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ABSTRACT

A general method using the theory of thin-walled structures is given for determining the natural
frequencies und mode shape for box —girder of varying depth having closed section, subjected to
lorsion and  bending using a grillage method and finite element method (plate /shell, MSC,

NASTRAN) . Consistent mass matrices related to torsion and bi- moment effects have been derived
using shape functions corrésponding to an assumed polynomial deflection configuration, also
stiffness and  consistent mass matrices for flexural behavior including the effect of shear
deformation and rotary inertia in bending. The stiffness matrix for beam element under non-uniform .
lorsion is presented by using the differential equation of equilibrium,

A special computer program is written to perform the free vibration analysis starting from
the element stiffness and consistent mass matrices. The results have been compared with those
obtained from MSC /NASTRAN Package. Numerical examples are presented to show the effect of
cell number and effect of variation for (span / width) ratio.
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INTRODUCTION

Plane girder can be idealized as structural systems formed by unidimensional finite elements, These
clements are the bars whose assemblage forms the structure.

The Candian High Way Bridge Design Code (CHBDC 2000) as well as the American Association
of Flat High Way Transportation Officials (AASHTO 1996; AASHTO 1994) has recommended
several method of-analysis for only straight box- girder bridges. These methods include orthotropic
piate theory, finite deference technique, grillage analogy, folded plate, finite strip and finite element
technique.

The grillage analogy method is applied to the free vibration analysis of grids with linearly varying
depth Fig.(1). An engineering theory of torsion bending has been developed for non-uniform beam
with multi-cell cross section. The distribution of warping restraint stresses around the section is
detined in a similar way as for bending by a system of sectional co-ordinates and several additional
geometrical terms.

Fig.(1) Tapered Box Girder

MULTI- CELLULAR SECTIONS

Box girders with more than one cell are frequently found in practice and enable the range of
application of cellular structures to be greatly extended. Their behavior is not significantly different
from that of single cell box girders in which a shear flow of a constant magnitude develops around
the box to resist pure applied torque.

&.

Fig.(2). Determination of the sectorial area (@ ) for uniform multi-
cell closed section.
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[he co-ordinate distribution represents the level of out of plane warping due to a unit rate of twist
and must accordingly have zero value at points on the cross -section which display zero warping. If
the position of shear center and a point of zero warping are not obvious from symmetry, they may
be determined by salislying the conditions [ Waldron, 1986]

Jq(:)m.d,!\ = I‘(om..x.dA & J"cﬂ(sj.y.dA = ()
A A

v

H (33

The sectional co-ordinates for a closed section are determined by first introducing an imaginary cut
t the closed cell there by transforming it into an equivalent open section. Account must then he
laken of the connectivity condition for the closed cell in which it is necessary to restore
compatibility at the imaginary cut . This leads to the following expression for unit warping.

O = [1,.ds S jds (2)

ﬁs ;

i which the first integral refers to the equivalent open section and is therefore evaluated around the
entire section . The second integral applies only to the closed part of the section effectively reducing
warping displacements by restoring continuity around the cell
The stress resultant (Bi) and (Tw) are defined as

| : | 3
Tw =B =<F] 2™ 3)

and are obtained from a solution to the partial differential equation for non- uniform torsion:

T=Glo'-EI " . (4)

The deformation term (£) is a non —dimensional warping function closely related to the twist o by
the expression:

: T
Jor v
@ = “m‘; &
Gle

)

Where (le) s the central second moment of area and L, is warping shear parameter , given by [
Benscoter, 1954 ].

i (6)

‘E“brsionai Constant for closed Cell Sections.

A procedure to caleulate the torsional constant (J) for multi-cell cross section under pure torsion and
free to warp is given by [Timoshinko and Goodier ; B0}
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=y, jd% - . Y 25 (7)
i :

Where (w; ) 1s the geometric quantity and is easily determined by the middle line of the section for

aiven cell (1)

: s dd
L Zdx
SO, ‘Ii = \EJ!Q! (9)

CONSISTENT MASS MATRIX OF BEAM ELEMENT UNDER

NON- UNIFORM TORSION
do

Two degree of freedom ¢ and 0 = - have been allowed at each node point of a beam element
X
subjected 10 non- uniform torsion. These parameters are analogous to that of flexural element with
v dw ; .
two dearee of freedom w and - at each node. Based on this analogy the displacement
ax
conliguration associated with each degree of freedom ¢and can be represented by a cubic
poiynomial as described below [Mallick and Dungar , 1977].
G, = =7+ (223 /L)m (z" /LE)
0., =1+2022° /L7 )= (322 /1)
[ s 5 (10)
Gy, =tz LJ— ({, / L')

RS

buy = (322112 )- (22° /Ls)

Where ¢,(2).0;(2),05(z)and ¢,(z) are the shape functions associated with each degree of
freedom ¢ 0 ¢5andB,.

