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A general mixed finite element formulation (u - w - n) is presentecl in this paper. This tbrmulation
includes the inertia effects and the soil skeleton is consideied compressible. The application of this
formulation in solving soil dynamic problems of saturated sand is made by governing the boundary
conditions concerning the pore flrrid. A problem of soil column subjected-to an initantly applied
surface loq.l is solved. The solid skeleton and pore fluid pressure are each modelled rvith ten 4-
noded isoparametric elements. The results ur. .o*pared with those obtained by Zienkiewic z et al.
(1988)' It is concluded that the undamped responie of displacement and pore pressure oscillates
significantly with the increase of time step length.
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SOIL DYNAMIC PROBLEMS
In a saturated soil, with free drainage conditions prevailing, the steady state pore fluid pressures
depend only on the hydraulic conditions and they are indepindent of the soil skeleton ,"rpo.rr" to
external loads' Therefore, in that case, a single - phase continuum description of soil behiviour is
certainly adequate. Similarly, a single - phase description of soil behaviour is also adequate when
no drainage conditions prevail, i.e., there is an interaCtion betureen the skeleton strains a.,d th* po."
fluid flow.
Th-e solutions of dynamic problem:'require that the soil behaviour be analyzed by incorporating the
effects of t[e trausient flow of the pore fluid through the voids, and therefore they requiie that a-two
- phase continuum formulation be available for porous media, (prevost,l9g7).
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As a consequence of the applied cyclic loads, the structure of the cohesionless soil tends to becomemore compact with a resulting transfer of stress to the pore water and a reduction in stress on thesoil grains' As a result, the soil grain structure rebounds to the extent required to keep the volumeconstant, and this interplay of volume reduction and soil structure 
^rebound 

determines themagnitude of the increase in pore water pressure in the soil. The basic ph.ror",ron is shownschematically in Fig. (l), (Seed, lgTg).
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Fig' (1) - Schematic illustration of the mechanism of pore pressrre generation during cyclic loading,

(after Seed, 1979).

PORE WATER PRESS
fhe first model for predicting pore water pressures generated by cyclic loading was proposed in1975 by Martin, Finn and Seed' This model *ut rorpl"d later to u pro..aur. roi dynamic'anJysisby Martin et al' in 1975, giving the first method fo. dynamic effective stress analysis. Aquantitative relationship betvveen t'olume reductions occuring during drained cyclic tests and theprogressive inctease of pore waterpressure during undrained cyclic tJsts had been developed. The
use of this relationship enables the build-up of pore water pressure during cyclic loacling to becomputed theoretically using the basic effective stress pa.arnei..s of the ,und lMurtin et al., lgTS).Manyothermethodsforbothtotalandeffectivestressanalyseshavebeena.,.rop.a.

MODELLING THE DYNAMIC BEHAVIOUR OF SOILS
Soil behaviour under dynamic loading depencls on many fbctors, including, (Daghigh, 1993):
1- The nature of the so_il (permeability, relative density, fabric, etc.). I

2- The envirorunent of the soil (static stress state and water pressure).
3- The nature of the dynamic loading (strain magnitude, strain rate and number of cycles ofloading).
The proper modelling of dynamic.behaviour of the soil must take into accormt the above factors.
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Biot (1956) developed the theory of propagation of elastic waves in a porous saturated solid. I1 this
theory, the stress - strain relations foi the solid-fluicl aggregate were set and the equations that
goveln the propagation of the waves in a porous medium were derived. This theory predicts one
rotational and two dilatational waves existing during vibrations.
Biot (1962a) extended his earlier theory of acoirstic propagation in porous media to include
anisotropy and visco-elastisity. A "viscodynamic opeiatoi"-that provides a procedure for the
evaluation of the dynamic properties of the fluid in its motion relative to the solid was introduced.
A generalized form of Darcy's law from thermodynamic principles was derived in this theory.
Bazartt and Krizek (1975) extended Biot's linear elastic theory to the non-linear non-elastic case.
An incremental stress - strain relationship that takes into account the nonlinearity and ipelasticity of
the soil was formulated.
Zienkiewicz and Bettess (1982) extended Biot's formulation to rocks and other porous materials. A
physical derivation 

.of the governing equations was presented. Their formuiation presented the
basic model into which detailed constitutive relationships can be inserted when full analysis is to be
carried out.

