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ABSTRACT 

Estimating the rate of penetration (ROP) for oil well drilling is essential for cost-effective 

and safe drilling operations; drilling companies have been aiming for ROP estimation since 
the industry's first decade. To achieve this goal, among numerous models, the Burgoyne and 
Young model (BYM), an equation-based approach, was developed and widely used to predict 
the ROP based on multiple linear regression (MLR). Artificial Neural Network (ANN) is a 
machine learning technique that analyzes drilling data and makes ROP predictions. Many 
studies have been conducted worldwide to employ BYM, and others have aimed to improve 
it for different circumstances. ANN has also shown effectiveness in these fields. This study 
proposes an approach that combines the benefits of Feedforward Neural Networks (FNN) 
from the ANN model and BYM equations to enhance ROP prediction. Integrating BYM with 
FNN leverages the equation-based model and harnesses the power and efficiency of machine 
learning. These results significantly improved accuracy and efficiency in predicting ROP in 
oil wells. ROP modeling input parameters include total measured and true vertical depth, 
Weight on Bit, Rotation Per Minute, standpipe pressure, pump flow, equivalent mud weight, 
bit size, nozzle size, formation pressure, and bit jet impact force, which are recalculated by 
BYM equations and fed to both MLR and FNN. When tested on real-time data from Al-Garraf 
oil field, the outcomes demonstrate higher R2, lower residuals, and zero P-value compared 
to MLR, which validate the approach accuracy and provide precise ROP prediction in future 
drilling plans. 
 
Keywords: Artificial neural networks, Bourgoyne and young model, Multiple linear 
regression, Rate of penetration, Al-Garraf oil field. 
 

1. INTRODUCTION 
 

As oil drilling techniques developed and the reservoir depth target increased, the drilling 
operation became more expensive, with more drilling risk phases for the companies. ROP 
estimation has become essential in handling costs and controlling risks; it is a good tool that 
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gives an overall vision of time and actual circumstances that helps designers and workers 
make accurate decisions. 
Numerous studies on predicting ROP were conducted earlier in the 20th century. 
Researchers depend on charts derived from particular equations to explain the relationship 
between ROP and different drilling parameters, as demonstrated by the work of (Maurer, 
1962; Bingham, 1964; Warren,  1987); other mathematical models proposed to optimize 
WOB, RPM, and bit hydraulics include the works of (Speer, 1959; Graham and Muench, 
1959; Eckel, 1967).  The Bourgoyne and Young model, conducted in 1974, introduced a 
novel mathematical model used to optimize eight controllable and uncontrollable drilling 
parameters in a single equation for optimal ROP achieved through multiple linear regression 
(MLR) as demonstrated in papers such as (Bourgoyne and Young,1974; Bourgoyne et 
al.,1986), BYM is considered among other models as the confident drilling ROP optimization 
model, and numerous studies focused on employing it to predict ROP on different oil fields 
in the world, such as Iraqi fields, as demonstrated in papers (Hamad-Allah and Ismael, 
2008; Majid and Ayad, 2019; Darwish et al., 2020). Similar in Iranian fields, as shown in 
paper studies such as (Irawan et al., 2012) and also in kenia fields as in (Miyora, 2014). 
The BYM has also been applied to optimize ROP for polycrystalline diamond (PDC) bits, as 
demonstrated by (Eren and Ozbayoglu, 2010; Darwish et al., 2020) and Bits Evaluating 
and Selection (Ayad et al., 2015; Amel, 2017). 
Various other new techniques and computerized methods have been employed to predict 
ROP. These include mathematical optimization techniques (Bahari et al., 2008; Moradi et 
al., 2010), mechanical-specific energy (Alsubaih et al., 2018), support vector machines 
(SVM) (Abdulmalek et al., 2018), artificial neural networks (ANN) (Amar and Ibrahim, 
2012; Elkatatny et al., 2017), pattern remote system methods (Liu et al., 2018), neuro-
fuzzy inference system (Yasser et al., 2020), and automated systems (Zha et al., 2018).  
Many recent studies were focused on Artificial Neural Networks (ANN) (AL-Zirej and 
Hassan, 2019; Huihui et al.,2022; Teeba et al., 2022), Long Short-Term Memory (LSTM) 
from ANN (Huihui et al.,2022; Hongtao et al., 2022), machine learning methods (Asad et 
al.,2022; Fei et al.,2023; Chengxi et al.,2023; Chris, 2023), and Deep learning methods 
(Tong et al., 2023) to predict the rate of penetration (ROP) in oil wells. Different approaches 
have been explored, including integrating ANN with optimization algorithms such as Particle 
Swarm Optimization (PSO) and comparing different ANN models (Ololade et al., 2021).  
The mentioned research did not extensively investigate the potential of using ANN 
integrated with BYM equations and depended only on the primary data as a dataset; BYM 
equations were made based on confident hypotheses taken from comprehensive studies that 
established a clear relationship between drilling parameters and the ROP (Bourgoyne and 
Young,  1974). This study proposes integrating FNN with BYM equations to predict ROP in 
Al-Garraf oil wells in southern Iraq. It utilizes the benefits of merging FNN with the BYM 
equations to predict ROP and estimate drilling performance using Al-Garraf field real-time 
drilling data from three wells. The main principle involves calculating each point from the 
thousands of data points according to the BYM equations and creating a new dataset as a 
training, validating, and testing dataset to feed into FNN rather than relying solely on Basic 
drilling variables as a dataset. The limitation arises from the use of many parameters and 
complex and lengthy calculations; it involves writing and utilizing hundreds of MATLAB 
programming codes. The findings showed a significant improvement in the rate of 
penetration prediction regarding the traditional methods.  
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2. RESERVOIR AND DATA DESCRIPTION 
 

