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ABSTRACT:

This paper presents a proposed method for speed estimation of asynchronous motor in
Direct Torque Control (DTC) system, based on a new architecture of multi-basis wavenet
model. Such multi-basis model utilizes multi-set daughter wavelets. Firstly, the structure and
training algorithm of the proposed method is discussed. The descent gradient method is used
to fulfill both system structure and parameters initialization. Secondly, the proposed speed
estimator and the DTC asynchronous motor are combined based on stator current signal and
the motor speed is then estimated online with the operation of the system. Finally, the
effectiveness of this method is proved by simulation carried out using Matlab/Simulink
library and compared with the actual results obtained from the dynamic equations of the
motor. The simulation results are obtained over the entire speed of starting, load conditions
and motor braking. These results show that the proposed method is effective for speed
estimation in DTC drives.

KEYWORDS: Wavenet, Multi-basis wavenet, Direct torque control, Speed estimation,
Asynchronous motor.
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INTRODUCTION

The speed estimation in DTC asynchronous motor systems have developed during the last
few years and become the main development direction of the AC speed adjustment [C. J.
Chen, et al., 2007]. Generally to establish the speed loop feedback in DTC system,
information of rotor speed is essential. Installation sensor for detecting rotor speed will
increase hardware cost and add some volume of system as well as the installation and
maintenance bring many difficulties beside the mechanical error which affect the detection
precision and performance of DTC control.

Several methods that eliminate the speed sensor have been developed. The observer-based
[J. Maes, et al., 2000, H. Kubota, et al., 1993, G. Yang, et al., 1993, C. Lascu, et al., 2004, and
Y. R. Kim, et al.,, 1992] and the Model Reference Adaptive System (MRAS) [C.
Schauder, 1992, C. Lascu, et al., 2000. and T. BANA, et al., 2002] seem the most used
methods for sensorless speed DTC system. However, the estimated speed is affected by
machine parameters. Moreover, these methods need to detect all the terminal voltages and
currents of the motor. A good technique for speed sensorless operation based on Neural
Network (NN) has been presented over the last years [M. P. Kazmiorkowski, et al., 1997, and
L. Brahim, et al., 1993]. This method is based only on signals detected from motor terminals
which eliminate the effect of motor parameters sensitivity on the estimated speed. However,
the estimated speed could not be perfectible due to some problems such as trapping in to local
minima and slow convergence.

The combination of NN with wavelet transform (wavenet), behaves good localization
property in both time and frequency space and multi-scale property. It is used for the analysis
of non-stationary signals and learning of the nonlinear functions [S. Mallat, 1999]. This
technique is also proposed to estimate the speed in DTC system [C. Zhi, et al., 2003 and M. A
Alwan, et al., 2008].

In this paper, the theory of wavenet is presented and a method of speed estimation based
on multi-basis wavenet is proposed. The proposed method includes multi-set daughter
wavelets from different mother functions in the hidden layer which is believed useful to
represent functions containing different signal cutting, ripples and rapid signal changes. The
simulink model of DTC asynchronous motor system is implemented and a speed estimator
based on the above proposed method is combined with the system based on one line of stator
current signal. Simulation results include developed torque, stator current beside the rotor
speed which is compared with the actual motor speed. Note that the theory of DTC control
has not been discussed here, however it can be found in details in [G. S. Buja, et al., 2004].

WAVENET

Wavenet can be considered a particular case of the feed forward basis function neural
network model. In ordinary network, several types of basis functions, such as radial basis
functions, splines and polynomial functions of synapse neurons are used instead of sigmodial
function. The connection weights are taken to represent the corresponding coefficients. The
output layer performs the sum of the output of all synapse neurons. Since wavelets have been
shown their excellent performance in non stationary signal analysis and nonlinear function
modeling, the neural network using wavelet basis function, wavenet, provides higher
availability of rate of convergence for the approximation than an ordinary feed forward neural
network [S. Mallat, 1999].

The wavenet can be constructed by means of replacing the nonlinear sigmodial function
with nonlinear wavelet basis function. Figure 1 illustrates the wavenet structure and Fig. 2
shows some typical wavelet functions.
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Fig. 2 Some typical wavelet functions

The network exhibits a multi-input to multi-output nonlinear system, realizing mapping from

R™=R". The approximated output signal of the network can be expressed as follows
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1=1] 3w 300 (b)) o

where x,(m=12,...,M) is the input for the m-th training vector X(t), y,(i=12,...,N) is
the output for the i-th training vector Y (t), M is the node numbers of the input layer, K is
the node numbers of hidden layer, w,; is the weight between the k-th node of the hidden layer

and the i-th node of the output layer, h(t) is the mother wavelet, a,bare the dilation and
translation and f is the linear function.