GOVERNING EQUATIONS FOR DYNAMIC PROBLEMS
The governing equations include the dynamic relations, continuity and the constitutive equations.
A complete derivation of the dynamic equations is found in Biot (1i56, lg61b).
In a given problem, the loading rate and the permeability of the porous medium play a key role in
determining the time scale and the method of solution to b. ,,."d. When relativeiy iapid loacts are
applied and permeability is low, an undrained analysis is possible, i.e., the load raie is greater than
the pore fluid diffusion rate.
For situations with relatively slow loading ancl high permeability, i.e., where load rate is less than
the pore fluid diffusion rate, a drained analysis is possible.
fhe class of problems to be considered here lies between the undrained and drained extremes where
dynarnic loadin8 is applied and transient pore fluid motion is significant, (Simon et al., l936).

EFFECTIVE STRESS AND CONSTITUTIVE RELATIONS
Pure statics allows dividing the total stress state into two parts, one of these being the hydrostatic
pressure, P, acting externally and internally on the pore fluid Qtrinciple o/'effective stress), ihu*
o,j = o', - 6uP (l)
where oi1 is the total stress, o';i is the effective stress and 5i; is Kronecker's delta.
This separation is useful in the description of the strcsi effects. In soil mechanics, the slight
deformations of volumetric nature caus"d by a pore pressure increase are generally neglected, but-in
less porous materials, these deformations can be computed as (Zienkiewicz and gittes. lggl):
where K' is the average bulk modulus of the solid gralns forming the skeleton.

dst = 6,jdP /3K" (2)

Flaving postulated 
.the virtually negligible effect of the pressure P on the total strain, eg, it is

possible to imply that most of deformations are due to the effective stresses or other extraneous
causes sucl] as for instance temperature. Thus" it is possible to write:
de.. = de,i + derl + dei (3)

where: deo;.; : strains due to stresses.
dtoi.l = strains due to temperature, creep, etc, (autogeneous strains).

The rate-independent constitutive law relates do;.; to deoii by, (Zienkiewicz and Bettess, l9B2):

do', - D. o, de o, (4)
where Diin describes the components of the elasticity tepsor
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The stress" strain equations for a porous medium are given by Biot (1941) as:

l-u ^ -u P
€ ii : E-o ii - b iit Uo+ ,*r)

e- 1-- r* P
3H, l?r

where' 11 - the components of the strain tensor,
oii - the components of the stress tensor,
v : Poisson's ratio of the soil skeletotr,
E - Young's modulus of the soil skeleton,
6,1 - Kronecker's delta,
o' : effective major principal stress,

: 0x* * Oy, *6zz
P : pore water pressure,

!= ucoefficient which is a measure of the compressibility of the soil for a change in pore waterHl
pressure,

0 : a measure of the amount of fluid that has flowed in or out of the soil sample, and
I .._.-:r-: o coefficient which measures the change in water content for a given change in waterfir

pressure.
The above equations were derived assuming that the soil is an elastic material. On the other hand,
the plastic behaviour of soils can be accounted for using a more general constitutive relation such
as:

o'ii = D,lo,(€ o, - sX,)

where toii is the permanent plastic strain tensor.'fhe pennanent plastic strain is related to
(Zierkiewic z et zl., 1982):

P--frui
rryhere:

