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ABSTRACT 

The mathematical model of the tapered struts subjected to axial load is solved to obtain 

the modified stability functions due to shear effect as well as bending effects. The stability 

functions are derived for a wide range of non-prismatic struts then compared in graphical 

curves with stability functions excluding shear effects.  

The stability functions for non-prismatic members under compressive and tensile axial 

loads are developed for the purpose of expressing both effects of bending and shear in a beam-

column stiffness at any value of axial force under the buckling limit. 

 الخلاصة
محوري للحصول على دوال استقرارية معدلةة ناتةةة عةا تةاثيرات  لقد تم حل نموذج رياضي لعتبات لا موشورية معرضة لثقل

القص اضافة الى تاثيرات الانحناء المعهودة. لقةد تةم اشةتقاو دوال الاسةتقرارية لمةدع واسةل مةا العتبةات اللاموشةورية ومةا ثةم 
 تمت المقارنة بمنحنيات مرتسمية مل دوال الاستقرارية ما دوا تاثيرات القص.

ال الاسةةتقرارية للاعضةةاء اللاموشةةورية تحةةت اثقةةال انضةةرا  و شةةد محوريةةة فةةي سةةبيل التعبيةةر عةةا تةةاثيري لقةةد تةةم ت ةةوير دو  
 العمود تحت اية قيمة ما قوة محورية اقل ما حد الانبعاج.  -الانحناء و القص في ةساءة العتبة
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INTRODUCTION 

Shear effects on the elastic stability analysis are usually not considered in the analysis 

and design of frames made up of structural members of solid sections; this is because the 

distortion caused by shear is relatively small except for short members. But in different 

member’s length and cross sectional shapes, the contribution of shear deformation to the total 

deflection may be appreciable. Few research works had covered shear effects in the non-
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prismatic members loaded axially. Most of the researchers used approximate methods for 

including this effect such as a method proposed by  Al-Quraishi 
(1)

 which used approximate 

stability functions for non-prismatic members by developing the approximate formula 

similarly to that derived by S. Al-Sarraf
(3)

. Other researchers such as AL-Fadul
(2)

 obtained the 

exact stability functions for special shape of non-prismatic members and used the finite 

difference method to obtain the approximate stability functions for other shapes. 

In the present study, a new method is adopted based on the exact stability functions 

including bending effects. The new expression of stability functions is derived herein by 

adding the effect of shear to the slope of deflection curve and to the member curvature. 
 

Mathematical Model 
When the beam-column member is loaded with a constant axial force Q, the initially 

straight longitudinal axis is deformed into a curve called the deflection curve which is 

produced by the combined effects of bending and shear deformations. 

The ratio of change in slope caused by shear to that caused by moment is defined as 

the shear flexibility parameter as given by Equation (1) for prismatic members 
(3, 4, 5)

, 

Equation (2) for batten lacing prismatic members
 (1, 6)

 and Equation (3) for non-prismatic 

members 
(1)

. The modified stability functions for beam-columns having any solid cross-

sectional shapes, built-up structural members are developed in terms of the shear flexibility 

parameter.  
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  : Euler load for batten prismatic members, 
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
  : Euler load  for tapered members at end 2, 

vGA,EI  : flexural and shear rigidities of prismatic members ,  

bb GA,EI  : flexural and shear rigidities of batten prismatic members ,  

2v2 GA,EI  : flexural and shear rigidities of tapered members at end 2, 

cI  : moment of inertia for the vertical plate, 

vA  : effective shear area for prismatic members, 

bA  : cross sectional area for batten, 

2vA  : effective shear area for tapered members at end 2, 

n  : numerical factor equal to 1.2 in the case of a rectangular cross section
(7)

, 

hl  : length of the batten center to center of the vertical plate, and 

vl  : center to center vertical distance between two batten lacing. 
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PROPOSED MODIFIED STABILITY FUNCTION FOR NON-

PRISMATIC MEMBERS: 

 A member may have a linear taper in either one or the other direction as shown in 

Figure (1), M1 and M2 are the applied end moments, a is the distance of end 2 from the origin 

O and b is the distance of end 1 from the origin O of zero depth. Therefore, the depth d(x) may 

be expressed by Equation (4): 

   axdxd 2  (4) 

where 
d1, d2 : depths of member at ends 1and 2, respectively, 

d(x) : depth of member at variable (x) from origin (O). 