Al-Garraf oil field in southern Iraq has three main reservoirs, one of which is the al-Mishrif 
formation. Al-Mishrif is a carbonate rock reservoir from the Cretaceous period that 
contributes significant amounts of oil to the field's overall production. Development of the 
al-Garraf field, including the al-Mishrif reservoir, began to increase since the 2010s. 
Production from the al-Mishrif and other reservoirs has steadily increased, with the field 
now producing around 100,000 barrels per day. However, extracting oil from the complex 
al-Mishrif carbonate reservoir presents technical challenges that the field's operators 
continue to address. Fig. 1 shows Al-Garraf's location, and Fig. 2 shows its Lithological 
prognosis. 
The data were collected and analyzed from the drilling mud loggers of three offset wells 
within a 0.25m depth interval, with over 10,000 data points for each well. Parameters 
included measured depth, vertical depth, weight on bit, pipe rotation, standpipe pressure, 
pump flow, equivalent mud weight, bit size, bit nozzle size, formation pressure, and bit jet 
impact force. Bit tooth wear is assumed to be zero because there is no record (Bahari et al., 
2008). Table 1 shows the statistics of the drilling variables after data normalization and 
cleaning for the three wells 
 

 
 

Figure 1. Al-Garraf oil field location. (Kareem et al., 2022) 
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Figure 2. Lithological prognosis for Al-Garraf oil field (Petronas operation, 2016) 

Table 1. Al-Garraf three wells drilling variables statistic. 
 
 

 
 
3. METHODOLOGY 
 

The methodology of using FNN from ANN integrated with BYM in MATLAB to predict ROP 
involves multiple steps. First, a drilling dataset with all drilling parameters involved in the 
eight BYM equations is collected. For data accuracy, the data are collected from real-time 
drilling sensors on mud loggers instead of depending on daily or final drilling reports. The 
data are preprocessed with normalization and cleaning and then split into three groups: 
training (80%), validating (10%), and testing (10%) datasets. The number of hidden layers 
and neurons per layer is determined, and the FNN model is created using a suitable MATLAB 
function. The FNN model is trained using an appropriate function on the training dataset. 
The validation datasets are evaluated, and the model is tested on the testing dataset to assess 

………………………….|Well Name

Drilling Variables |   statistic Max Min Mean Std Max Min Mean Std Max Min Mean Std

Measured Depth m 2641.75 33.50 1372.65 742.71 2946.00 142.00 1662.03 768.74 3025.00 335.50 1811.48 729.79