' 1-* 
't'*Kr Kr

K r - tangent bulk modulus of the skeletor,
Kr : bulk modulus of water, and
tou - volumetric plastic strain - sPti

the residual pore pressure by

DYNAMIC RELATIONS FOR POROUS MEDIA
Biot (1956) developed the theory of propagation of elastic waves in a fluicl-saturated porous
medium in the absence and presence of dissipation forces, i.e., without or with viscosity,
respectively.
The Lagrarigian co-ordinates were selected, and Biot started his analysis by considering the kiletic
energy, T, of a unit volume of solid-fluid mixture in terms of the average displacement of the solid
ui ond the average displacement of the fluid, Ui:

(5a)

(sb)

(6)

(7)
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2T = ptrui u i* pr2 ui U i* prr Ui Ui (8)

where Prr, Pl2, Prr are mass coefficients that take into account the relative fluid flow through the
pores which is considered variable and (') represents differentiation with respect to time.
Biot (1962b) reformulated his theory of propagation of stress waves in a porous medium and
rewrote the dynamic equations of equilibrium in an alternative form. This form is expressed in
terms of total stresses and pore water pressures and uses actual mass densities.
The equations consist of the equation of motion of the bulk soil, of the mixture of fluid an<l solid
and the equation of motion of the liquid relative to the solid, respectively as follows:

orj,j * PtEi = Ptui* Pnwi (9a)

- li + PwEi =Pt ui+ * o-*, * ff*i (9b)

where: or, = the total stress tensor,
P : pressure acting on the fluid,
u1 : displacement vector of the solid skeleton.
wi= displacement vector of the fluid with respect to solid.
= n (U;-ui) , n is the effective porosity and nUi is the volume of the liquid displaced through a
unit area perpendicular to the i-dire0tion,
p1 : bulk rirass density of the liquid-solid mixture,
= 1l-n) ps t npw

ps = intrinsic mass density of the solid,
p,r: intrinsic mass density of the fluid,
Bt 

: the component of the gravitational constant in the i-direction,
k = Darcy's coefficient of permeability.

B = kinetic energy correction factor, and
("): second derivative of ( ) with respect to time.
Kim and Blouin (1984) generalized Biot's approach for the high frequency range by the inclusion
of a mass increment fhctor (r). The values of r range from l/5 to l/3 depending on the shape of
pores. Thus, the final equations of equilibrium of the fluid will be:

- p,i * pngi = p, ii+ e-v-i,(F+ r) + Tr, (ro)
n

CONTINIJITY EQUATION
Zienkiewicz and Bettess (1982) assumed that both the solid grains and water to be incompressible.
Mei and Foda (1982) reasoned that the volume changes are due to the existence of air pockets
entrapped in the pores. Their equation for a two-phase material in the Eulerian space is given as:

nU,,,+ (1 - n)ui,i = -+i (l t)p
where: B : the effective bulk modulus of elasticity.
Zienkiewicz (1981) presented another form of the equation in Lagrangian description as follows:

rii*wi,i*;}i=O 0z)Kf
On the other hand, Prevost et al. (1986) argued that in some soil dynamic applications, the fluid
phase could be regarded as incompressible, thus:

6ii*VY;,i :0 (13)
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Zienkiewicz and Bettes (1982) derived a general form o1'the continuity equation consiclering the
solid grains and fluids to be compressible, thus:
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u,(x, t) : ui (x, t)

o,i(x,t;n,(x) = i, 1x,t)

w, (x, t) = w; (x, t)

P(x,t)n,(x) = f1*,r;
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( l4)

(15)

( 16)

(17 )

(r 8)

(te)

ui,i+wi,i+ I P+ft+ **r,, -gKb
where: Kt, : the bulk modulus of the soil-water sample

l__ n *1.-nKb K* K,
K, : the buik moclulus of the solids.
Kru : the bulk modulus of water.

