (GN/m?2 ).

e Eccentricity ratio.

h Shell thickness (mm).

Pn(X) Legendre function of the first kind.

P'h(x) First derivative of the Legendre function of the first kind.
P".(X) Second derivative of the Legendre function of the first Kind.
R, Effective radius.

Ro, Rg Principal radii of curvatures of an oblate spheroid.

Uo Tangential displacement mode.
Uo Tangential displacement of points on shell middle surface.
W Transverse displacement mode.
w Transverse displacement of points on shell middle surface.

€0,€4,€, Strains

Q' Inclination angle of an oblate spheroid.

() Inclination angle of a spherical shell model.

D, Opening angle of the approximate spherical shell.

A Non — dimensional frequency parameter ((p/E )1/2 ®.a).
(used for oblate spheroid shells)

0 Angle of rotation in the meridian direction.

p Density (kg/m?).

Non — dimensional frequency parameter ((p/E) 12 5. R ).
(used for spherical shells)
® Circular frequency ( rad/ sec).

INTRODUCTION

Oblate spheroid shell is defined as the locus surface resulting by rotating an ellipse
around its minor axis. This type of shells has many practical applications such as; the tanks of
liqguid oxygen used in space vehicles, the housing of the early — warning scanner of the
airborne warning and control system aircraft ( AWACS) and others. These applications may
cause dynamic problems to these shells. One of the very important dynamic problems is the
resonance. Therefore the free vibration of such shells may be studied to present the resonant
problem.

The dynamics of oblate spheroid shells, like other types of shells and structures, has
received a considerable attention in the literature, partly because of the necessity during the
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design stage of such shells, and partly because it is an interesting fundamental problem in
applied mechanics.

Baker, 1969 presented a detailed study of the theory of free, axisymmetric vibration of
thin elastic spherical shell and demonstrate by experiments that the normal modes of vibration
predicted do exist. The theory predicts the existence of two infinite sets of normal modes, one
of which is bounded in frequency and the other unbounded. The first four modes in each set
are identified by experiments on a small steel shell.

As for the oblate spheroid shells, Penzes and Burgin, 1965 were the first to solve the
problem of the free vibrations of thin isotropic oblate spheroid shells by Galerkin's method
using membrane theory and harmonic axisymmetric motion. It was shown that Galerkin's
method of solution for the oblate spheroid shell yields the exact solution for the closed
spherical shell as the eccentricity of the oblate spheroid shell approaches zero.

Penzes, 1969 extended the solution of the above reference to include thin orthotropic
oblate spheroid shells. He used the same assumptions and equations of motion in the above
reference except that the principal direction of the elastic compliances was assumed to be
along parallel of latitude and along meridian. Both of the spheroid and spherical shells were
investigated with various orthotropic constants. The discussion was restricted to the axially
symmetric torsionless motion of shells.

Tavakoli and Singh, 1989 used a substructure synthesis method based on state space
mathematics for the eigen — solution of axisymmetric joined / hermitic thin shell structures.
The authors applied the state space method to the cylindrical, conical, spherical, and toroidal
shells. They compared their results with results obtained previously for the same shells by
applying the theoretical analysis and the finite element method. The state space method has
strengths lies primarily in its ability to join substructures and match the boundary variables
comprehensively.

Fawaz, 1990 in his M.Sc. thesis the Rayliegh variation method was used to obtain
natural frequencies and mode shapes of axisymmetric vibrations of thin elastic oblate
spheroidal shells and presents the results theoretically and experimentally. He showed that the
Rayliegh's method was found to be suitable only for oblate shells with eccentricities less than
0.6.

Chang and Demkowicz, 1998 studied the stability analysis of multilayered vibrating
viscoelastic spheres, both in vacuo and in an acoustical fluid. The analysis was done by
investigating the effect of viscoelastic damping on the (continuous) Ladyzenskaya — Babuska —
Brezzi (LBB) constants for the related boundary — value problems. The sphere is modeled using
both 3-D viscoelasticity and the Kirchho — Love shell theory.

In the paper presented by Antoine Chaign et. al. 2002, linear and nonlinear vibrations of
shallow spherical shells with free edge are investigated experimentally and numerically and
compared to previous studies on percussion instruments such as gongs. The preliminary bases of a
suitable analytical model are given. Identification of excited modes is achieved through systematic
comparisons between spatial numerical results obtained from a finite element modeling, and
spectral information’s derived from experiments.
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In this paper the free vibration characteristics of a thin elastic oblate spheroid shell will
be examined using Raylrigh — Ritz's method to examine its validity for this type of shells.

