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ABSTRACT: 

          This paper presents a proposed method for speed estimation of asynchronous motor in 

Direct Torque Control (DTC) system, based on a new architecture of multi-basis wavenet 

model. Such multi-basis model utilizes multi-set daughter wavelets.  Firstly, the structure and 

training algorithm of the proposed method is discussed. The descent gradient method is used 

to fulfill both system structure and parameters initialization. Secondly, the proposed speed 

estimator and the DTC asynchronous motor are combined based on stator current signal and 

the motor speed is then estimated online with the operation of the system. Finally, the 

effectiveness of this method is proved by simulation carried out using Matlab/Simulink 

library and compared with the actual results obtained from the dynamic equations of the 

motor. The simulation results are obtained over the entire speed of starting, load conditions 

and motor braking. These results show that the proposed method is effective for speed 

estimation in DTC drives. 

           

KEYWORDS: Wavenet, Multi-basis wavenet, Direct torque control, Speed estimation, 

                   Asynchronous motor. 

 

 تقذير السرعت في نظام التحكم المباشر لعزم المحرك الغير متزامن

 باعتماد الشبكاث العصبيت المويجيت متعذدة الأساساث 

 
 

 : خلاصتال
الشتبماث اعخمتا  بطزيقت لخقديز سزعت المحزك الغيز مخشامن في نظام التخحمم المبارتز لزمتشم  اقخزاح حم في هذا البحث       

مناقشتت حزييتو طواتواث  بدايتتفتي ال حمتج  .الأساساث بخوظيف عدة مجاميع من بناث المويجاثخمد ة المالمويجيت المصبيت 

طحتم اانيتا حزييتو طربتط . لخحقيق بنيت النظام طحستا  الممتام ث باسخخدام ووارسميت الانحدار الهابط حدريو النظام المقخزح

حيتث حتم حقتديز الستزعت بشتم   بز حيار الجتش  الاابتج لزمحتزكع  مشمزمع نظام الخحمم المبارز لحقديز السزعت المقخزح نظام 

الختتي المحايتاة  لخقتديز الستتزعت متن وت ئ نختتا    المقخزحتتت ازيقتتالحتتم الخحقتق متتن ي تا ة  طثويتزا. مبارتز ثانتا  عمتت  النظتام

محستوبت متن نختا   الستزعت المقتدرة متع الستزعت الحقيقيتت الطقورنتج   Matlab  فتي  Simulink ممخبتت  باسخخدامانجشث 

 إيقتا طحتالاث الخحميت  طعنتد حالتت  لبتد اثسخحصتزج نختا   المحايتاة لمتدة متدياث لزستزعت عنتد  .مما لاث الحزيت لزمحتزك

 .ثظهزث النخا   فماليت الازيقت المقخزحت قي حقديز السزعت في ثنظمت الخحمم المبارز لزمشم طقد .المحزك
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INTRODUCTION 

     The speed estimation in DTC asynchronous motor systems have developed during the last 

few years and become the main development direction of the AC speed adjustment [C. J. 

Chen, et al., 2007]. Generally to establish the speed loop feedback in DTC system, 

information of rotor speed is essential. Installation sensor for detecting  rotor speed will 

increase hardware cost and add some volume of system as well as the installation and 

maintenance bring many difficulties beside the mechanical error which affect the detection 

precision and performance of DTC control. 

     Several methods that eliminate the speed sensor have been developed. The observer-based     

[J. Maes, et al., 2000, H. Kubota, et al., 1993, G. Yang, et al., 1993, C. Lascu, et al., 2004, and 

Y. R. Kim, et al.,, 1992]  and    the     Model Reference Adaptive System (MRAS) [C. 

Schauder, 1992, C. Lascu, et al., 2000. and T. BANA, et al., 2002] seem the most used 

methods for sensorless speed DTC system. However, the estimated speed is affected by 

machine parameters. Moreover, these methods need to detect all the terminal voltages and 

currents of the motor. A good technique for speed sensorless operation based on Neural 

Network (NN) has been presented over the last years [M. P. Kazmiorkowski, et al., 1997, and 

L. Brahim, et al., 1993]. This method is based only on signals detected from motor terminals 

which eliminate the effect of motor parameters sensitivity on the estimated speed. However, 

the estimated speed could not be perfectible due to some problems such as trapping in to local 

minima and slow convergence. 