BOUNDARY CONDITIONS

Two types of boundaries exist; the first, S, surrounds the bulk, and the other,,S , ,u*o.,.uls the fluid.
At each boundary, the stresses at any titne, t, are taken at a portion and the displacemcnt is known at
the remaining portion. This can be written rnathematically as follows:

on S1

on 52

on ,sr

oni .,

where n; is a unit normal vector and the superscript (^) represents a known function.

SOME APPROXIMATIONS TO DYNAMIC EQUATIONS
The use of the full solution of equations (l) to (t5) in terms of the u/w variables represents six
variables in three dimensions (or four in two dimensions). This formutation is catteA (u-w)
formulation, (Simon et al., 1986).
It is often preferable to reduce the problem by retaining u; and P as the basic variables. The

elimination of the variable w; is simple if the rui terms are clropped from the equations on the
assumption that the ratio:

wi 
-)o

ui
This formulation is called (u-p) formulation, (Zienkiewicz and Bertess, lgsz).
In this work, a rnore general formulation will be used which is called (u-w-n) model where n is the
lodal pore fluid pressure in the finite element discretization.In this model. both the solid grains ancl
fluids are assumed to be compressible. This model also takes into account the fluid inertia effects.
It is rational to think that this model best represents the behaviour of granular i.naterials under
dynamic loading and especially blast loading due to the large voids of-such rnaterials, This is
attribuled to the shape, size and arrangement of particles, which allow easy movement of the pore
fluid, and this, in turn, increases the fluid inertia.
This ibrmulation can be verified u,hen high fi'equency loads are applied,
(Zienkiewicz and Bettess, 1982).

J-
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STAGGERED SOLUTION OF COUPLED PROBLEMS
Tb.e staggered solution procedure may be described conceptually as a partitioned solutign that can
be. organized in terms of sequential execution of single-field analyzeis. The staggered qualifier
arises from the "zigzagging" appearance of the "solution state walkthrough" in thJ t"-po*l flo*
diagram representation of the computation process: as illustrated in Fig. (2), (Felippa and park,
1980).
This approach offers two potentially important advantages:
a- program modularity enhancement, and
b- computational efficiency.
The first advantage occurs from the fact that relatively few modifications of the single-field
analyzers are required in comparison to the field elimination and simultaneous solution appriaches.t t+h t+2h

Field X

(
Time t

P

@

v

P
SSS

YV
V

, Step Size h,<t

Fig. (2) - Temporal flow diagram illustrating the staggered solution approach for a two - tjeld
problem (P: predictor phase, S : substitution phase), (after, Felippa and Park, 1980).

As regards.computational efficiency, the staggered solution time step length is roughly the same as
that incurred in processing the component fields as separate entiiies. This is because that the
overhead introduced by the flow of information among analyzers becomes cornparatively
insignificant in large-scale problems. It follows that this approach is attractive and time step size
restrictions can be excluded from consideration, (Felippa and park, l9g0).
Zienkiewicz et al. (1980) found that this approach permits decoupling of high frequency and low
frequency components of a single system. so that an alternative time marching algorithm can be
used in each part.
For the problem under consideration, the discretized form of the equations of motion. which are a
sJstem of ordinary differential equations with constant coefficients, can be integrated using the
finite difference method to approximate the accelerations and velocities in terms o? displacernents.
Newmark (1959) integration scheme is used herein. This scheme is a forward integraiion method
and requires that &e field equations be written at tirne t+At. The accelerations and velocities are
given as, (Bathe, 1996):

Field Y

I
llt+ N = -La
and

[* (u,** - tt,) - * tt, * 4- o ;,) (20)

ut*tr : G- !)ut+ (t- filori,* -!-1u,n* - tt,) (zt)

where cr and 6 are parameters controlling integration accuracy and stability. The scheme is
unconditionally stable if:

--5t)
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6 > 0.5 , d'20.25(, + 0.5) e2)
On the other hand, the time derivative of the pore pressure is approximated as follows:

Pr*^t= fi{r,.*-P,)-Pt e3)
Once the finite difference expressions for the velocity and acceleration are substituted in the
discretized equation, the finite element equations become:

*

5
rt

=f'
- l+At

U
- t-t-At

where K* is the effective stiffness matrix and F* is the effective force vector.
Certain "nonsymmetries" exist in the equation system, and the primary variables u, w and p have a
different structure (and indeed different physical units). Therefore, standard time step algorithms
are not easy to apply. It is best to adopt a "staggered" solution process, (Zienkiewi cz et al., 19S2).
The following steps are followed to obtain a solution of the dynamic problem:
l- Form the mass matrix, M, the damping matrix, c and the stiffness matrix K.
2- Set time = 0, and select time step, At.
3- 3. Form the effective stiffiress matrix, K*. and the effective force vector, F*.
4- 4. Determine the displacement changes, Au at time t*At, using some "extrapolated" value of

P. or conversely.

5- 5. Determin"U-, V and U at t+At.

6- 6. Use the available values of U to determine P at time t+At.
7' 7. Update the effective force vector, F*, and go to step 4 or step 3 if the effective stiffness

matrix need to be updated.

THE CAP PLASTICITY MODEL
The cap model is an incremental work-hardening plasticity theory for materials having tirne and
temperature independent properties and undergoing permanent as well as recoverable strain at each
loading increment. The loading function for the model is assumed to consist of two parts, (see
Fig.(3):
I - An ultimate failure envelope which limits the shear stresses in the material, denoted by:

n-_
.f, = h(Ip.lr2) e5)
2. A strain hardening surface or "cap" denoted by:

f2= H(rrJl,K) (26)
where: 11 : the first invariant of stress tensor.

Jz : the second invariant ofdeviatoric stress tensor.
K : a hardening parameter, which is a function of plastic volumetric strain, epli

The cap changes as the plastic deformation occurs. As shown in Fig. (3), the associated flow rule
requires that during cap action, the plastic strain rate vector be directed upward and to the right
(if isotropic stress is applied). This implies that the plastic strain rate produces an irreversible
decrease in volume in conjunction with the irreversible shear strain, (Sandler and Rubin, lgST).
The equation of the failure envelope was selected to be Chen and Baladi's (19S5):

f,= ,lT -[e-c.exp(-n.I)] e7)

H

(24)

(28 )

and the hardening surface:
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and the following hardening function is assumed, (Dimaggio and Sandler,l97l):

, f,* = wlr-exp(-Dx)] (29)

where A, B. C, D, R and W are constants. W is the maximum plastic volumetric straitt.

J2 Drr"rc ker'- Pragcr L i ne

Von M ises
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Flow
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- 0 Neutrol Loading

Rule Associated Flow
Rule

v
e'd

I1

'.aqr
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H(11,J2.k)

L(!.)

x(k) 
- l

Fig. (3) - Yield surfaces for the selected cap model.

The plastic loading criteria for the function f2 is given as, (Chen and Baladi, 1985):

ctf =+dr,io rij^
(30)

(3 l)lr=
U

de

The plastic strain increment tensor is given by Drucker (1950):
af
4o Tij

d1 tJ I =Q sndcU''0

ffim

tf f<0 orf-0 ondclf <0

where d}" is a positive factor of proponionality.
The plastic strain can be divided into two components, namely the volumetric, rp11, and deviatoric,
eP,; , then:

de !, = lau 
;rd u * dr;

de [= :l*^ ffu,.r^ H)
= dAlz,ett/1' 

ld 
"o'i 

+
1 df

0

ds :.
U

(32)

where S, is the stress tensor.

,s,
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A full description of the model is'found in the text by Chen and Baladi (1985). The cap model
parameters are given in Table (1).

Table (1) - Cap Model Parameters (from Chen and Baladi, 1985).