THEORETICAL ANALYSIS

The review of literature reveals that even though the differential equations of motion
for general shell of revolution are well spelt out, nevertheless, the formulation of these
equations for oblate spheroidal shells are not available. Hence, an approximate energy
approach will be presented in section ( 2.1 ) of this paper.

The Rayleigh — Ritz's Energy Method

The Rayliegh — Ritz's method is an extension of Rayliegh's quotient which can be used
for more complex elastic bodies and helps to determine the natural frequencies and their
associated mode shapes with general boundary conditions in an approximate form. This
method is essentially statements on the ratio of potential energy to the kinetic energy.
Physically, it makes sense that this ratio is related to the frequency of oscillation [Hayam]. At
the natural frequency (o), and assuming separation of variables, the shell displacements may
be written in the following forms [ Penzes, 1969 ] :-

\

w(D', t) = W(D') . e

and .. (1)
Up(D', t) = Ug (P') . &

/
Substituting these in the strain energy expression gives :

h/i2 2z 2x
U= [ | | %060 € +60€']Ro Rosin &' dd do dz . (2)
—-h/2 0 0
where,
6 E [€¢ +VES], 6 E [€ + v €' ?
P = ! L 0 5 [ B —— 0 L !
TTa-vy) " (1-v?) ?
and ... (3)
€9=€ o+ZKgp , €9 =€ 4+ZK, _
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An expression for the maximum potential energy [ Umax ] may be obtained upon taking e to
be unity and applying the appropriate expressions for 6¢, 0y, €'9 and €'y, gives;

Uam EN W[ 2] 0 Uy aw ]T
™ 2(1-0?) 12| R, | o®'| R, R,0'

0 0
cos’ @' ow ] * cos @' oW
t oo zan| Yoo | t20 5| Vo |
Ry Ry sin“® oD R, Ry sin® oD
2
D[ 2] A e ]
o0'| R, R,0D' R2 | o'
+_;2 (U, cos®' +W sind') ?
(R, sin®")
+ 20_ [ U, +W}.(U®cos®'+w sin®') |,
R, Rysin®' [ 00’
R, R sin®'dd'dé . (4)
The kinetic energy expression is :
hi2 2z 27 2 2
ouU oW .
K= 1 | — R, R,sSin®'d®d'dd dz ... (5
FIT ol o[ ]em (o)

After integrating with respect to ( z ) and substituting for the appropriate expressions, the
maximum Kinetic energy will take the form:

a)zphZE 2z
K= —5— | [ (Us® + W?) Ro Rasin®' do' do . (6)
0 0

The kinetic energy for ®=1 rad/sec is customarily define as K*max and therefore,

max = ® K*max

For a system with no dissipation losses, as those due to friction or damping, the maximum
potential energy equals the maximum Kinetic energy, i. e.

Umax = ® K*max

Equating the maximum kinetic energy to the maximum potential energy, an expression for
the natural frequency may be written as :

Umax: Kmax

or,

4309



A. A. Al — Rajihy Axisymmetric Dynamic Behaviour
A. M. H.Al — Jessany Of Thin Oblate Shells
2 LJ max __ J}[
(‘)r—K D r=1,2,3,.....,n . (7)
max

where N and D represent the equations in the numerator and denominator, respectively.
Following the procedure of Rayleigh — Ritz's method, the radial (or transverse) and tangential
displacements can be written in power series form as :

w(@) = Y a. W (D) , Up(®) = > b. U, (@) ... (8)
i=1 i=1

where a; and bj are coefficients to be determined. The functions w(®') , uep(®d') satisfy all the

geometry boundary conditions of the system, i.e. along the matching region between the

halves of the spheroid shells. Equation ( 7 ) is an exact expression for the frequency according

to Rayleigh quotient. In order to use the procedure of Rayleigh — Ritz's method, equation ( 8)

is substituted into equation (4 ) and ( 6 ), then the results is used in equation ( 7).

Now substituting equation ( 8 ) into equations ( 4 ) and ( 6 ), and after some
mathematical manipulations, the following equation will result;

N
= r=1,2,3,...,n ... (9
5 (9)

where,

n n Ehﬂ' 2z h2 I I | ) ) N |
a =) >~ ¢, (1_02)£{ 2R [U%, Uy, =20 W W, W, Jsin

2
20 h UgiUgi'=Ugi W, = U "W, + W, W, |cos @'
6R,R}
h? cos’ @'
+—JU. U —2U W'+W'W.'
12R§) Rg[ DI~ Dj Di 1 I j] Sin(Dl

1 1 1 1 - 1
+?[U¢,i Ugy'+ 22U W, + W, W, |sin

()