Using the shape functions, the complete mass matrix for beam element can be derived using
the above shape functions.
HBecause of the fact that the acceleration distribution follows the displacement distribution pattern
- during sinusoidal vibrations, it is now possible to define the inertia load .function iy |
correspondiag to a unit value of acceleration ¢,

gy, =m(C, + D, Z+E Sinhaz + FICOShaZ) (1

. L . ; ¥
where (m) is the mass moment of inertia per unit length of the element and its equal to I;.~ where
B R
=
v 18 the weight density per unit length of the member and I; is the polar moment of inertia of the

wross seetion aboul the centroidal longitudinal axes. The generalized mass (mj; can be written as :
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m; = m Jj'fim.d)_](zldz (12)

After integration , the mass matrix (4x4) of thin-walled beam element with open or closed section
subjected to degree of freedom d¢and ©at each node can be complied will be of the form .
[Maliick , 1977].

S BL
35
010
Lol L T . 108
g = [e 13
Ll‘]J -’g ?iJ i}LZ L{)’E { )

70 420 35
; 2

=137 w3l
L 420 140 210 105

For tapered members, 1, = Ti where fj is the mean value of polar moment of inertia of the cross
section at the two ends.
[t 1s possible to improve the procedure by considering the inertial forces caused by rotary inertia

[ Venancio. 1973 and Briseghella 1998]. For this purpose it is sufficient to add the following matrix
to the mass matrix.

T 6 ity e
5. 16 B 1o
g e % B ,ﬂL

Mg =210 19157 kN (14)
FrEd
10 30" 0 1s5°

L, = warping constant of the cross section of beam.

Element Mass Matrix Under Bending
It is possible to obtain mass matrix, [Bresighella, 1998]

I
m;; = J‘Nim.ledx
) :
(' 234 33 8L  -95L]
v -1 L | 3L 6L? 195L -4512
C° 2’630 81 195L 234 ~33L |
~195L -45L% -33L 612 |

(15)
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TORSIONAL STIFFNESS MATRIX FOR THIN-WALLED BEAM ELELMENT
The solution of the differential Equation, [Just and Walley, 1979]

i

n____“m‘mt mr

oY —k? o' = - 16
’ E,.I, G.I, 8
{an be assumed to be:
Gp=C, -+ C,x +C, sinh(kx)+C, cosh (kx) (17)
or ¢(x)=[l x sinh(kx) cosh(kx)] {o] (18)
Where here 1C1, Co, Cs, Ca }'
o ir Kk Jées ,
Uxy= 0 1 —-cosh(kx) -—sinh{kx) {a} (19)
L, ;’Ltﬂ }-L(!]
“The boundary displacements are given by:
[]=[A] {o)
ar ina matrix form:
b0 0 1],

by | k ¢, \'

g | 01T — 0 :
4 )l‘ ;:v- }'l\-\- CE ¥ (20)
E N U N S R
o] |87 2o E [QJ

u Iy,
Hence:
K, =[] [A]"
Sa. hinally:
[KSH = w,(1=CH) -k SH B (1-CH)

. MO (KLCH-pgSH)  o(-CH)  Beg sH-k)
K, =G k k (1)

; k SH ~h g, (1-CH)

”km (KLCH-p,,SH)
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Where:
I
[211, (1~ CH) + kL SH)]

G =

T= 1" (whereI" is the mean value of torsional constant for varying depth beam element).

Stiffness Matrix For Prismatic (I- Beam) Element

[ 12 61 -12 6L |
. BBl 6L Wl o (-2
[‘\-.. o B :.u,? ; . (22}
o] -12 -BL 12 ~6L

6L (@=mi? FEeL a2 | -

[ :-—'-_-—w—?—l« {for I and box or cellular section member).

A is the area of the web plate for member of (I} section and box or cellular section.

