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ABSTRACT

The mathematical model of the tapered struts subjected to axial load is solved to obtain
the modified stability functions due to shear effect as well as bending effects. The stability
functions are derived for a wide range of non-prismatic struts then compared in graphical
curves with stability functions excluding shear effects.

The stability functions for non-prismatic members under compressive and tensile axial
loads are developed for the purpose of expressing both effects of bending and shear in a beam-
column stiffness at any value of axial force under the buckling limit.
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INTRODUCTION

Shear effects on the elastic stability analysis are usually not considered in the analysis
and design of frames made up of structural members of solid sections; this is because the
distortion caused by shear is relatively small except for short members. But in different
member’s length and cross sectional shapes, the contribution of shear deformation to the total
deflection may be appreciable. Few research works had covered shear effects in the non-

Y.o¢




O.Al-Farouk Modified Stability Functions with Shear Effects
S. Z. AL-Sarraf for Non-Prismatic Members in Steel Plane Frames
W. V. Yossif

prismatic members loaded axially. Most of the researchers used approximate methods for
including this effect such as a method proposed by Al-Quraishi  which used approximate
stability functions for non-prismatic members by developing the approximate formula
similarly to that derived by S. Al-Sarraf®. Other researchers such as AL-Fadul® obtained the
exact stability functions for special shape of non-prismatic members and used the finite
difference method to obtain the approximate stability functions for other shapes.

In the present study, a new method is adopted based on the exact stability functions
including bending effects. The new expression of stability functions is derived herein by
adding the effect of shear to the slope of deflection curve and to the member curvature.

Mathematical Model

When the beam-column member is loaded with a constant axial force Q, the initially
straight longitudinal axis is deformed into a curve called the deflection curve which is
produced by the combined effects of bending and shear deformations.

The ratio of change in slope caused by shear to that caused by moment is defined as
the shear flexibility parameter as given by Equation (1) for prismatic members & 4 %)
Equation €2) for batten lacing prismatic members & ® and Equation (3) for non-prismatic
members . The modified stability functions for beam-columns having any solid cross-
sectional shapes, built-up structural members are developed in terms of the shear flexibility
parameter.

Qe
p= (1)
GA,
I, l,° nl,
=Q¢. + + 2
h=Qe (lZEI T 24E1, 71, GA, @)
Qe
_ _<“E2 3
“2 GAVZ ( )
where
2
Qe = “LzEl : Euler load for prismatic members,or
2
Q: = RTEZIC : Euler load for batten prismatic members,
2
Qg = d LEZIZ : Euler load for tapered members at end 2,
El, GA, :flexural and shear rigidities of prismatic members ,
El,, GA, :flexural and shear rigidities of batten prismatic members ,
El,, GA,, :flexural and shear rigidities of tapered members at end 2,
I, : moment of inertia for the vertical plate,
A, : effective shear area for prismatic members,
A, : cross sectional area for batten,
A, . effective shear area for tapered members at end 2,
n : numerical factor equal to 1.2 in the case of a rectangular cross section‘”,
I, . length of the batten center to center of the vertical plate, and
I, : center to center vertical distance between two batten lacing.
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PROPOSED MODIFIED STABILITY FUNCTION FOR NON-
PRISMATIC MEMBERS:

A member may have a linear taper in either one or the other direction as shown in
Figure (1), M; and M, are the applied end moments, a is the distance of end 2 from the origin
O and b is the distance of end 1 from the origin O of zero depth. Therefore, the depth d(x) may
be expressed by Equation (4):

d(x)=d,(x/a) 4)
where

di, d2  :depths of member at ends 1and 2, respectively,

d(x) : depth of member at variable (x) from origin (O).
The moment of inertia of the member about the axis of bending is expressed in the form:
1) =1,(x/a)" Q)

where 1(x) is the moment of inertia at distance x from the origin O, m is the shape factor that
depends on the cross-sectional shape as given in Table (1).
b
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Fig (1): Non-prismatic beam-column element

The effect of shear force of the non-prismatic beam-column is derived starting from the slope
of the deflection curve @©

dy dy, V(x)

X~ dx | AV(X)G (6)
dy _ M), df VX

. EIX) &(Av(x).ej (7)