2 1
+ 20,0y 20, Wcosd + W, W, sind
R, sin @'
+2—';[Uq,iuq,i' cos®' +U,;'W,sin®" +U W, cosd' +W, W, sin®' ] 3
()
R, R, dD' ... (9a)
n n 2
P = cc [ phz[uu;+wWw, |R, R, sina’ do ...(9%) whe
i=1 j=1 0

re, Ci's, cj's are equiponderate a; , b, a; , and b; after mathematical processes and some

simplified and arrangement [Nawal, 2005].

where, Zn: Zn: cicjzzn: Zn: (ai a;+bb;+a a+bb;—a bi)

i=1 j=1 i=1 j=1
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An n — term finite sum leads to the estimation of the first frequencies. Equations
(9a ) and ( 9b ) give the physical properties of the shell from the stiffness and mass
distribution point of view. The stiffness and mass of the shell are given by the following two
equations respectively:

Ehr % . Ay 1
= (1—1)2)'[ 12R4 {[Ug' Uy =20 W W, W, sin
vh’ ———[Ug; Uy, =Ug W, = Uy, "W, +W," W, "]cos '
6R R3 oi Wi —Ug Wi + W, VW, |COS
h? cos?

Ui Ugy =20 W+ W, |

+—
12R2R? sin @'

1 f f 1 H ]
+?[U¢i Ug,'+2Uy W, +W, W, Jsind

(O]

L U(Diumjco_s—q) 2U ,; W, cos ' +W, W, sin &
R; sin@'
2[) ' ' f . f 1 H ]
+ [Uy Uy 'cos®' +U,, W, sind' +U W, cos®' +W, W, sind" | 1
(ORI
‘R, R, d0" ... (10)

where primes denote differentiation with respect to @'.

and

2r
m; = [ phz[UU; +WW, R, R, sind'de ... (11)
Then

\ Z Z c.c; k;
a,rZ:B:':nl J? ... (12)

c,c;m;
i-1 j-1

In order to minimize the approximate value, which is given by equation ( 12 ), it should be

differentiation with respect to cj and equating the resulting expression to zero, that is :

Q(Nj_ D oN/ac, — N aD/éc,

oc. (D D?

=0 i=1,2,3,....,n ... (13)
D
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The conversional way in which this equation can equal zero is if the numerator equals zero,
since D is never equal to zero. The numerator can be written in a more useful form as :

N _ N9 _p, i=1,2,...,n ... (14)

It is as given by equation ( 7 ) ©;°> = N/ D, and n is the number of terms in the approximate
solution. The infinite degrees of freedom system has been replaced by an n degrees of
freedom system. Therefore, Equation ( 14 ) can be written in general matrix notation as :

[{K}-o?{m}]{e}=lo} - .. (15)

Since i can be taken as 1, 2,3,... the evaluation of this determinant provides the estimation of
the first two natural frequencies m:? and ®,°. Since we have used a two—term approximate
solution, it results in a two degrees of freedom approximated system.

In the present work, and adopting the same argument of [Penzes and Burgin,1965]
that the mode shapes of a spherical shell satisfies the boundary conditions of an oblate
spheroid shell, the assumed mode shapes were chosen to represent the first two modes of a
closed spherical shell.

Engineering Model By Non — Shallow Shell Theory :

The problem of vibration of oblate spheroid shells will be treated by an engineering
modeling approach where the oblate spheroid shell is modeled as a structure composed of two
spherical shells joined rigidly at their ends. Centers of curvature of the two spherical shell
elements fall along the minor axis of the proposed oblate spheroid [ see Fig. ( 1) for details ].

Such approximation is not far from reality, as the oblate spheroidal tanks are produced
by joining, either by welding or riveting, two spherical shell elements through a toroidal shell
element.

The effective radius ( R;) of the spherical shell model represents the radius of
curvature at the apex of the shell. This radius can be obtained from the geometrical relation
[Penzes, 1965].

a(l-e?)

= ... (16
D (1_e2 COSZ (Dl)3/2 ( )
Setting ( @' ) to zero results the radius of the shell at the apex as:
a
Rr - <+ o (17)
(1—62 ) 1/2
where,

b® |2 . i . . :
e :[1——2} , aand b represent the major axis and minor axis respectively.
a
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e =0 forsphere , e=1 forplate.

An approximate opening angle ( @) may be obtained by using the following formula:
R —
d)ozcosl“Tb ...(18)

r

Figures ( 2) and ( 3) show the values of the effective radius and opening angle versus
the eccentricity respectively.

minor axis
1

Oblate spheroid

b
6 e _. major axis

_—1_/ effective radius
Rr

Two spherical shell
elements to be joined

at the edge to ~=
approximate the

oblate spheroid

opening angle @,

Fig. (1): An oblate spheroid and its approximate of two
spherical shell elements joined at the edge.