True vertical Depth m 2442.53 33.50 1307.67 679.48 2442.00 141.82 1441.12 609.67 2440.52 335.48 1541.21 546.58

Rate of penetration m\hour 19.68 1.01 7.38 4.14 22.32 1.02 8.45 4.60 37.72 1.19 13.79 7.34

Weight On Bit klbm 23.70 1.10 9.49 4.48 24.20 1.10 9.89 4.75 25.80 1.10 11.79 4.52

Rotation Per Minute 1\minute 175.00 46.00 132.49 33.85 163.00 87.00 129.58 16.73 217.00 129.00 177.51 17.62

Stand Pipe Pressure psi 3541.61 258.78 2100.09 844.32 3830.87 964.32 2582.07 649.33 3703.76 1228.30 2814.31 568.86

Pump Flow gpm 1035.56 693.17 909.11 64.51 1001.93 680.73 839.07 52.28 979.62 652.22 848.78 72.35

ECD, density PPG 10.96 8.40 9.68 0.64 10.77 8.50 9.85 0.68 10.92 8.06 10.00 0.76

Bit Nozzule Area in 1.35 1.18 1.32 0.06 1.35 1.19 1.27 0.08 1.35 1.33 1.35 0.01

Bit Pressure loss psi 665.44 264.00 427.65 65.67 564.56 242.52 395.12 65.11 456.36 235.41 364.58 37.54

Bit Jet Impact Force 1414.57 622.34 1010.95 120.28 1215.71 592.07 900.84 103.85 1114.14 566.91 887.18 93.96

Bit Size in 26.00 12.25 17.57 5.15 26.00 12.25 15.07 3.06 17.50 12.25 14.59 2.61

Formation Pressure PPG 10.10 8.20 8.66 0.60 10.20 7.90 8.83 0.81 10.30 7.50 9.32 0.70

GA-52P GA-88PGA-38P
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its generalization ability. Different visual plots are generated to compare and analyze the 
predicted versus measured ROP values. The model is fine-tuned if needed by adjusting and 
training it with additional data. Once satisfied, the model predicts ROP values for new real-
time future drilling operations. For successful ROP prediction using FNN, factors like dataset 
quality, appropriate network architecture, training parameters, and domain knowledge in 
drilling operations are essential to consider. 
Three figures, including measured-predicted ROP, residuals, and ROP-Depth figures, are 
plotted for each case to demonstrate and compare findings. Four statistical variables, 
including Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute 
Error (MAE), R-squared (R2), and adjusted-R2, are shown in the tables to measure the 
goodness of fit between predicted and measured ROP values. The P-value is zero for all cases. 
Fig. 3 shows the research flow chart's main lines. 
 

 
 

Figure 3. The research flow chart’s main lines. 
 

3.1 Feedforward Neural Networks and Burgoyne and Young Model 
 

Feedforward Neural Networks (FNN) is a significant artificial neural network (ANN) system 
delineated by its one-way data flow from input through hidden layers to output, free of loops 
or cycles. FNN is extensively utilized for regression tasks, where neurons compute weighted 
sums of inputs, apply activation functions, and transmit results to subsequent layers, with 
network parameters learned through training to model intricate input-output relationships. 
FNN is a machine-learning model that takes stimulation from the networks of neurons in the 
human brain. Think of FNN as connected nodes, like brain cells, organized in input, hidden, 
and output layers. FNN is trained using labeled data, where the weights and biases of the 
nodes are modified during the learning process. which allows FNN to become practiced at 
predicting complex patterns and relationships, whether for tasks like computing numerical 
values (regression) or classifying data (Muhammad et al., 2023). FNN is used in drilling 
operations to predict the ROP. It creates a model that captures the connection between 
various drilling parameters, such as weight on bit, rotary speed, mud flow rate, and so on, in 
addition to the ROP values. Training an FNN with historical drilling data can help them learn 
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from the patterns in the data and make accurate ROP predictions based on the given drilling 
parameters (Ololade et al., 2021). The (Bourgoyne and Young, 1974) is a linear 
relationship between the ROP and eight effective parameters affecting it. This model is based 
on MLR, the statistical synthesis of the collected data from the offset drilled wells. The MLR 
equation is:  