PROPOSED WAVENET SPEED ESTIMATOR
The structure of the proposed P -based wavenet speed estimator is shown in Fig. 3 and

the set up of its training and estimation for online speed changes in DTC asynchronous motor
system is shown in Fig. 4.

i, (k)

Fig.3 The proposed 2-input/ single output P -based (each of K daughters) wavenet speed
estimator.
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Fig.4 The set up for online training and estimation for speed in DTC asynchronous
motor system.

The wavenet speed estimator exhibits two inputs and single output. The input nodes are the
stator current i, (k) and the error in the stator current e(i, (k)) . They are defined as follows

I, (k) = instantaneous value of stator current.

e(i, (k) = 1, (k) 1, (k =1) )

A single signal from one line current is used here which uses a single current sensor. This is
useful for simplicity and economy [M. A. Alwan, et al., 2008]. The hidden layer is of
P different sets of daughter wavelets. The output of the wavenet is the motor speed which can
be given as follows [C. Zhi, et al., 2003]

(|3 3w, Y8, b (t-b,)/a,) ®

k=1 m=1

M'U

1]
LN

p

In order to determine the adjustable weights w,,(k=12,..K, p=12,..P) and the

adjustable parameters a,, and b, , a least mean square (LMS) energy minimizing function
can be applied:

E:%ii(e')z (4)

=1 =l
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where ¢ =F' —y' g and F' are the number of training samples and the desired value of

y'. To minimize the energy error E, a method of steepest descent which requires the

gradients oE : oE and OE is used for updating the incremental changes to each
OW, 0a, ob,

parameterw,,, a, , and b, . The gradients of E are:

°k _ v i S e X, he) (5)

aka =1 i=1l m=1
oE =_iiie| XI*W 8h(r) (6)
abpk =L i=l m=l ) P 5bpk
oE L & & | oh(r) ¢E
=- e X, *w, 7 =7 (7)
02 ; le Z; P o, ob,,
_bpk .
where 7= . The updated weight w,, and the parameters a, and b are:
pk
ka (n +1):ka (n) _bw + Cw Aka (n) (8)
pk
OE
a, (n+)=a,(n) b, — +c,Aa, (n) 9)
oa,
oE
b, (n+1)=b, (n) —b, 5 + ¢, Ab, (n) (10)

k

where b,,b,, and b, are steps size, c,,c,, and c, are the forgetting factors which are
variable factors and can greatly reduce the number of iterations for convergence.

SIMULATION RESULTS
Two sets of daughter wavelet functions (P = 2) with seven neurons (K = 7) in each set are

used to represent the hidden layer of a 2-basis wavenet speed estimator. The two mother
wavelets used in these sets are Mexican hat and Shannon functions. These functions with their
derivative with respect to the translation b are given as follows

Mexican hat function

2

h(r):% ﬁ% 1-72) ez (11)
D 2 @r-yem(-2) (12)
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and for Shannon function

h(r) = sin 2zt —sin 7z (13)

T

oh(r) & (—zr COS 7z — 272 COS 277 +SiN 727 +SiN 277)
_Z (14)
b a (nr)?

where 7= Pk

= The wavenet speed estimator was trained off line before combining it with
pk
the DTC system based on data obtained from the conventional operation of the DTC system.
The training is based on eq. 2 to 10 which can programmed in M-file in Matlab library as
given in the Appendix. The simulation was carried out to verify the function of the speed
estimator where the motor used in this system is a 3-ph, 1250 hp, 4160V, 150A, 6 poles, and
60 Hz induction motor (asynchronous motor). The simulation parameters of the motor are
described as follows: N, =1200r.p.m., R,=0.21Q2, R, =0.146Q, L, =L, =2mH,

L, =0.155H and J = 22kg.m*.

The rotor speed of the motor which is used to complete the torque loop in the DTC
system (Fig. 4) is taken either from the actual value calculated from the dynamic motor
equations or from the proposed wavenet speed estimator.