      The combination of NN with wavelet transform (wavenet), behaves good localization 

property in both time and frequency space and multi-scale property. It is used for the analysis 

of non-stationary signals and learning of the nonlinear functions [S. Mallat, 1999]. This 

technique is also proposed to estimate the speed in DTC system [C. Zhi, et al., 2003 and M. A 

Alwan, et al., 2008].  

      In this paper, the theory of wavenet is presented and a method of speed estimation based 

on multi-basis wavenet is proposed. The proposed method includes multi-set daughter 

wavelets from different mother functions in the hidden layer which is believed useful to 

represent functions containing different signal cutting, ripples and rapid signal changes. The 

simulink model of DTC asynchronous motor system is implemented and a speed estimator 

based on the above proposed method is combined with the system based on one line of stator 

current signal. Simulation results include developed torque, stator current beside the rotor 

speed which is compared with the actual motor speed. Note that the theory of DTC control 

has not been discussed here, however it can be found in details in [G. S. Buja, et al., 2004].  

 

WAVENET 

      Wavenet can be considered a particular case of the feed forward basis function neural 

network model. In ordinary network, several types of basis functions, such as radial basis 

functions, splines and polynomial functions of synapse neurons are used instead of sigmodial 

function. The connection weights are taken to represent the corresponding coefficients. The 

output layer performs the sum of the output of all synapse neurons. Since wavelets have been 

shown their excellent performance in non stationary signal analysis and nonlinear function 

modeling, the neural network using wavelet basis function, wavenet, provides higher 

availability of rate of convergence for the approximation than an ordinary feed forward neural 

network [S. Mallat, 1999].  

       The wavenet can be constructed by means of replacing the nonlinear sigmodial function 

with nonlinear wavelet basis function. Figure 1 illustrates the wavenet structure and Fig. 2 

shows some typical wavelet functions. 

 



Journal of Engineering Volume   16  December  2010 Number  4 
 

 

 

 2488 

                       

)(
1

1

a

bt
h



)(
2

2

a

bt
h



)(
K

K

a

bt
h



)(1 tx

)(2 tx

)(1 ty

)(2 ty

)(tyN

Input Layer of

M source

Hidden Layer of

K hidden Neuron

Output layer of 

N output

11w

KNw

)(txM

 
 

Fig.(1) The structure of wavenet 
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Fig. 2 Some typical wavelet functions 

  
The network exhibits a multi-input to multi-output nonlinear system, realizing mapping from 

nm RR  . The approximated output signal of the network can be expressed as follows 
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where  ),...,2,1( Mmxm   is the input for the m -th training vector )(tX ,  ),...,2,1( Niyi  is 

the output for the i-th training vector )(tY , M  is the node numbers of the input layer, K  is 

the node numbers of hidden layer, kiw  is the weight between the k-th node of the hidden layer 

and the i-th node of the output layer, )(th  is the mother wavelet, ba, are the dilation and 

translation and f  is the linear function. 

 

PROPOSED WAVENET SPEED ESTIMATOR 
      The structure of the proposed P -based wavenet speed estimator is shown in Fig. 3 and 

the set up of its training and estimation  for online speed changes in DTC asynchronous motor 

system is shown in Fig. 4.  
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Fig.3 The proposed 2-input/ single output P -based (each of K daughters) wavenet speed 

estimator. 
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The wavenet speed estimator exhibits two inputs and single output. The input nodes are the 

stator current )(kia  and the error in the stator current ))(( kie a . They are defined as follows 

)(kia  = instantaneous value of stator current. 