The bending moment and the shear force at distance x from the origin are: -

a—X b—x _
M(X)I(Tle J{TJMZ FQY, +Ys) (8
M, +M dy dy
V — 1 2 ~Jb —Js 9
(x) (—L HQ ™ +de] ©)
By substituting Equation (9) into the slope due to shear yields: -
dyS: 1 | _ M, + M, +Q% (10)
dx Av(x).G L dx

The effective area under shear stress at distance (x) from the origin is: -
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n
Av(X) = sz(gj (11)

The shear flexibility parameter and non-dimensional axial force parameter can be defined by
the equation below:

Q
=U,. 12
AV, G PRSP (12)
The curvature equation due to shear is derived below: -
2 n
d yzs_n. I\/Il-i_l\/IZ a_ 1 .HZ'pZ =0 (13)
dx L

v VT Q
(1_112-92-”]
X

MODIFIED STABILITY FUNCTIONS FOR BEAM-COLUMN WITH SQUARE

CROSS SECTIONS
The basic differential equation when the shape factorn =2 is

2 2
(ijyzs_z(MltMZJa_ 1 Hzpz :0 (14)
X

o 2V Q
1-popo—3
X

The solution of the second order differential equation is: -

(MM, Yy pyd’ X
y, = : atanh| ———
Q VH,-p,-2

(10).

L

where C1 and C2 are constants of integration obtained by substituting the boundary
conditions:
y=0atx=aandx = b yields:

a b
atanh| ———— |—atanh| ——
c1=(M1 + sz VMo, 8° [\/“2@2-32 } [\/uz-pz-az ] (16)

L Q L

J +Clx+C2 (15)

b a
atanh ——— |a—atanh —=——|b
M1+sz \/Mz-pz-az (\/Hz-pz-azl {\/Mz-Pz-aZ} (17)

C2=+ :
( L Q L
The slope of the deflection curve due to shear only is: -
dys - _ M1+ Mz i 1+u p a_2 N MZ'pZ +C1 (18)
dX L 3 Xn | 22 X2 ' Q
The curvature of the deflected curve due to bending only is: -
2

d’y, _ M(x) (19)
dx? El(x)

I(X) = |Z[§j (20)
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By substituting Equation (8) and (20) into Equation (19), yields: -
4 42
x) d%, M, M,
El,| — | —+ =—(X-a)+—=(x-b 21
{ajdxz QY, =~ H(x=a)+ == (x~b) (21)
where o’ =[Qa*/E1,[”.
The solution of Equation (21) and its first derivative are:

Y, = &[AJ1,2($j+ BJ_l,z(g)}%(x—an%(x—b) (22)
o AL P () e ®)

where the boundary conditions are:
at x=a, y=0,anddy/dx=0,,
and at x=b, y=0anddy/dx=0,.
The values of the constants A and B are obtained by substituting the boundary conditions into
Equation (22).
My, (@) Va+M,J , (B)vb
2 2

A =
Jab zQ
M,J, (@)va +M,J, (B)Vb
5= Ja+b ZQ
where

Z= Jl (0().]7; ®) _‘]7; (O(')‘]; ®

QL2 a4Q 0.5
) ) = 0=
a_a ’ [3 b ’ p2 EIZTEZ @ [EIZJ

Therefore, the total slope of the deflected curve which is dy = % + % becomes:
dx dx dx
dy _ ® 60)_ ® (60) M1+M2_ M, +M, ) a? 1 Ha-Po
s Al (g e pa(g) o L ) 2y Q
I-popp_s
X
(24)
The boundary conditions of j_y atx =aandat x =b are:
X
_ HaPo [M1+M2j
1b 2 L
@y _ Qu atx=b (25)
dX 1_ MZ'pZ
2
u
_HaPy (Ml + Mz]
2b
ay _ Q L atx =a, (26)
dx 1-u,p,

By substituting the above boundary conditions in Equation (24), then:
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M, +M M, +M W,.p W, .p

ON 0|_pgl® (0] 1 2 My 2 2:P2 _Hypy
(A(bls)‘]g(bj B(b1.5}]_g(b)+ QL [ oL ]-UZ_MZIPZ—FCl}(l % j
+“QZ'p22(MltM2j=elb atx=b (27)