Parameter Value

A 15.0 MPa

B 0.0025 (MPa)-'
C 14.9 MPa
D 0.50 (MPa)'r
W 0,02

THE COMPUTER PROGRAM
The program (MBLAST) was developed which is an extensive modification of the program
(BLAST) developed by Awad (1990) at Colorado State University. 'Ihe program is modinJO to
take into dbcount different types of loading such as blast. impact and earthquake loading. It is
arranged into a modular form in order to nrinimize the run time.
Since the (u-w-n) formulation adopted in this research results in an unsyrnmetric effectiye stiffness
matrix, the subroutines ACTCOL and UACTCL (Zienkiewi cz, 1977) are used insteacl of subroutine
LDUSKY of the program (BLAST). These subroutines are utilized for symmetric and unsymmetric
equations solving, respectively.

DESCRIPTION OF THE PROBLEM - STEP LOADING
Fig (a) shows a soil column subjected to an instantly applied surface load of 1.0 kN/m2. The
boundary conditions are shown in the same figure. The solid skeleton and pore fluid pressure are
each modelled with ten 4-noded isoparametric elements. At the vertical boundary of the solid
skeleton, only vertical movement is permitted. Pressures at the free surface are taken as zero, (paul
,1982). The material properties are shown in Table (2). The water level is assumed to be at the
ground surface.

, Table (2) - Soil parameters for the problem, (from Zienkiewic z et al., 1988).

Property Value
Modulus of elasticity (I1)

Poisson's ratio (v)
Bulk density (pt)
Fluid bulk modulus (Kr)
Solid bulk modulus (K,)
Fluid density (pr)
Porosity (n)
Permeability (k)

30 MNlm'
0,2

2000 kg/m3
0. 10 x 106 N/m2
o.1o x lol2 Nim2

1000 kg/rn3
30%

0.00 I m/se.

Newmark's Integration
Constants:

CI,

6

0.50
0.25

s9
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Figs. (5) and (6) show the undamped response (displacement and pore pressure) obtained by the

program (MBLAST) for two time steps; At: 0.025 and 0.05 sec.
'Ihe results of Figs. (5) and (6) compare well with those obtained by Zienkiewicz et al. (1988) wlto
used the SSPJ method (single step p-order polynomial, j :l or 2, the order of the equation,
Zienkiewicz et a1.,1984) for time integration for the solution of the same problem. The results are

accepted in spite of oscillation in displacements and pore pressures.

It is observed that the undamped response of displacement and pore pressure oscillates significantly
with the increase of time step length. When large time step lengths are used to obtain the undamped
response; At : 0.05 sec., the higher frequencies introduce errors and they are the cause of
oscillations. Zienkiew'iczet al. (1988) reported that improved results are obtained when iterations
and numerical damping are introduced or when very small time steps are used to introduce a smooth
start.
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Fig. (a) - Saturated soil column subjected to step loading problem (one- dimensional
problem).

CONCLUSIONS
l. A general mixed finite element formulation (u-w-n) is presented in this paper .This formulation

. included the fluid inertia effects and the soil skeleton is considered compressible, The cap
plasticity model is used as a constitutive relation. A computer program is developed by the
authors which is capable of analysing coupled dynamic problems including different types of
dynamic loads.

2. A problem of soil column subjected to an instantly applied surface load is solved. I'he solid
skeleton and pore fluid pressure are each modelled with ten 4-noded isoparametric elements.
The results are compared with those obtained by Zienkiewicz et al. (1988). It is observed that
the undamped response of displacement and pore pressure oscillates significantly with the
increase of time step length. When large time step lengths are used

to obtain the undamped response; At : 0.05 sec., the higher frequencies introduce orrors and are the
cause of oscillations.
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Fig' (5) - A comparison between the predicted displacements and pore pressues ar three nodes in

the layer with the results of Zienkiewicz et al. (1988) , time step : 0.025 sec.
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in the layer with the results obtained by Zienkiewicz et al., (1988), time step = 0.05 sec.
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