The effective flange width due to shear lag is considered by wusing the table of
LiviofTal and Doweling , 1975]. '

Stiffness Matrix For Tapered (1-Beam) Element

i
v < _ ) Iy
¢ f e T //! l iz
| h h(x)
¥ ’/'M
2 ”
Fig. (3) I-cross section of a taper grillage member
| V, i [u b C—’ w]‘l
Mal | 4 b e oy, 03
bV !w a b{[ Wiz .
(M2l | n JL

in the above. [Meethaq , 2004]
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BT, vy Lt o8
: ) L=z Y2z, )
a=-—: b=—~_""2 - c= : = -+
B3 ' BB BB BB 774
z,_/‘ Ly s / 2
o BB 2%y * BB 27,
where
L Lo L L
X . y d
7 /I'?_i = !-—\-- dx 2 7,7:2 5 J_'X = dx 5 Z/JZ:; s “d"“x* i ZZJ_ = __,::::
S EL s Bh : Bl SHA
>y '
Z 'o
B 27, +~‘_/,z.4—me
27,
paltu i, 1 [2 be 12 S b b2 b 2 h |
L= T e o + — j] b 8]
2 U-v3) L3 £ el J
C= 2 Wy - (bth+bt)
| A (1-v?) |
NN " be
Dalits Byl b B el ® P = = e g
41 aa-vyy T 12
Fhus

b ()=B+Cx+D.x2 +F.x3

(24)

f'\.*: s the second moment of area varying along the member.

A, :is the area of shear-carrying web plate varying along the member.

Total Stiffness Matrix For Each Beam Element

Matrix of (8x8) represent the stiffness of each element, which is involved the flexural and torsional

matrices as shown below.

o —
N Tl

B
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GRID MATRICES AND DYNAMIC CHARACTERISTICS
The clement stiffness and consistent mass matrices in element coordinates are transformed to

system coordinates through the standard transformations.

K= 1)K IH] (26)
Y
where A
— e | \r’
%[hJ 0 0 0 ey 0
el VO UL ] o - sins X
sk ‘ ' = M i
S p0 0 |n] o) { : :
| - sing - cosw
10 0 0 1 :

Wit the element matrices [k | and [M, ] the system matrices [KT} and [M] are built up.

T

he free vibration of a structural system is governed by the equation.

M+ K1 fPl=0 7

For free vibrations in normal mode. {P} = {P, }.sin ot
substituting this in equation (27) , one obtains

o lip =R, o} 28)

Equation (28) represents the eign value problem to be solved. The system dynamic characteristics
are the natural frequencies @ and the normal mode {P. }.

NORMAL MODES ANALYSIS
Normal modes analysis forms the foundation for a thorough understanding of the dynamic
characteristics of the structures. Normal modes analysis is performed for many reasons, among
them:
Assessing the dynamic inleraction between a component (such s a piece of rotating machinery)
and 1ts supporting structures is close to an operating frequency of the component, and then there
can be significant dynamic amplification of the loads.

— Assessing the effect of design changes on the dynamic characteristics and used for another
Teasons.

Exampie())

The natural frequencies of tapered box girder of Fig.(4) - and Fig.(5) are obtained by using two
methods @ fiest grillage analogy method including warping effect , second finite element method
(Ilat Plate /Shell ) from MSC/ NASTRAN Packages
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Three different sections of tapered box girder are discussed. The first with one

AN
IFig. (5) Tapered Box Girder with Two Fig. (4) Tapered .BOX Qil‘fier with One
Intermediate Stiffeners. Intermediate Stiffeners

Intermediate diaphragms, as shown in Fig. (4) . The other type with two intermediate diaphragms.
Fig. (5). the last one with three intermediate stiffeners.

Type of mesh which is used in (MSC/NASTRAN Packages) is presented in Fig (6). The box girder
constrained trom one edges (Cantilever).

‘ Ly

| |

s |

SO R e T ] L|:L2:6m

. . ST SR S TN SN S S S S h1:1 m

1] A A L

I T E=1.9995 E+11 N/m’
i LT G=7.5842 E+10 N/m’

S SN . . . T — P Lz t=0.0lm

. S e ST SR SN RS FHPY S S v=0.32

B e G o e S { AR L mass density = 7834.6 Kg/m3

g S B

Fig.(6). Finite Element Mesh

‘The resulting natural frequencies are presented in Table. (1),
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Table. (1). Natural Frequencies w (Hz) for Cantilever Cellular Plate Structure (Tapered)

Grillage Method Finite Element
Cell Mode Including MSC/NASTRAN
No. Warping Effect
1 6.425 6.815
2 2 6.945 7.625
5 7.541 8.181
! 13.510 14.241
3 2 14.721 15.031
3 15.546 15.358
1 19.203 20.920
4 7 18.910 21.386
3 20.215 22.861 |

For the lower modes the agreement between the grillage analogy method and finite element solution
is good. Fig(7) show the effect of cell number and position of stiffener on natural frequency with

Lthis type ol supporting.

Natural Frequency (Hz) for Mode (1)

24.0

20.0

16.0

12.0

8.0

4.0 —

-_.+__ E.E.
D e G.A.M

0.0
2.0

L] I ]
3.0 4.0
Ng. of Cells

Fig .(7) Effect Of Cell Number On Natural Frequency For

Mode Shape 1.
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Fig.(8) Free Vibration for Mode Shape (1) .