.u

i 9 — & 2 M1+M2 _ M1+M2 H,.P, -
(A(al'sjji[aj B(al-stg[aj+ QL [ QL j-l—p.z.p2+Cl}(l M2-p2)
+M2ép2[MltM2j292b atx =a (28)

Thus the stability functions are:
Z, K,(D,QL+B,QL+1)+u,.p,

S, = (29)
=R Q
2
o - L Ky (ClQL+A2?L+1)+u2.p2 (30)
El, Qu
2
s, - Z, K,u (AlQL+A2?L+1)+u2.p2 31)
El, Qu

where the symbols Al, B1, C1, D1, A2, B2, Ka, Kb and Z are given in Appendix

The modified stability functions for beam-column with a rectangular cross section bent about
the major axis and a rectangular cross section bent about the minor axis are listed in the
Appendix:

Experimental Determination of the Elastic Critical Load:

It is based on the fact that the stiffness of a structure decreases with the increase of the
axial force in the members. At the critical load, the stiffness of the structure is zero. Thus, it is
possible to determine the elastic critical load of structures by expressing the stiffness as
described below.

The natural frequency of oscillation of a frame decreases with the increase of the
applied external load. When the vibration stiffness is plotted against the applied load, an
almost linear relationship is obtained. An estimation of the elastic critical load is made by the
extrapolation of the linear part of the graph. In frames with complicated sways, experimental
determination of the elastic critical load is obtained by dynamic stiffness plots.

In general, for any system, the frequency of vibration may be calculated as in the

following ®: -

1 K
“2n 3w (32)
g
where

f : frequency in cycle/sec,

k . stiffness of structure,

W : summation of external load on frame, and

g - acceleration due to gravity.

Equation (32) may be written as: -
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(21)° Sone
k= T >Wif for constant g, (33)

k oc TW.f?
The stiffness of the primary buckling mode is a linear function of the applied external load.

Thus, the relation between the total applied load XW and the parameter (Zsz) IS

approximately linear.

This method was widely used in finding out the elastic critical load experimentally. In
this test which is done in present study, the structure is subjected to push at every applied load
and the number of vibrations is calculated at this time. Then, the frequency, f, is equal to the
number of vibrations over the unit time for that total load.

The cantilever beam-column models are manufactured from steel materials with
dimensions of high accuracy. These models consist of four different non-prismatic cross-
sectional types and one prismatic type in four different cases of batten lacing. The number of
sway cycles is recorded for 6 seconds for different loads at the free end, then the relation
between the loads and the beam-column dynamic stiffness is drawn to obtain the elastic
critical load. The results of each type of non-prismatic member that is subjected to
experimental load are reported in Table (1). The same thing is used for each case of batten
lacing. The model types are shown in Appendix. Table (2) to (9) expose the average recorded
data for three non-prismatic models of the described properties in Table (1). In other words,
each type has dimensions defined in Table (1).

Table (1) Models dimensions

Test No. Cross-section m u Length, cm Width, mm Depth, mm

1 Square 4 2 30 612 6-—12

2 Rectangular 3 2 40 3 15-3

3 Rectangular 1 2 40 15-30 2

4 | Rectangularboxl |, 1, 75 15 7-14

mm thickness

5 2 cm Batten lacing - 1 40 25 2mm each part
6 5 cm Batten lacing - 1 40 25 2mm each part
7 10 cm Batten lacing - 1 40 25 2mm each part
8 20 cm Batten lacing - 1 40 25 2mm each part

Table (2): Average results of 3 models having shape factor m=4

Axial Force, kN Mass Load, kg ’C\Iﬁjg Frequency rad/6 sec
0.0004905 0.050 49 51.31268
0.0009810 0.100 32 33.51032
0.0014715 0.150 23 24.08554
0.0019620 0.200 18 18.84956
0.0024525 0.250 14 14.66077
0.0029430 0.300 11 11.51917
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Table (3): Average results of 3 models having shape factor m=3