Figure 5 shows the actual rotor speed for starting the DTC system with no load from
standstill to a speed of 100 rad./sec. through 2 seconds, then the speed is increased suddenly
to 200 rad./sec. through the next 2 seconds. Figure 6 shows the estimated rotor speed
identified by the proposed wavenet speed estimator for the case above. It shows higher
dynamical following performance. The starting current and the starting torque for the same
previous case are show in Fig. 7 and 8 respectively.
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Fig. 5 Actual speed (electrical) during Fig. 6 Estimated speed (electrical)
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Fig. 7 Stator current during starting
with magnified portion at speed step
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Fig. 8 Developed torque during starting.

ROBUSTNESS

In order to test the robustness of the proposed method, the effect of system braking and
sudden change for full load torque have studied on the performance of the torque control and
speed changes.

To illustrate the performance of braking control, the operating mode have simulated
without load and the motor runs at rated speed of 377.8 rad./sec., the braking starts at the
instant of 3 sec. and the system is kept at standstill after the braking. Figure 9 and 10 show the
actual and estimated speed during braking while Fig. 11 and 12 show the stator current and
developed torque for the same mentioned case. The estimated speed follows the actual with
an error less than 1% which reflect the ability of the proposed speed estimator.
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Fig. 11 Stator current during braking. Fig. 12 Developed torque during
braking.

Figures 13-15 show the tests of robustness realized with sudden change in load torque
from no load to full load of the motor used, 7490 N.m, at the instant t=4sec. and its
elimination at t=6 sec. This process is repeated two times. In this case, the estimated speed is
used as a feed back signal to complete the torque loop of the DTC system. The developed
torque curve in Fig. 15 reflects the direct control of torque. The developed torque follows its
demand quickly with a time less than 0.05 sec.

For the robustness of control, a braking case, the estimated speed follows its actual and for
system loading when the speed is used as feed back signal, the DTC system gives an adequate
accuracy of system performance.
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CONCLUSIONS

The paper presents a new multi-basis wavenet speed estimator based on multi-set daughter
wavelet functions in DTC asynchronous motor system. The multi-basis wavenet is useful
because of high nonlinearity in the stator current waveform. The wavenet speed estimator is
trained offline based on stator current information obtained from the conventional operation
of the DTC system. The advantage of using multi-basis wavenet is the adequate speed
estimated for different operating conditions. The simulation results reveals a good system
performance.
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LIST OF SYMBOLES AND ABBREVIATIONS
A.C: Alternating Current.

DTC: Direct Torque Control.

LMS: Least Mean Square.

MRAS: Model Reference Adaptive System.

a:
b:
C:

Dilation
Translation.
Forgetting factor.

e(i,) : error in stator current (A).

S5 T =M

I

“<><§;UQ'UZZ|—X{_.

: Energy error.
: Linear function.

: Desired vector of the output vector.
: Mother wavelet.
- Stator current (A).

: Moment of inertia (kg.m?).

: Node numbers of hidden layer.
: Inductance (H).

: Node numbers of the input layer.