The moment of inertia of the member about the axis of bending is expressed in the form: 

 m2 axI)x(I   (5) 
where I(x) is the moment of inertia at distance x from the origin O, m is the shape factor that 

depends on the cross-sectional shape as given in Table (1). 

 

 

 

 

 

 

 

 

 

 

 

 
  

  

The effect of shear force of the non-prismatic beam-column is derived starting from the slope 

of the deflection curve
 (10)

: 
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The bending moment and the shear force at distance x from the origin are: - 

  )yy(QM
L

xb
M

L

xa
xM sb21 







 








 
   (8) 

  















 


dx

dy
Q

dx

dy
Q

L

MM
xV sb21  (9) 

By substituting Equation (9) into the slope due to shear yields: - 
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The effective area under shear stress at distance (x) from the origin is: - 

         Fig (1): Non-prismatic beam-column element 
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n
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The shear flexibility parameter and non-dimensional axial force parameter can be defined by 

the equation below: 
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The curvature equation due to shear is derived below: - 
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MODIFIED STABILITY FUNCTIONS FOR BEAM-COLUMN WITH SQUARE 

CROSS SECTIONS 

The basic differential equation when the shape factor n = 2 is 
(10)
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The solution of the second order differential equation is: - 
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where C1 and C2 are constants of integration obtained by substituting the boundary 

conditions: 

y = 0 at x = a and x = b yields: 
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The slope of the deflection curve due to shear only is: - 
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The curvature of the deflected curve due to bending only is: - 
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By substituting Equation (8) and (20) into Equation (19), yields: -  
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where the boundary conditions are:  

at    x = a,      y = 0, and dy/dx = b2 ,  

and    at    x = b,      y = 0, and dy/dx = b1 .  

The values of the constants A and B are obtained by substituting the boundary conditions into 

Equation (22). 
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By substituting the above boundary conditions in Equation (24), then: 
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Thus the stability functions are: 
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where the symbols A1, B1, C1, D1, A2, B2, Ka, Kb and Z are given in Appendix 
  

The modified stability functions for beam-column with a rectangular cross section bent about 

the major axis and a rectangular cross section bent about the minor axis are listed in the 

Appendix: 
 

Experimental Determination of the Elastic Critical Load: 

It is based on the fact that the stiffness of a structure decreases with the increase of the 

axial force in the members. At the critical load, the stiffness of the structure is zero. Thus, it is 

possible to determine the elastic critical load of structures by expressing the stiffness as 

described below.  

The natural frequency of oscillation of a frame decreases with the increase of the 

applied external load. When the vibration stiffness is plotted against the applied load, an 

almost linear relationship is obtained. An estimation of the elastic critical load is made by the 

extrapolation of the linear part of the graph. In frames with complicated sways, experimental 

determination of the elastic critical load is obtained by dynamic stiffness plots. 

In general, for any system, the frequency of vibration may be calculated as in the 

following 
(8): - 

g

W

k

2

1f


  (32) 

where 
f : frequency in cycle/sec, 

k : stiffness of structure, 

W : summation of external load on frame, and 

g : acceleration due to gravity. 

Equation (32) may be written as: - 
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  2

2

Wf
g

2
k 


     for constant g, (33) 

2f.Wk   
The stiffness of the primary buckling mode is a linear function of the applied external load. 

Thus, the relation between the total applied load W  and the parameter  2Wf  is 

approximately linear. 