𝑌 =  𝛽0 +  𝛽1𝑥1 +  𝛽2𝑥2 + . . . + 𝛽𝑘𝑥𝑘 +  𝜖,             (1) 

Where βj represents the regression coefficient, and xj represents BYM eight terms, the MLR's 
objective is to identify a vector of least squares estimators that minimizes the error 
concerning the regression coefficients. 
BYM considers the effects of the drilling parameters, such as formation depth, formation 
compaction, the pressure differential across the bottom of the hole, the bit diameter and 
weight on the bit, the drill pipe rotary speed, the bit wear, and the bit hydraulics. 

𝑅𝑂𝑃 = 𝑒𝑥𝑝(𝑎1 + ∑ 𝑎𝑗𝑥𝑗
8
2 )                (2) 

Constants a1 to a8 are computed in MLR for local drilling conditions, utilizing offset well 
data. The functions are built around Bourgoyne's assumptions regarding variables that 
impact the drilling rate. These assumptions include x1, which represents un-modeled 
variables like formation strength; x2, which models an increase in rock strength with depth 
and assumes an exponential decrease in ROP; x3, which models under-compaction in 
abnormal pressure formation and assumes an exponential rise in ROP with a pore pressure 
gradient; x4, which models the differential pressure between hydrostatic and formation 
pressure on ROP and assumes an exponential decrease in ROP with excess bottom-hole 
pressure; x5, which models bit weight on ROP and assumes direct relation between ROP and 
WOB; x6, which models rotary speed on ROP and assumes direct relation between ROP and 
RPM; x7, which models bit tooth wear on ROP and assumes an exponential decrease in ROP 
with increased tooth wear; and x8, which models bit hydraulics on ROP and assumes direct 
relation between ROP and a Reynolds number or bit jet impact force. These assumptions and 
followed equations are grounded on comprehensive prior studies mentioned in the BYM 
paper (Bourgoyne and Young, 1974). 
 

𝑥1 = 1                                                         (3) 

𝑥2 =  10000 − 𝐷                             (4) 

𝑥3 = 𝐷0.69(𝑔𝑝 − 9)                 (5) 

𝑥4 = 𝐷 ( 𝑔𝑝  −  𝜌𝑐 )                 (6) 

𝑥5 = 𝑙𝑛 [

𝑊

𝑑𝑏
−[

𝑊

𝑑𝑏
]𝑡

4−[
𝑊

𝑑𝑏
]𝑡

]                 (7) 

𝑥6 = 𝑙𝑛 (
𝑁

60
)                   (8) 

𝑥7 = −ℎ                    (9) 

𝑥8 =  𝑙𝑛 (
𝐹𝑗

1000
)               (10) 
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Where, D: Oil well, true vertical depth (ft); Fj: Bit Jet impact force (in pounds of force); gp: 
Pore pressure (ppg); ℎ: Fractional tooth wear; N: Rotary speed (revolutions per minute, 
RPM); ROP: BYM dependent variable, rate of penetration; Wb/db: (Weight on bit) per (bit 

diameter) (pounds per inch); x1 to x8: BYM independent variables; [
𝑊

𝑑𝑏
]𝑡: The drilling begins 

at Threshold WOB 1000lbf/inch; ρc: Equivalent circulation density (ppg). 
 
3.2 Plots and Statistical Data 
 

Related to the methodology and the outcome of the cases, three figures are plotted for each 
case: 
1- Scatter plot: This plot compares the measured ROP on x-axes versus the predicted ROP 
observed from MLR for BYM, besides the FNN model, with different clear signs and colors to 
all data points and the least square line. 
2- Residual plot: This plot helps to evaluate the performance of the FNN model and MLR by 
showing the differences between measured and predicted ROP on the y-axis against the FNN 
and MLR predicted ROP on the x-axis. Residuals are distributed around zero in negative and 
positive values. 
3- Line plot: This plot shows, by different colored lines, the comparison between measured 
and MLR predicted ROP, in addition to FNN model predicted ROP, to analyze and evaluate 
their ROP trends and patterns compared to measured ROP data. 
Evaluation of the FNN model and MLR for BYM performance and accuracy using various 
statistical measurements and presenting related results in tables: 
1- Mean Squared Error (MSE) measures the average of squared differences between 
measured and predicted ROP values by the FNN. 