RESULTS AND DISCUSSION:

The theoretical results and the available experiments are compared and thoroughly
discussed. The lack of numerical results in the literature and the complexity of obtaining a
closed form solution for the free vibrational characteristics of an oblate spheroid oblige us to
seek alternative approaches for justifying the feasibility of the theoretical methods used in
this paper. Eventually, these methods are general and may be used for any physical and
geometrical parameters of the oblate spheroid. Therefore, the natural frequency for a thin
sphere which is considered as an ultimate shape of the oblate spheroid may be determined by
using these methods and the results are compared with the literature.

Table (1) shows the natural frequency of the three first axisymmetric modes of a full
thin sphere. These frequencies were obtained from applying the direct analytical solution
(DAS ) [Tavakoli, 1989], the state space method ( SSM ) [Tavakoli, 1989], the finite element
method (FEM ) [Tavakoli, 1989] where a forty elements axisymmetrical model was used,
Rayliegh method ( RM ) [Fawaz, 1990], and the method derived in this paper, namely the
Rayleigh — Ritz method (RRM ). The results of the latter method was obtained by setting the
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eccentricity ratio to zero in equation ( 7 ). Also it can be seen that the Rayleigh—Ritz's method
predicts frequencies higher than the other methods given in the table. This fact is inherited to
this method for its higher bounds prediction. However, it may be stated from this table that
the two methods of solution presented in this work are dependable and may be used for other
shell geometrical and physical parameter.

The experimental and theoretical frequencies for oblate shell are presented in table (2),
this table indicates that the theoretical results by the Rayliegh and Rayleigh — Ritz's method
predict frequencies higher than of the experimental. This is inherited to this particular
method.

Figures ( 4 ) and ( 5 ) show the non-dimensional natural frequencies

(/1 =Jp/Ew. a) of the first two modes of vibration as functions of the eccentricity ratio

(which is one of the main indices of an oblate spheroid) obtained by the Rayleigh Ritz's
method and the Rayleigh's method using the non — shallow shell theory. These figures show
clearly the tendency of the natural frequencies towards lower values as the eccentricity
increases. Also it is indicated that the curve obtained by the Rayleigh's method, adjoin to that
obtained by the Rayleigh's — Ritz's method, although with slightly higher value, until the
eccentricity reaches (0.6) where the Rayleigh's method curve start to diverge. Larger
divergence occure at eccentricities higher than (0.9).

This behavior could be explained by the fact that the mode shapes of a closed spherical
shell would resemble those of an oblate spheroid up to certain eccentricity. As the eccentricity
increases, the oblate spheroid tends to flatten up. Such "flattening™ causes the uncoupling of
the radial (or transverse motion) and the tangential motion where the latter is minimized and
the radial or transverse motion mode shape approaches that of a circular plate. Another reason
is that the spherical shape is stiffer than the oblate spheroid due to the flattening in the
geometry.

However, the sudden deviation in the curve predicted by ( RM ) for eccentricity larger
than ( 0.6 ) may be considered due to additional constraints resulting from the deviation from
the true mode shape. This causes higher values for the potential energy in Eg. ( 7 ) and thus
the values of the natural frequencies diverge abruptly at higher values of eccentricity. This
mean that the value predicted by the ( RM ) for eccentricities larger than ( 0.6 ) are in
tremendous error and cannot be used.

Figure ( 6 ) gives the first few natural frequencies as function of the thickness ratio for
an oblate spheroid with ( e = 0 ) obtained by RRM. However, Fig. ( 7 ) shows the same
results as given by [Kraus], for complete sphere. The two figures are in good agreement and
justify very well the validity of the method used in this paper.

Figure ( 8 ) show the first few frequencies as functions of thickness ratio with (e =
0.6). All these figures are for ( v = 0.3 ) and they show the bending as well as the membrane
modes using the non — shallow shell theory. It can be noted that the variation of the natural
frequency of the bending modes increases with thickness and with the mode number. This
phenomenon can be elaborated due to the fact that the strain energy increased with increasing
the thickness ratio. Also, for larger eccentricity ratio, the variations are more pronounced than
for smaller eccentricity.

For further illustration of the effect of thickness on the bending modes, Figure ( 9 )
shows the first two bending modes of an oblate spheroid with an eccentricity of ( 0.3 ) for
several thickness ratios, obtained by applying the RM and RRM. It is well indicated that the
figures obey the previous observation of the effect of thickness on bending modes.