: Node numbers of the output layer, Motor speed (rad./sec.).
: Number of daughter wavelets.
: Number of training samples.
: Resistance Q.
: Weight.
: Input vector.
- Output vector.
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APPENDIX
%Matlab program for learning the proposed wavenet speed estimator based on eq.2 to10.
%Mexican Hat and Shannon mother wavelet functions are used in learning
wl=[1,1,1,1,1,1,1};a1=[.1,.1,.1,.1,.1,.1,.1];b1=[-.1,0,.1,.2,.5,.8,1.2];
w2=[.1,1,1,.1,.1,.1,.1];a2=[.1,.1,.1,.1,.1,.1,.1];b2=[-.1,.1,.3,.5,.9,1,1.3];
bw1=[0,0,0,0,0,0,0]; bB1=[0,0,0,0,0,0,0]; DA1=[0,0,0,0,0,0,0];
DW2=[0,0,0,0,0,0,0]; DB2=[0,0,0,0,0,0,0]; DA2=[0,0,0,0,0,0,0];
t=[0:1700];% time sample 1701samples
x11=[];% input current, can be loaded from file,1701 samples
F1=[];% target speed, can be loaded from file, 1701 samples
Xx=(x11-min(x11))/(max(x11)-min(min(x11));% normalized input current
F=(F1-min(F1))/(max(F1)-min(F1));%normalized target
aw1=.993;aa1=.993;ab1=.993;bw1=.0001;bal=.0001;bb1=.0001,;
aw2=.1;aa2=.1;ab2=.1;bw2=.01;ba2=.01;bb2=.01;
for 1=[1:1000]%iteration counter
E=0;
for n=[1:1701];%sampled number
y(n)=0;
for k=[1:7];%weighs counter
y1=wI(K)*(x(n))*(2/sart(3))*(pi"(-1/4))*(1-(((x(n)-b1(k))/al(k))"2))* (exp(-(((x(n)-
b1(k))/al(k))"2)/2));
y2=w2(K)*(x(n))*(sin(2*pi*((x(n)-b2(k))/a2(k)))-sin((x(n)-b2(k))/a2(k)))/(pi*(x(n)-
b2(k))/a2(k));
y(n)=y(n)+yl+y2;
end; %end k
E1=0.5*((F(n)-y(n))"2); E=E+E1,
end %end n
if E<abs(.01)
disp(‘end of work")
break;
else
for k=[1:7
PEPW1(k)=0;PEPB1(k)=0;PEPA1(k)=0;PEPW2(k)=0;PEPB2(k)=0;PEPA2(K)=0;
for n=[1:1701];
t1=(x(n)-b1(k))/al(k);
PEPW11(Kk)=-(F(n)-y(n))*(x(n))*(2/sqrt(3))*(pi"(-1/4))*(1-(((x(n)-
b1(k))/al(k))"2))*(exp(-(((x(n)-bl(k))/al(k))"2)/2));
PEPB11(K)=-(F(n)-y(n))*x(n)*w1(K)*(2/sqrt(3))*(pi™(-1/4))*(1/al(k))*(3*t1-
t173)*exp(-(t1"2)/2);
PEPA11(k)=PEPB1(k)*t1; PEPW1(k)=PEPW1(k)+PEPW11(K);
PEPB1(k)=PEPB1(k)+PEPB11(k); PEPA1(k)=PEPAL(K)+PEPA11(K);
t2=(x(n)-b2(k))/a2(k);
PEPW22(K)=-(F(n)-y(n))*((x(n)-b2(k))/a2(k))/((((x(n)-b2(k))/a2(k))"2+1)"2);
PEPB22(k)=-(F(n)-y(n))*x(n)*w2(k)*(1/a2(k))*((pi*t2*cos(pi*t2)-
2*pi*cos(2*pi*t2)+sin(pi*t2)+sin(2*pi*t2))/((pi*t2"2)));
PEPA22(k)=PEPB2(k)*t2; PEPW2(K)=PEPW2(k)+PEPW22(K);
PEPB2(k)=PEPB2(k)+PEPB22(k); PEPA2(K)=PEPA2(K)+PEPA22(K);
end % end n
storew1(k)=w1(k);
wl(k)=wl(k)-bwl1*PEPW1(Kk)+awl*DW1(K);
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DW1(k)=wl(k)-storewl(k);
storebl1(k)=b1(k);
b1(k)=b1(k)-bb1*PEPB1(k)+ab1*DB1(k);
DB1(k)=b1(k)-storeb1(k);
storeal(k)=al(k);
al(k)=al(k)-bal*PEPAL(k)+aal*DA1(K);
DA1(k)=al(k)-storeal(k);
storew2(k)=w2(K);
w2(K)=w2(k)-bw2*PEPW2(k)+aw2*DW2(k);
DW2(k)=w2(k)-storew2(k);
storeb2(k)=b2(k);
b2(k)=b2(k)-bb2*PEPB2(k)+ab2*DB2(k);
DB2(k)=b2(k)-storeb2(k);
storea2(k)=a2(k);
a2(k)=a2(k)-ba2*PEPA2(k)+aa2*DA2(k);
DA2(k)=a2(k)-storea2(k);
end %end k
end;%end if

end %end |

%Plot the training results

subplot(2,2,1)

plot(t,y,'k"); grid on

xlabel(‘time(sec)’)

ylabel(‘output speed")

title('Fig.1.identified speed’)

subplot(2,2,2)

plot(t,F,t,y); grid on

xlabel(‘time(sec)")

ylabel(‘target identified speed’)

title('Fig.2.target and identified speed')

subplot(2,2,3)

plot(t,x11,'r"); grid on

xlabel(‘time(sec)’)

ylabel('inputl’)

title('Fig.3.input’)

subplot(2,2,4)

plot(t,E,'g")

grid on

xlabel(‘time(sec)’)

ylabel('Error")

title('Fig.4.Error’)
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