𝑀𝑆𝐸 =  𝑚𝑒𝑎𝑛((𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑅𝑂𝑃 −  𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑅𝑂𝑃)2)                                                                                                   (11) 

2- Root Mean Squared Error (RMSE) is the square root of MSE. 

𝑅𝑀𝑆𝐸 =  𝑠𝑞𝑟𝑡(𝑚𝑒𝑎𝑛((𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑅𝑂𝑃 −  𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑅𝑂𝑃)2))                                                                           (12) 

3- Mean Absolute Error (MAE) calculates the average absolute differences between 
predicted and measured ROP values. 

𝑀𝐴𝐸 =  𝑚𝑒𝑎𝑛(𝑎𝑏𝑠(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑅𝑂𝑃 −  𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑅𝑂𝑃))                                                                                         (13) 

4- The R-squared (R2) Coefficient of Determination measures the goodness of fit between 
predicted and measured ROP values. 
𝑅2 =  1 −  𝑠𝑢𝑚((𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑅𝑂𝑃 –  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑅𝑂𝑃)2) / 𝑠𝑢𝑚((𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑅𝑂𝑃 −
           𝑚𝑒𝑎𝑛(𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑅𝑂𝑃))2)                                                                                                           (14) 
5- The adjusted-R2 adjusts the R-squared value by considering the number of predictors in 
the model and the sample size. It penalizes adding additional predictors that do not 
significantly improve the model's fit, helping to prevent overfitting. 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2  =  1 −  (1 −  𝑅2)  ∗  (𝑛 −  1) / (𝑛 −  𝑝 −  1)                                                                                      (15) 

squared value, n is the number of samples or observations, and p is the -is the ordinary R 2R
number of predictors or independent variables in the model. 
6- The p-value is a crucial statistical measure that calculates the probability of achieving 
outcomes as extreme as the recorded data, assuming the null hypothesis is correct. It is 
widely utilized to ascertain the significance of a statistical test or the efficacy of evidence 
against the null hypothesis. A smaller p-value suggests more substantial evidence against the 
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null hypothesis, implying that the observed results are improbable to occur randomly; a p-
value less than 0.05 indicates statistical significance at the 5% level (Padhma, 2023). 
 
4. RESULTS AND DISCUSSION 
   

Four cases are thoroughly examined, each belonging to one oil well in the Al-Garraf oil field: 
case 1 for Ga-J38P, case 2 for Ga-J52P, case 3 for Ga-J88P, and case 4 combines the three 
wells. All four cases are utilized on an extended depth interval to confirm the results between 
each other, starting from 250m and 750m and ending with 1500m. Because the depth 
interval for data points is 0.25m for each point, recording the data points will result in about 
6000 dataset points for 1500m. This is an extensive dataset, and the FNN and MLR models 
successfully manage it and provide accurate results. MATLAB programming has proven a 
powerful tool for researchers; Appendix A shows a small part of the programming codes. 
By analyzing the findings of case 1, related to the well Ga-J38P, the statistical parameters in 
Table 2 shows the improvement of the FNN model that incorporates the BYM equations 
compared with the MLR. The R2 increases from 0.478 to 0.804, indicating a significant 
enhancement in the FNN model compared to the MLR. For MSE, RMSE, and MAE, which are 
different types of residual statistical measurements, there is a substantial decrease in their 
values in the FNN model compared to the MLR model.  
These differences in statistical parameters indicate a significant improvement in the new 
approach that combines FNN and BYM equations over the MLR approach for BYM. Analyzing 
Fig. 4 shows that the FNN red least square line is aligned 45 degrees more than the MLR least 
squares line, 45-degree mean (R2=1). Due to the 0.25m dataset increment, Fig. 4 shows many 
data points for the two models, even in the 250m depth interval. 
Fig. 5 represents the residual plot for the FNN and MLR models, showing that the ANN signs 
are less spread on the Y-axis than the MLR signs. The Y-axis represents the residual between 
the Measured and predicted ROP, either in a positive or negative value, indicating that the 
FNN has less error than the MLR. This fact is further confirmed by other visual evidence in 
the same plot: the FNN signs are more distributed on the X-axis, representing the predicted 
ROP, than the MLR signs. This means the FNN-ROP prediction is more aligned with the 
Measured ROP; However, some data points were inaccurate, this did not affect the overall 
result due to the large number of points showing excellent accuracy. 
Fig. 6 represents the ROP versus oil well depth and compares the FNN and MLR with the 
Measured ROP. The FNN curve is more aligned with the Measured ROP curve than the MLR 
curve, confirming the findings of the other figures. This indicates the improvement of the 
FNN-ROP prediction compared to the MLR prediction. MLR always tends to go with the 
optimal values collected among all the dataset points and represents the overall effect on 
one MLR equation. 