Axial Force, KN Mass Load, kg ?;C'Ig: Frequency, rad/6 sec
0.000981 0.100 155 162.3156
0.001962 0.200 109 114.1445
0.002943 0.300 89 93.20059
0.003924 0.400 76 79.58702
0.004905 0.500 68 71.20944
0.009810 1.000 47 49.21829
0.049050 5.000 16 16.75516

Table (4): Average results of 3 models having shape factor m=1

Axial Force, KN Mass Load, kg ::IyC::'Ig: Frequency rad/6 sec
0.000981 0.100 84 87.9645
0.001962 0.200 59 61.7846
0.002943 0.300 47 49.2182
0.003924 0.400 41 42.9350
0.004905 0.500 36 37.6990
0.009810 1.000 24 25.1327
0.049050 5.000 3 3.1415

Table (5): Average results of 3 models having shape factor m=2.4

Axial Force, kKN Mass Load kg ?;Ig: Frequency, rad/6 sec
0.000981 0.100 292 305.7817
0.001962 0.200 206 215.7227
0.002943 0.300 168 175.9292
0.003924 0.400 146 152.8908
0.004905 0.500 130 136.1357
0.009810 1.000 92 96.34217
0.049050 5.000 40 41.8879

Table (6): Average results of 3 prismatic models with 2 cm batten lacing

Axial Force, kN Mass Load, kg EI);JC.IS.I Frequency rad/6 sec
0.000981 0.100 1007 1054.528
0.001962 0.200 712 745.604
0.002943 0.300 581 608.421
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0.003924 0.400 503 526.740
0.004905 0.500 450 471.238
0.009810 1.000 318 333.008
0.098100 10.00 100 104.719

Table (7): Avera

e results of 3 prismatic models with 5 cm batten lacing

Axial Force, kKN Mass Load, kg g;)c'lg: Frequency rad/6 sec
0.000981 0.100 603 631.460
0.001962 0.200 426 446.106
0.002943 0.300 348 364.424
0.003924 0.400 301 315.206
0.004905 0.500 269 281.696
0.009810 1.000 190 198.967
0.049050 5.000 85 89.011
0.098100 10.00 60 62.831

Table (8): Average results of 3 prismatic models with 10 cm Batten lacing

Axial Force, kKN Mass Load, kg No. of Frequency, rad/6
cycles sec
0.000981 0.100 356 372.8023
0.001962 0.200 252 263.8938
0.002943 0.300 205 214.6755
0.003924 0.400 178 186.4012
0.004905 0.500 159 166.5044
0.009810 1.000 112 117.2861
0.049050 5.000 50 52.35988
0.098100 10.00 35 36.65191

Table (9): Average results of 3 prismatic models with 20 cm batten lacing

Axial Force, kN Mass Load, kg ?&Ig: Frequency, rad/6 sec
0.000981 0.100 194 203.1563
0.001962 0.200 137 143.4661
0.002943 0.300 112 117.2861
0.003924 0.400 97 101.5782
0.004905 0.500 87 91.10619
0.009810 1.000 61 63.87905
0.049050 5.000 27 28.27433
0.098100 10.00 19 19.89675
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The results are obtained experimentally and theoretically. They are then compared as in
the following:

Experimentally: The results are analyzed graphically to obtain the buckling load at
the vanished stiffness by extending the relation between the stiffness and mass linearly.
Figures (2) to (9) show the buckling load for eight different models.

Theoretically: For a cantilever tapered column having load at the top free end, the

stiffness matrix is™:
R (S, +SC)
=5 +S0O) q

_ Qv

where q=S,+S,+2SC-n’p, ,p,= 5
El,n

The results shown in Tables (10) and (11) present the obtained results by considering the eight
different models experimentally and theoretically.
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Fig (2): Stiffness-mass relation of model 1

Fig (3): Stiffness-mass relation of model 2

Fig (4): Stiffness-mass relation of model 3

10006
A\
N
~_ 8004 -
3 S
c ~
% a h
2 600d <
[<5] ~
£ RS
x N
@ 4006 4 <
(3] S
N 2
Sk 200d “ae
N Yo
N ~
\\ ~ 0 = .~
0 1 2 3 4 5 s, 6 0 10 20 30 40 50 60 70 80 90
Loaded mass (kg) Loaded mass (kqg)