This method was widely used in finding out the elastic critical load experimentally. In 

this test which is done in present study, the structure is subjected to push at every applied load 

and the number of vibrations is calculated at this time. Then, the frequency, f, is equal to the 

number of vibrations over the unit time for that total load. 

The cantilever beam-column models are manufactured from steel materials with 

dimensions of high accuracy. These models consist of four different non-prismatic cross-

sectional types and one prismatic type in four different cases of batten lacing. The number of 

sway cycles is recorded for 6 seconds for different loads at the free end, then the relation 

between the loads and the beam-column dynamic stiffness is drawn to obtain the elastic 

critical load. The results of each type of non-prismatic member that is subjected to 

experimental load are reported in Table (1). The same thing is used for each case of batten 

lacing. The model types are shown in Appendix. Table (2) to (9) expose the average recorded 

data for three non-prismatic models of the described properties in Table (1). In other words, 

each type has dimensions defined in Table (1). 

 
Table (1) Models dimensions 

Test No. Cross-section m u Length, cm Width, mm Depth, mm 

1 Square 4 2 30 6 – 12 6 – 12 

2 Rectangular 3 2 40 3 1.5 – 3  

3 Rectangular 1 2 40 15 – 30  2 

4 
Rectangular box 1 

mm thickness 
2.4 2 75 1.5 7 – 14  

5 2 cm Batten lacing - 1 40 25 2mm each part 

6 5 cm Batten lacing - 1 40 25 2mm each part 

7 10 cm Batten lacing - 1 40 25 2mm each part 

8 20 cm Batten lacing - 1 40 25 2mm each part 

 

 
Table (2): Average results of 3 models having shape factor m=4 

Axial Force, kN Mass Load, kg 
No. of 

cycles 
Frequency rad/6 sec 

0.0004905 0.050 49 51.31268 

0.0009810 0.100 32 33.51032 

0.0014715 0.150 23 24.08554 

0.0019620 0.200 18 18.84956 

0.0024525 0.250 14 14.66077 

0.0029430 0.300 11 11.51917 
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Table (3): Average results of 3 models having shape factor m=3 

Axial Force, kN Mass Load, kg 
No. of 

cycles 
Frequency, rad/6 sec 

0.000981 0.100 155 162.3156 

0.001962 0.200 109 114.1445 

0.002943 0.300 89 93.20059 

0.003924 0.400 76 79.58702 

0.004905 0.500 68 71.20944 

0.009810 1.000 47 49.21829 

0.049050 5.000 16 16.75516 
 

 

 
Table (4): Average results of 3 models having shape factor m=1 

Axial Force, kN Mass Load, kg 
No. of 

cycles 
Frequency rad/6 sec 

0.000981 0.100 84 87.9645 

0.001962 0.200 59 61.7846 

0.002943 0.300 47 49.2182 

0.003924 0.400 41 42.9350 

0.004905 0.500 36 37.6990 

0.009810 1.000 24 25.1327 

0.049050 5.000 3 3.1415 
 

 
Table (5): Average results of 3 models having shape factor m=2.4 

Axial Force, kN Mass Load kg 
No. of 

cycles 
Frequency, rad/6 sec 

0.000981 0.100 292 305.7817 

0.001962 0.200 206 215.7227 

0.002943 0.300 168 175.9292 

0.003924 0.400 146 152.8908 

0.004905 0.500 130 136.1357 

0.009810 1.000 92 96.34217 

0.049050 5.000 40 41.8879 

 
 

 
 

Table (6): Average results of 3 prismatic models with 2 cm batten lacing 

Axial Force, kN Mass Load, kg 
No. of 

cycles 
Frequency rad/6 sec 

0.000981 0.100 1007 1054.528 

0.001962 0.200 712 745.604 

0.002943 0.300 581 608.421 
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0.003924 0.400 503 526.740 