Lxample (2)

A simply supported from four edges have the same material property of example (1) is considered
to study the effect of variation of (span / width) ratio, the cross section of the structure have two
cells. The results of natural frequencies are shown in Table (2).

lable (2). Natural Frequency Variation Versus Span Length (L, / L, ) Ratio for Simply Supported

From Four Edges of Tapered Box Girder.

416

Grillage Method Finite Element
With Including MSC/NASTRAN
Warping Effect '
! 8827 6.585
6/6 2 6.215 .23
3 §.5]3 7.348
1 4.017 4.833
9/6 2 5.241 5.139
3 6.810 5.578
1 5.314 4216
12/6 2 5.827 4.476 1
| 3 - 6.246 5.010
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a} Mode Shape. 3 for (L,/ L, = 6/6)
Fig. (9) First Three Mode Shape for Simply Supported Structures
from four edges.
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From the case studies in Table (2), it is concluded that an increasing in (span / width) ratio, the
natural frequency will decreased.

COMPUTER PROGRAM ’

A computer program for the static analysis of tapered box girders by using the grillage method
(Fusain, meethaq, 2004), is developed to perform the free vibration analysis. In this program the
input data involves the section properties which are including the torsional constant , width of beam
. depths at each ends ( h1, h2) , warping shear parameter , warping constant , weight density per unit
length of the member . A new subroutine added to the program to solve the eign value problems.
The subroutine CADNUM is called by the main program to forms NDS arrays for the number of
the diagonal element of the system global stiffness and mass matrices, also the subroutine SSPACE
is called to solve the eign problem of the system; this subroutine reads the stiffness and mass as one
~dimensional arrays from CFK and CFM files, respectively, The subroutine COLOMH computes
the height of each column of the global stiffness and mass matrices. Subroutine PASSEM is used to
assemble the element stiffness and mass matrices to the global matrices of the system in the form of
on - dimensional arrays  SK and SM respectively.

CONCLUSION

The stiffness and consistent mass matrices of box-girder of thin-walled sections have been
developed according the theory of finite element method. The effects of shear deformation, rotary
inertia in bending and warping inertia have been included.

Irom the first example, which is for a square cantilever structure, the conclusion that can be
obtained is an increasing in number of cells leads to increase the natural frequencies. A comparison
tor the resulting natural frequencies of the two methods (grillage method and finite element method)
is presented. The difference between the two methods for the first mode are (6.07%, 5.4 %, 8.94 %)
respectively for using (2, 3, 4) cells. The maximum difference for the other modes is 13%.

I'he second example for simply supported structure at four edges, it is presented the effect of
varation of (span / width) ratio on the natural frequencies. The results show that the maximum
difference in the selected modes is (13%) when the (span / width) ratio is one, the max. differences
are (20.3% - 23.18%) respectively for the (span / width) are (1.5 and 2). It is noticed that the
natural frequencies decreased when the (span / width) is increased for this case of boundary
conditions,
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NOTATIONS

As Shear area of grillage member and equal to area of the web plate
b Width of flange plate .

Bi Bi-moment due to warping stresses.

bw thickness of web plate.

d The central distance between top and bottom flanges .

i’ Modulus of elasticity .

{r Shear modulus . .

sy Varying depth of webs along the length of the member.
hy s, Depths of the webs at ends of the taper grillage member.
{Hj I'ranstormation matrix.

le Central moment of area about the centroid.

I Principal sectorial moment of inertia of the section or warping constant .
[y Second moment of area due to bending.

J Torsional constant .
R Fftective torsional constant,

I Length of a tapered grillage member

Ke Flexural stiffness matrix for each element.

K, Torsional stiffness matrix.

K Total stiffhess matrix.

M Total mass matrix.

M, Mass matrix for each element.

M, Torsional moment. .

My Bending moment .

1y Distributed torque .

q Shear flow or the force per unit length .

T T'he perpendicular distance from the shear center to the tangent at the section under

' consideration.

B Curvilinear coordinate on the middle line of the section.
S, (8) Principal sectorial static moment .

¥ Torque at any section.

Tw warping stresses.

1 thickness of flange plate.

u(s) Warping displacement

U Strain energy.
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v Shear force

W Vertical displacement .

XY Cartesian coordinate axes.

{ireely Symbol.

0 Double area enclosed by the middle line of the section.
¥ weight density per unit length of the member

0 Warping function,

o, Bending rotation.

Ley Warping shear parameter.

'C;{S-) Angular displacement.

o Normal stress.

Normal stress due to warping,

¢ Angle of twist

o Real rate of twist.
s Torsional function
0 Sectorial area .

w Natural frequencies.
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