Fig (5): Stiffness-mass relation of model 4

100



Number4 Volumel3 December 2007

Journal of Engineering

45000

Mass x (frequency)2

120000
40000
100000 .
< ~__ 35000
. oy
80000 £ 30000
< o
T 25000
60000 ¥ =
< < 20000
A x
w
40000 3. 2 15000
< 2 10000
20000 N
. 5000
0 N 0 ~ -
0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Loaded mass (ka)
Fia (6): Stiffness-mass relation of model 5

Loaded mass (ka)
Fia (7): Stiffness-mass relation of model 6

150Uy

12504 S

2
)
w
al
o
o

=
o
o
o
D

7

7500 [~

5006 >

Mass x (frequency)

2506 =

0 >< 0
0 50 10 150 200 250 300 350 400 450 500 0

Loaded mass (ka)
Fig (8): Stiffness-mass relation of model 7

20 40 60 80 100 120 140 160 180 200
Loaded mass (kq)

Fia (9): Stiffness-mass relation of model 8

(10) Experimental and theoretical results of model 1, 2, 3 and 4

Experimental results Theoretical results
Test No.
ch, kN ch, kg pz S1 SZ SC
1 0.003946 0.405 1.6659 27.31426 6.82856 8.61646
2 0.112815 11.500 1.0840 16.959 5.982 6.124
3 0.051551 5.255 0.4179 6.19183 4.38816 3.0121
4 0.847 584 86.400 0.823 12.608 5.481 4.958
Table (11) Experimental and theoretical results of model 5, 6, 7 and 8
Test No Experimental results Theoretical results
' Qcr, KN Qe kg p u S sC
5 18.474 1883 0.1841102 1.431531 1.862895 0.292099
6 10.607 1081 0.1057058 5.460222 1.175894 -0.394902
7 4.735 482 0.047188 17.19175 0.922095 -0.648701
8 1.581 152 0.015755 59.4687 0.826299 —0.744498

The buckling load is obtained for the first model divided into two, three and four non-
prismatic elements. Hereafter, the stability functions and non-dimensional axial force

parameter for each element are obtained and given in Table (12).
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Table (4) Stability Functions for model 1 divided into 1, 2, 3 and 4 tapered members

L Q Stability Values of Stability Functions
Element ; - -
m kN Function First Second Third Fourth
S, 27.3143 - - -
SC 8.61646 - : ;
One 03 | 0.00394
S, 6.82856 - - -
P, 1.66590 - - -
S, 12.6399 9.3238336 - -
SC 4.63927 35783314 - -
Two 0.15 | 0.00394
S, 5.61763 5.2446338 - -
P, 0.416475 0.0822700 - -
S, 9.139763 7.7054150 6.8649449 -
SC 3613771 3.1403804 2.8841442 -
Three 0.01 | 0.00394
S, 5141116 4.9314656 4.7673228 -
P, 0.185100 0.0585664 0.0239888 -
S, 7.629459 6.8353036 6.3118599 5.9462715
SC 3.155855 2.8903702 2.7254391 2.6124706
Four 0.075 | 0.00394
S, 4.882853 4.7467386 4.6372774 4.5526189
P, 0.104119 0.0426468 0.0205665 0.0111013

The experimental data for models from 1 to 8 are identical with theoretical results that used
modified stability functions by including shear effect. From the previous results, the elastic
critical load of models 5, 6, 7 and 8 are compared with others, as shown in Figure (10) to
represent the effect of increasing the number of batten lacings on elastic critical load in a
prismatic member.

20

O Exact (present study 8
S| Equivalent member'f’
=16
4
Q12
2 :
o
£ 8
X~
g O
a 4
0
201cm 10 5cm 2¢cm

Batten lacing type
Fig (10): Buckling load on prismatic member for different batten lacings
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It is found that the prismatic member having 2cm-batten lacing buckled after the three other
models which have less number of battens lacing. On the other hand, the prismatic member
having 20cm batten lacings buckled before the three other models which have a larger number
of battens lacings. This means that, when the number of batten lacing increased, the buckling
load increased. The other type of comparison is presented in Table (13) for the elastic critical
load of the present study and the equivalent member ©. It is found that the elastic critical load,
which is obtained from the present study, is more than that obtained from the equivalent
member. Their values are close to each other. The error percent reduces when the number of
batten lacings is increased.