0.004905 0.500 450 471.238 

0.009810 1.000 318 333.008 

0.098100 10.00 100 104.719 

 

 

 

 
Table (7): Average results of 3 prismatic models with 5 cm batten lacing 

Axial Force, kN Mass Load, kg 
No. of 

cycles 
Frequency rad/6 sec 

0.000981 0.100 603 631.460 

0.001962 0.200 426 446.106 

0.002943 0.300 348 364.424 

0.003924 0.400 301 315.206 

0.004905 0.500 269 281.696 

0.009810 1.000 190 198.967 

0.049050 5.000 85 89.011 

0.098100 10.00 60 62.831 

 

 
Table (8): Average results of 3 prismatic models with 10 cm Batten lacing 

Axial Force, kN Mass Load, kg 
No. of 

cycles 

Frequency, rad/6 

sec 

0.000981 0.100 356 372.8023 

0.001962 0.200 252 263.8938 

0.002943 0.300 205 214.6755 

0.003924 0.400 178 186.4012 

0.004905 0.500 159 166.5044 

0.009810 1.000 112 117.2861 

0.049050 5.000 50 52.35988 

0.098100 10.00 35 36.65191 

 

 
Table (9): Average results of 3 prismatic models with 20 cm batten lacing 

Axial Force, kN Mass Load, kg 
No. of 

cycles 
Frequency, rad/6 sec 

0.000981 0.100 194 203.1563 

0.001962 0.200 137 143.4661 

0.002943 0.300 112 117.2861 

0.003924 0.400 97 101.5782 

0.004905 0.500 87 91.10619 

0.009810 1.000 61 63.87905 

0.049050 5.000 27 28.27433 

0.098100 10.00 19 19.89675 
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The results are obtained experimentally and theoretically. They are then compared as in 

the following: 

Experimentally: The results are analyzed graphically to obtain the buckling load at 

the vanished stiffness by extending the relation between the stiffness and mass linearly. 

Figures (2) to (9) show the buckling load for eight different models. 

Theoretically: For a cantilever tapered column having load at the top free end, the 

stiffness matrix is
(9)

:  
 

  
 

  
 

  
   

 q SC S
 SC S S k

 ) (

 ) (

 2

 2 2
 

where   2

2

21 SC2SSq     , 
2

2

2

2
EI

QL


  

 

 

The results shown in Tables (10) and (11) present the obtained results by considering the eight 

different models experimentally and theoretically. 
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Fig (4): Stiffness-mass relation of model 3 
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 Fig  (5): Stiffness-mass relation of model 4 
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Fig (2): Stiffness-mass relation of model 1 
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Fig  (3): Stiffness-mass relation of model 2 
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Fig  (6): Stiffness-mass relation of model 5 
Loaded mass (kg) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(10) Experimental and theoretical results of model 1, 2, 3 and 4 

Test No. 
Experimental results Theoretical results 

Qcr, kN Qcr, kg 2  
S1 S2 SC 

1 0.003946 0.405 1.6659 27.31426 6.82856 8.61646 

2 0.112815 11.500 1.0840 16.959 5.982 6.124 

3 0.051551  5.255 0.4179 6.19183 4.38816 3.0121 

4 0.847 584 86.400  0.823 12.608 5.481 4.958 

 

Table (11) Experimental and theoretical results of model 5, 6, 7 and 8 

Test No. 
Experimental results Theoretical results 

Qcr, kN Qcr, kg     s sc 

5 18.474  1883 0.1841102 1.431531 1.862895 0.292099 

6 10.607 1081 0.1057058 5.460222 1.175894 -0.394902 

7 4.735  482 0.047188 17.19175 0.922095 -0.648701 

8  1.581   152 0.015755 59.4687 0.826299 –0.744498 

 