  

))(( kie a = )1()(  kiki aa                                                                                                         (2) 

 

A single signal from one line current is used here which uses a single current sensor. This is 

useful for simplicity and economy [M. A. Alwan, et al., 2008]. The hidden layer is of 

P different sets of daughter wavelets. The output of the wavenet is the motor speed which can 

be given as follows [C. Zhi, et al., 2003] 
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      In order to determine the adjustable weights Kkwkp ,...2,1(  , ),...2,1 Pp   and the 

adjustable parameters pka  and pkb , a least mean square (LMS) energy minimizing function 

can be applied: 
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where  lll yFe  , q  and  lF  are the number of training samples and the desired value of  
ly . To minimize the energy error E , a method of steepest descent which requires the 
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where  
pk
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a

bt 
 .  The updated weight  pkw  and the parameters pka  and  pkb  are: 
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where ,, aw bb  and bb  are steps size,  ,, aw cc  and  bc  are the forgetting factors which are 

variable factors and can greatly reduce the number of iterations for convergence. 

 

SIMULATION RESULTS  

    Two sets of daughter wavelet functions )2( P  with seven neurons )7( K  in each set are 

used to represent the hidden layer of a 2-basis wavenet speed estimator. The two mother 

wavelets used in these sets are Mexican hat and Shannon functions. These functions with their 

derivative with respect to the translation b are given as follows 
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and for Shannon function  
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where 
pk

pk

a

bt 
 . The wavenet speed estimator was trained off line before combining it with 

the DTC system based on data obtained from the conventional operation of the DTC system. 

The training is based on eq. 2 to 10 which can programmed in M-file in Matlab library as 

given in the Appendix. The simulation was carried out to verify the function of the speed 

estimator where the motor used in this system is a 3-ph, 1250 hp, 4160V, 150A, 6 poles, and 

60 Hz induction motor (asynchronous motor). The simulation parameters of the motor are 

described as follows: sN =1200r.p.m., sR =0.21 ,  146.0rR , mHLL rs 2 , 

HLm 155.0 and 2.22 mkgJ  . 

       The rotor speed of the motor which is used to complete the torque loop in the DTC 

system (Fig. 4) is taken either from the actual value calculated from the dynamic motor 

equations or from the proposed wavenet speed estimator.   

        Figure 5 shows the actual rotor speed for starting the DTC system with no load from 

standstill to a speed of 100 rad./sec. through 2 seconds, then the speed is increased suddenly 

to 200 rad./sec. through the next 2 seconds. Figure 6 shows the estimated rotor speed 

identified by the proposed wavenet speed estimator for the case above. It shows higher 

dynamical following performance. The starting current and the starting torque for the same 

previous case are show in Fig. 7 and 8 respectively. 
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Fig. 5 Actual speed (electrical) during 

starting 
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Fig. 6 Estimated speed (electrical)    

during starting 
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Fig. 7 Stator current during starting 

with magnified portion at speed step 

change instant. 
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Fig. 8 Developed torque during starting. 

 

 

 

ROBUSTNESS 
     In order to test the robustness of the proposed method, the effect of system braking and 

sudden change for full load torque have studied on the performance of the torque control and 

speed changes. 

     To illustrate the performance of braking control, the operating mode have simulated 

without load and the motor runs at rated speed of 377.8 rad./sec., the braking starts at the 

instant of 3 sec. and the system is kept at standstill after the braking. Figure 9 and 10 show the 

actual and estimated speed during braking while Fig. 11 and 12 show the stator current and 

developed torque for the same mentioned case. The estimated speed follows the actual with 

an error less than 1% which reflect the ability of the proposed speed estimator. 
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Fig. 9 Actual speed (electrical) during           

                         braking                                                               
       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Estimated speed (electrical)  

during braking 
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Fig. 11 Stator current during braking. 
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Fig. 12 Developed torque during 

braking. 

     Figures 13-15 show the tests of robustness realized with sudden change in load torque 

from no load to full load of the motor used, 7490 N.m, at the instant t=4sec. and its 

elimination at t=6 sec. This process is repeated two times. In this case, the estimated speed is 

used as a feed back signal to complete the torque loop of the DTC system. The developed 

torque curve in Fig. 15 reflects the direct control of torque. The developed torque follows its 

demand quickly with a time less than 0.05 sec.  