Table (13): Buckling load and displacement comparisons
No. of Buckling load, kN Displacement at critical load, m

Test batten Present study Equivalent Ratio* Err[?/or** Present study Equivalent
lacings member member
5 20 18.474 18.2631 0.9886 1.14 0.2163 0.2080
6 8 10.6066 9.03929 0.8522 | 14.78 0.1352 0.1315
7 4 4.735 3.10014 0.6547 | 34.52 0.0617 0.0512
8 2 1.5809 0.85348 0.5399 | 46.01 0.0272 0.0191

* The ratio between the buckling load of equivalent member to that of the present study.
** Error = Deference between the buckling load of the present study and equivalent member divided
by the buckling load of the present study.

From the above experimental works and theoretical results, the stability functions are very
close.

Conclusions

1. The modified stability functions including the effect of bending and shear are
compared with the stability functions including the effect of bending only for the same
properties of non-prismatic beam-columns under different axial forces and cross-sectional
areas. These conditions give different ratios of stability functions, which include and
exclude shear effect. The effect of shear is summarized in Table (14) which shows: -

Table (14): Ratios between stability functions
excluding and including the effect of shear

P2
0.00 2.00

WU,

S; 0.999747 0.999813
0.0001 | SC 0.999600 0.999888

S, 0.999838 0.999998

S; 0.908997 0.928652
0.0400 | SC 0.854400 0.958576

S, 0.941763 0.999844

a. The effect decreases the stability functions with increasing of non-dimensional axial force
parameters in the compression range.

b. The effect increases the stability function with increasing of value of shear parameter.

¢. The minimum effect is at maximum axial force and minimum shear parameter (0.0001).

d. The maximum effect is at zero axial force and maximum shear parameter (0.04).
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e. The effect of shear parameter exceeds the effect of non-dimensional axial force
parameter.

2. In batten laced members, the shear flexibility parameter is decreased with increasing the
number of batten lacings between two main columns. The limit of buckling load is increased
by reducing the additional deformation due to shear strain as given by which summarizes the
buckling load data for models 5, 6, 7 and 8.

3. .1t is found that the prismatic member having 2cm batten lacing buckled after the three other
models which have less number of battens lacings. On the other hand, the prismatic member
having 20cm batten lacings buckled before the three other models which have a larger number
of battens lacings. This means that, when the number of batten lacing is increased, the
buckling load is increased.

4. It is found that the elastic critical load, which is obtained from the present study, is larger
than the elastic critical load obtained from the equivalent prismatic member given by
Timoshenko formula ® .Their values are close to each other and the error percent is reduced
when the number of batten lacings is increased.
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List of symbols
Symbol Symbol Definition
A, Effective shear area for prismatic members
Ap Cross sectional area for batten
An Effective shear area for tapered members at end 2
E Modulus of elasticity
I, Moment of inertia for tapered member at end 2
1(x) Moment of inertia at distance x from the origin O for tapered member
I Moment of inertia for vertical plate
I Length of the batten center to center of vertical plate
Iy Center to center vertical distance between two battens lacing
My, M, Applied moment at end 1 and 2 respectively
M(x) Bending moment at distance x from the origin O
Q Constant axial force
Qe Euler load (7°El/L?)
Sy Flexural stiffness factor for tapered member at end 1
S, Flexural stiffness factor for tapered member at end 2
SC Flexural carry-over factor for tapered member

ARRA
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Shear force

Distance of end 2 from the origin O for tapered member
Distance of end 1 from the origin O for tapered member
Depth of tapered member at end 1 and 2 respectivily

Depth of tapered member at distance x fro origin O
Frequency in cycle /sec

Acceleration due to gravity

Stiffness of structure

Shape factor

Numerical factor equal to 1.2 in the case of a rectangular cross section
Tapering ratio

Summation of external load on frame

Lateral deflection at distance x along the member

Shear flexibility parameter

End rotations at end 1 and 2

Non-dimensional axial force parameters for tapered member
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