The buckling load is obtained for the first model divided into two, three and four non-

prismatic elements. Hereafter, the stability functions and non-dimensional axial force 

parameter for each element are obtained and given in Table (12). 
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Fig  (7): Stiffness-mass relation of model 6 
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  Fig  (8): Stiffness-mass relation of model 7 
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      Fig  (9): Stiffness-mass relation of model 8 
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Fig  (6): Stiffness-mass relation of model 5 
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Fig  (7): Stiffness-mass relation of model 6 
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Table (4) Stability Functions for model 1 divided into 1, 2, 3 and 4 tapered members 

Element 
L 

m 

Q 

kN 

Stability 

Function 

Values of Stability Functions   

First Second Third Fourth 

One  0.3 0.00394 

1S
 

27.3143 - - - 

SC  8.61646 - - - 

2S
 

6.82856 - - - 

2  
1.66590 - - - 

Two  0.15 0.00394 

1S
 

12.6399 9.3238336 - - 

SC  4.63927 3.5783314 - - 

2S
 

5.61763 5.2446338 - - 

2  
0.416475 0.0822700 - - 

Three  0.01 0.00394 

1S
 

9.139763 7.7054150 6.8649449 - 

SC  3.613771 3.1403804 2.8841442 - 

2S
 

5.141116 4.9314656 4.7673228 - 

2  
0.185100 0.0585664 0.0239888 - 

Four  0.075 0.00394 

1S
 

7.629459 6.8353036 6.3118599 5.9462715 

SC  3.155855 2.8903702 2.7254391 2.6124706 

2S
 

4.882853 4.7467386 4.6372774 4.5526189 

2  
0.104119 0.0426468 0.0205665 0.0111013 

 

The experimental data for models from 1 to 8 are identical with theoretical results that used 

modified stability functions by including shear effect. From the previous results, the elastic 

critical load of models 5, 6, 7 and 8 are compared with others, as shown in Figure (10) to 

represent the effect of increasing the number of batten lacings on elastic critical load in a 

prismatic member. 
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Fig (10): Buckling load on prismatic member for different batten lacings  
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It is found that the prismatic member having 2cm-batten lacing buckled after the three other 

models which have less number of battens lacing. On the other hand, the prismatic member 

having 20cm batten lacings buckled before the three other models which have a larger number 

of battens lacings. This means that, when the number of batten lacing increased, the buckling 

load increased. The other type of comparison is presented in Table (13) for the elastic critical 

load of the present study and the equivalent member
 (6)

. It is found that the elastic critical load, 

which is obtained from the present study, is more than that obtained from the equivalent 

member. Their values are close to each other. The error percent reduces when the number of 

batten lacings is increased. 

 
Table (13): Buckling load and displacement comparisons 

Test 

No. of 

batten 

lacings 

Buckling load, kN 

Ratio* 
Error** 

% 

Displacement at critical load, m 

Present study Equivalent 

member 

Present study Equivalent 

member 

5 20 18.474 18.2631 0.9886 1.14 0.2163 0.2080 

6 8 10.6066 9.03929 0.8522 14.78 0.1352 0.1315 

7 4 4.735 3.10014 0.6547 34.52 0.0617 0.0512 

8 2 1.5809 0.85348 0.5399 46.01 0.0272 0.0191 

*   The ratio between the buckling load of equivalent member to that of the present study. 

**  Error = Deference between the buckling load of the present study and equivalent member divided 

by the buckling load of the present study. 

 

From the above experimental works and theoretical results, the stability functions are very 

close.  