Figures ( 10 ) and ( 11 ) illustrate the boundaries of the first three bending modes and
the first membrane mode respectively with increasing the eccentricity ( e ). It may be
observed from figure ( 10 ) that as the eccentricity increased, the natural frequency slowly
decrease until reaching close to ( 0.5 ) where steeper variation occurs and the three curves
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converge to very close values. On the other hand, Fig. ( 11) shows other features concerning
the behavior of the first membrane mode with increasing eccentricity ratios.

From Fig. ( 12 ) it is concluded that the main features of the mode shapes associated
with the first three natural frequencies rest in the number of the nodal lines in the upper and
the lower shell parts. The number of these nodal lines is related to the order of the associated
natural frequency.

CONCLUSIONS:

From the results obtained, the following conclusions may be drawn;

e The Rayliegh — Ritz method predict fairly well the natural frequencies of an oblate
spheroidal shell for all values of eccentricities.
e Bending modes natural frequencies tend to decrease with increasing eccentricity

ratio.
e Membrane modes natural frequencies tend to increase with increasing eccentricity
ratio.
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Table (1) : Natural frequencies of the first three axisymmetric modes of
thin sphere, Hz.
r=0.1143m, h=0.0057m, E=207 Gpa, p="7800 Kg/mg, v=0.3

Differences with respect to
DAS. 7

n| m| DAS! | ssM? | FEM2 | RM.* | RRMS | §/ YA 8/ | 84

0| 2 5281 5291 5383 5335 5315 -02 | =00 -1.0 -0.6

013 6321 6330 6319 6510 6513 -01 | =00 | -30 |-3.0

0| 4 6883 6894 6875 | -------- 6950 -01 01 | --—-- -1.0
(1) Direct Analytical Solution [4] 8,7 =(DAS-SSM)/DAS * 100
(2) State Space Method [4] 8,7 =(DAS -FEM )/ DAS * 100
(3) Finite Element Method [4] 83~ =(DAS—-R M)/DAS * 100
(4) Rayleigh Method [5] 3, 7. = (DAS — RRM ) / DAS * 100

(5) Rayleigh —Ritz Method [ present work ]

4316



i)

Number 4

Volume 15 December 2009

Journal of Engineering

55

Table ( 2): Theoretical and experimental natural frequencies
of thin oblate shell ( €=0.683)

Hz.

a=0.185m , b=0.135m , h=0.0015m, , E=68 Gpa, p= 2720Kg/rn3, v=0.3

50 —

45 —

4.0 —

35 —

3.0 —

25 —

20 —

15 —

Effective radius /major semi axsis

1.0 —

05 —j

0.0

Differences with respect
Theoretical to Expt. %
Expt.
RRM RM[5] [5] YA YA
o1 2517 3110 2400 -4.87 -29.58
®; 2973 3378 2600 -14.34 -29.92
03 3086 | ... 2900 641 | ...
o 3180 | ... 3100 -258 | ...
5,7= (Expt. —RRM) / Expt. * 100
5,7= (Expt. =R M) / Expt. * 100
100
80 —
% 60 —
g 40 —
20 —
T T T T T 0 T T T T T
0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0

Eccentricity e

Fig. (2 ) The effective radius / major semi
@, ) of the — axis vs. eccentricity vs.
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14 14
= RRM — RRM
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02 — 02 —
00 T T T T T 00 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Eccentricity e Eccentricity e
Fig. (4): A comparison between RM and RRM results Fig. (5) :A comparison between RM and RRM results
showing the effect of eccentricity on the first showing the effect of eccentricity on the second
bending mode of vibration bending mode of vibration

28 — Bending Theory
Membrane Theory,
2.4 —
> —
g
> 2.0 —
L
3 -
2 16 —
5
£ 1
=]
s 12 —
o
z
0.8 —
0.4 —
T I T I T I T
0.01 0.02 0.03 0.04 0.05
Thickness ratio h/a
Fig. (6): Effect of the thickness ratio on the natural

frequencies of a full sphere or an oblate
spheroidal shell (e=0) obtained by RRM
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Fig. (7): Effect of the thickness ratio on the natural

frequency of an oblate spheroidal
(e=0.6) obtained by RRM
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Fig. (8): Effect of the thickness ratio on the natural
frequencies of a full sphere extracted from
[11]
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Fig. (9): Effect of thickness ratio on the first Fig. (10): Effect of eccentricity on the three

and
spheroidal shell (e=0.3)
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Fig. (11): Effect of eccentricity on the
first membrane modes

first bending modes obtained by

Fig. (12 ): Normalized mode shape associated with the
first three natural frequency of non — shallow
spheroidal shell ( e = 0.683 ) obtained by RRM
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