     For the robustness of control, a braking case, the estimated speed follows its actual and for 

system loading when the speed is used as feed back signal, the DTC system gives an adequate 

accuracy of system performance. 
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Fig. 13 Estimated speed (electrical)              Fig. 14 Stator current during load change 

             during load change. 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                          Fig. 15 Developed torque during load change 



AA. OBED                                                                    Multi-Basis Wavenet-Based Speed Estimation  

                                                                                       In Direct Torque Controlled Asynchronous Motor  

 

 2425 

CONCLUSIONS 

     The paper presents a new multi-basis wavenet speed estimator based on multi-set daughter 

wavelet functions in DTC asynchronous motor system. The multi-basis wavenet is useful 

because of high nonlinearity in the stator current waveform. The wavenet speed estimator is 

trained offline based on stator current information obtained from the conventional operation 

of the DTC system. The advantage of using multi-basis wavenet is the adequate speed 

estimated for different operating conditions. The simulation results reveals a good system 

performance. 
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LIST OF SYMBOLES AND ABBREVIATIONS 

A.C: Alternating Current. 

DTC: Direct Torque Control. 

LMS: Least Mean Square. 

MRAS: Model Reference Adaptive System. 

a  : Dilation 

b  : Translation. 

c  : Forgetting factor. 

)( aie : error in stator current (A). 

E  : Energy error. 

f  : Linear function. 

F  : Desired vector of the output vector. 

h  : Mother wavelet. 

ai  : Stator current (A). 

J  : Moment of inertia ( 2.mkg ). 

K  : Node numbers of hidden layer. 

L  : Inductance ( H ). 

M  : Node numbers of the input layer. 

N  : Node numbers of the output layer, Motor speed (rad./sec.). 

P  : Number of  daughter wavelets. 

q  : Number of training samples. 

R  : Resistance  . 

w  : Weight. 

x  : Input vector. 

y  : Output vector. 
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APPENDIX 

%Matlab program for learning the proposed wavenet speed estimator based on eq.2 to10. 

%Mexican Hat and Shannon mother wavelet functions are used in learning 

w1=[.1,.1,.1,.1,.1,.1,.1];a1=[.1,.1,.1,.1,.1,.1,.1];b1=[-.1,0,.1,.2,.5,.8,1.2]; 

w2=[.1,.1,.1,.1,.1,.1,.1];a2=[.1,.1,.1,.1,.1,.1,.1];b2=[-.1,.1,.3,.5,.9,1,1.3]; 

DW1=[0,0,0,0,0,0,0]; DB1=[0,0,0,0,0,0,0]; DA1=[0,0,0,0,0,0,0];  

DW2=[0,0,0,0,0,0,0]; DB2=[0,0,0,0,0,0,0]; DA2=[0,0,0,0,0,0,0]; 

t=[0:1700];% time sample 1701samples 

x11=[];% input current, can be loaded from file,1701 samples  

F1=[];% target speed, can be loaded from file, 1701 samples 

x=(x11-min(x11))/(max(x11)-min(min(x11));%  normalized input current 

F=(F1-min(F1))/(max(F1)-min(F1));%normalized target  

aw1=.993;aa1=.993;ab1=.993;bw1=.0001;ba1=.0001;bb1=.0001; 

aw2=.1;aa2=.1;ab2=.1;bw2=.01;ba2=.01;bb2=.01; 

for I=[1:1000]%iteration counter 

     E=0; 

     for n=[1:1701];%sampled number 

         y(n)=0; 

         for k=[1:7];%weighs counter 

             y1=w1(k)*(x(n))*(2/sqrt(3))*(pi^(-1/4))*(1-(((x(n)-b1(k))/a1(k))^2))*(exp(-(((x(n)-

b1(k))/a1(k))^2)/2)); 

             y2=w2(k)*(x(n))*(sin(2*pi*((x(n)-b2(k))/a2(k)))-sin((x(n)-b2(k))/a2(k)))/(pi*(x(n)-

b2(k))/a2(k)); 

             y(n)=y(n)+y1+y2; 

         end; %end k 

         E1=0.5*((F(n)-y(n))^2); E=E+E1;         

     end %end n 

      if E< abs(.01) 

         disp('end of work') 

         break; 

      else 

          for k=[1:7     

           PEPW1(k)=0;PEPB1(k)=0;PEPA1(k)=0;PEPW2(k)=0;PEPB2(k)=0;PEPA2(k)=0; 

            for n=[1:1701]; 

              t1=(x(n)-b1(k))/a1(k); 