 

Conclusions  

1. The modified stability functions including the effect of bending and shear are 

compared with the stability functions including the effect of bending only for the same 

properties of non-prismatic beam-columns under different axial forces and cross-sectional 

areas. These conditions give different ratios of stability functions, which include and 

exclude shear effect. The effect of shear is summarized in Table (14) which shows: - 

 

Table (14): Ratios between stability functions 

excluding and including the effect of shear 

           2  

2  
0.00 2.00 

0.0001 

S1 0.999747 0.999813 

SC 0.999600 0.999888 

S2 0.999838 0.999998 

0.0400 

S1 0.908997 0.928652 

SC 0.854400 0.958576 

S2 0.941763 0.999844 

 
a. The effect decreases the stability functions with increasing of non-dimensional axial force 

parameters in the compression range. 

b. The effect increases the stability function with increasing of value of shear parameter. 

c. The minimum effect is at maximum axial force and minimum shear parameter (0.0001). 

d. The maximum effect is at zero axial force and maximum shear parameter (0.04). 
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e. The effect of shear parameter exceeds the effect of non-dimensional axial force 

parameter. 

 

2. In batten laced members, the shear flexibility parameter is decreased with increasing the 

number of batten lacings between two main columns. The limit of buckling load is increased 

by reducing the additional deformation due to shear strain as given by which summarizes the 

buckling load data for models 5, 6, 7 and 8.  

3. .It is found that the prismatic member having 2cm batten lacing buckled after the three other 

models which have less number of battens lacings. On the other hand, the prismatic member 

having 20cm batten lacings buckled before the three other models which have a larger number 

of battens lacings. This means that, when the number of batten lacing is increased, the 

buckling load is increased.  

4. It is found that the elastic critical load, which is obtained from the present study, is larger 

than the elastic critical load obtained from the equivalent prismatic member given by 

Timoshenko formula
 (6)

 .Their values are close to each other and the error percent is reduced 

when the number of batten lacings is increased. 

 

 

REFERENCES: 

1. Al-Quraishi, H. A. A., “Large Displacement Elastic Stability Analysis of Plane Frames 

Including Shear Effect”, M.Sc. Thesis, University of Technology, Iraq, 1999. 

2. Al-Fadul, M. A., “Stability Functions for Non-Prismatic Members Including Shear Effect”, 

M. Sc. Thesis, University of Kufa, Iraq, 2005 

3. Al-Sarraf, S. Z., “Shear Effect on the Elastic Stability of Frames”, The Structural Engineer, 

June 1986, pp. 43-47. 

4. Lin, F.J., Glauser, E.C., and Johnston, B.G., “Behaviour of Laced and Battened Structural 

Members”, Journal of the Structural Division, ASCE, Vol.96, No. ST7, July 1970, pp. 

1377-1401. 

5. Lindgren, S., “Shear Flexibility”, Journal of the Structural Division, ASCE, Vol.105 No. 

ST10, October 1979,Technical Note 2117-2121. 

6. Timoshenko, S. and Gere, J.M., “Theory of Elastic Stability”, 2nd edition, New York, 

McGraw Hill Book Co., Inc., 1961. 

7. Al-Sarraf, S.Z., “Discussion of Frames of Solid Bars of Varying Cross Sections”, Journal of 

the Structural Division, ASCE 81, No. ST1, February 1985, pp 318. 

8. Al-Sarraf S.Z., “Elastic Stability of Frameworks”, Ph.D. Thesis presented to the University 

of Liverpool at Liverpool, England, July, 1964. 

9. Al-Sarraf, S. Z., “Elastic Instability of Frames with Uniformly Tapered Members”, The 

Structural Engineer, March 1979, pp. 18-24. 

10. Yousif, W. V., “Modified Stability Functions with Shear Effects for Non-Prismatic 

Members in Steel Plane Frames and Members Inside Soils”, Ph.D. Thesis, Department 

of  Civil Engineering, University of Baghdad, April 2006. 

 

 

 

 



Journal of Engineering Volume13 December  2007       Number4  
 

 4522 

 

 

 

 

Appendix 
 

m
=

3
 

 
Q

.1QLBQLDK

EI

Z
S 2211a

2

1
1


  

 
u.Q

.1QLAQLCK

EI

Z
SC 2221b

2

1 
  

 
u.Q

.1QLAQLAu.K

EI

Z
S 2221b

2

1
2


  

m
=

1
 

 
Q

.1QLBQLDK

EI

Z
S 2211a

2

1
1


  

 
u.Q

.1QLAQLCK

EI

Z
SC 2221b

2

1 
  

 
u.Q

.1QLAQLAu.K

EI

Z
S 2221b

2

1
2


  

m
=

2
 

   sinab5.0cosL
PEI

QLb
S

2

1
 








 


5.05.0

2 ba

L
sin

PEI

baQL
SC  

  sin)ba(5.0cosL
PEI

QLa
S

2

2
 

 

m
=

4
        

















 11

1111
11211112ab112

22
a1 DA

QL

AB

QL

DC
ACBBCDBALKKBD

u.Q

.
K/LZ

 11
22

b AC
Q

.
K 


  

m
=

3
        

















 11

1111
11211112ab11

22
a1 DA

QL

AB

QL

DC
ACBBCDBALKKBD

u.Q

.
K/LZ

 11
22

b AC
Q

.
K 


  

m
=

1
        

















 11

1111
11211112ab11

22
a1 DA

QL

AB

QL

DC
ACBBCDBALKKBD

u.Q

.
K/LZ

 11
22

b AC
Q

.
K 


  

 

m
=

2
 






sin u Q

cos u MM
A

0.5

0.5

21  

Q/MB 2  



O.Al-Farouk                                                                   Modified Stability Functions with Shear Effects  

S. Z. AL-Sarraf                                                              for Non-Prismatic Members in Steel Plane Frames 

W. V. Yossif 
 

 

 4522 

0.25-
1)-(u

 
2

2

2
  

 
a

b
ln 








  

5.05.02 ba2cos)ba(sin)25.0(LP   

 

M
o
d

el
 1

 

  

M
o
d

el
 2

 

  

M
o
d

el
 3

 

  

 
 

 
 

 



Journal of Engineering Volume13 December  2007       Number4  
 

 4525 

M
o
d

el
 4

 
  

M
o
d

el
 5

 

  

M
o
d

el
 6

 

  

 

 

 

 



O.Al-Farouk                                                                   Modified Stability Functions with Shear Effects  

S. Z. AL-Sarraf                                                              for Non-Prismatic Members in Steel Plane Frames 

W. V. Yossif 
 

 

 4522 

M
o
d

el
 7

 

  

M
o
d

el
 8

 

  

 

 

 

List of symbols 
Symbol Symbol Definition 

Av Effective shear area for prismatic members 
Ab Cross sectional area for batten 
Av2 Effective shear area for tapered members at end 2 
E Modulus of elasticity 
I2 Moment of inertia for tapered member at end 2 

I(x) Moment of inertia at distance x from the origin O for tapered member 
Ic Moment of inertia for vertical plate 
Ih Length of the batten center to center of vertical plate 
Iv Center to center vertical distance between two battens lacing 

M1, M2 Applied moment at end 1 and 2 respectively 
M(x) Bending moment at distance x from the origin O  

Q Constant axial force 

QE Euler load ( 22 L/EI ) 
S1 Flexural stiffness factor for tapered member at end 1 
S2 Flexural stiffness factor for tapered member at end 2 
SC Flexural carry-over factor for tapered member 
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V Shear force 
a Distance of end 2 from the origin O for tapered member 
b Distance of end 1 from the origin O for tapered member  

d1, d2 Depth of tapered member at end 1 and 2 respectivily 
d(x) Depth of tapered member at distance x fro origin O 

f Frequency in cycle /sec 
g Acceleration due to gravity 
k Stiffness of structure 
m Shape factor 
n Numerical factor equal to 1.2 in the case of a rectangular cross section 
u Tapering ratio 
W Summation of external load on frame 
y Lateral deflection at distance x along the member 

 Shear flexibility parameter 

1, 2 End rotations at end 1 and 2 

2 Non-dimensional axial force parameters for tapered member 

 