              PEPW11(k)=-(F(n)-y(n))*(x(n))*(2/sqrt(3))*(pi^(-1/4))*(1-(((x(n)-

b1(k))/a1(k))^2))*(exp(-(((x(n)-b1(k))/a1(k))^2)/2));  

              PEPB11(k)=-(F(n)-y(n))*x(n)*w1(k)*(2/sqrt(3))*(pi^(-1/4))*(1/a1(k))*(3*t1-

t1^3)*exp(-(t1^2)/2); 

              PEPA11(k)=PEPB1(k)*t1; PEPW1(k)=PEPW1(k)+PEPW11(k); 

              PEPB1(k)=PEPB1(k)+PEPB11(k); PEPA1(k)=PEPA1(k)+PEPA11(k); 

              t2=(x(n)-b2(k))/a2(k); 

              PEPW22(k)=-(F(n)-y(n))*((x(n)-b2(k))/a2(k))/((((x(n)-b2(k))/a2(k))^2+1)^2); 

              PEPB22(k)=-(F(n)-y(n))*x(n)*w2(k)*(1/a2(k))*((pi*t2*cos(pi*t2)-

2*pi*cos(2*pi*t2)+sin(pi*t2)+sin(2*pi*t2))/((pi*t2^2))); 

              PEPA22(k)=PEPB2(k)*t2; PEPW2(k)=PEPW2(k)+PEPW22(k); 

              PEPB2(k)=PEPB2(k)+PEPB22(k); PEPA2(k)=PEPA2(k)+PEPA22(k); 

            end % end n 

            storew1(k)=w1(k); 

            w1(k)=w1(k)-bw1*PEPW1(k)+aw1*DW1(k); 



Journal of Engineering Volume   16  December  2010 Number  4 
 

 

 

 2428 

            DW1(k)=w1(k)-storew1(k); 

            storeb1(k)=b1(k); 

            b1(k)=b1(k)-bb1*PEPB1(k)+ab1*DB1(k); 

            DB1(k)=b1(k)-storeb1(k); 

            storea1(k)=a1(k); 

            a1(k)=a1(k)-ba1*PEPA1(k)+aa1*DA1(k); 

            DA1(k)=a1(k)-storea1(k); 

            storew2(k)=w2(k); 

            w2(k)=w2(k)-bw2*PEPW2(k)+aw2*DW2(k); 

            DW2(k)=w2(k)-storew2(k); 

            storeb2(k)=b2(k); 

            b2(k)=b2(k)-bb2*PEPB2(k)+ab2*DB2(k); 

            DB2(k)=b2(k)-storeb2(k); 

            storea2(k)=a2(k); 

            a2(k)=a2(k)-ba2*PEPA2(k)+aa2*DA2(k); 

            DA2(k)=a2(k)-storea2(k); 

          end %end k 

        end;%end if 

 end %end I 

 %Plot the training results 

 subplot(2,2,1) 

 plot(t,y,'k'); grid on 

 xlabel('time(sec)') 

 ylabel('output speed') 

 title('Fig.1.identified speed') 

 subplot(2,2,2) 

 plot(t,F,t,y); grid on 

 xlabel('time(sec)') 

 ylabel('target identified speed') 

 title('Fig.2.target and identified speed') 

 subplot(2,2,3) 

 plot(t,x11,'r'); grid on 

 xlabel('time(sec)') 

 ylabel('input1') 

 title('Fig.3.input') 

 subplot(2,2,4) 

 plot(t,E,'g') 

 grid on 

 xlabel('time(sec)') 

 ylabel('Error') 

 title('Fig.4.Error') 

 

 