Table 2. Case 1 details and statistics. 

Case  Well number From depth m To depth m Data points  P-value 
1 Ga-J38P 2081.25 2331.25 1000  0 
Models || Statistic  MSE  RMSE  MAE R2 Adjusted-R2 

MLR 7.049 2.655 2.0706 0.4780  0.44385 
FNN 3.354 1.8313 1.3387 0.8040 0.78227 
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Figure 4: Measured ROP vs. predicted ROP of the FNN & MLR, case 1. 

 

Figure 5. Residuals vs. predicted ROP of the FNN & MLR, case 1. 

Analyzing case 2 for oil well Ga-J52P with the same depth interval as case 1, which is 
250m but for a different starting depth, with data points of about 1000, indicates the 
improvement of the FNN approach in various ways in Table 3. For example, the R2 
increases from 0.475 for MLR to 0.771 for FNN. The residuals decrease regarding MSE, 
RMSE, and MAE statistic variables. Fig. 7 shows that the FNN least-square line is more 
aligned to 45 degrees than the MLR least-square line. Fig. 8 indicates that the FNN 
signs are less distributed on the Y-axis and more distributed on the X-axis than the 
MLR signs, indicating the improvement of the FNN over the MLR.  
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Fig. 9 shows that the FNN-ROP predicted curve is more aligned with the Measured ROP 
curve than the MLR-ROP predicted curve, and the FNN curve tries to reach the Measured 
curve more closely than the MLR curve. 
 

Table 3. Case 2 details and statistic 

Case  Well number From depth m To depth m Data points  P-value 

2 Ga-J52P 1882.25 2132.25 1000  0 

Models || Statistic MSE RMSE MAE R2 Adjusted-R2 
MLR 4.6356 2.153 1.7248 0.4752 0.46342 
FNN 2.43771 1.5613 1.1663 0.7714 0.74216 

 

 

Figure 7. Measured ROP vs Predicted ROP of the FNN + MLR, case 2. 

 

Figure 6.  Well Depth vs. Measured & Predicted ROP of FNN & MLR. 
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Figure 8: Residuals vs Predicted ROP of the FNN + MLR, case 2. 

 

Figure 9. Well Depth vs Measured + Predicted ROP of FNN + MLR, case 2. 
 

Analyzing case 3 for oil well Ga-J88P, which has a more extended interval depth of 1500m 
and approximately 6000 data points, Table 4 shows the improvement of the FNN approach 
in various aspects. This includes an increase in R2 from 0.4494 for MLR to 0.6615 for FNN. 
The residuals also decrease in MSE, RMSE, and MAE statistic variables in FNN compared to 
MLR, indicating improved performance. Fig. 10 depicts the superior performance of the FNN 
least-square line compared to the MLR least-square line, and it is clear that the vast dataset 
does not affect the findings. Fig. 11 shows that the FNN has less residual than MLR and is 
more aligned with the measured ROP. Finally, Fig. 12 illustrates that the FNN-ROP predicted 
curve is more closely aligned with the measured ROP than the MLR-ROP predicted curve. 
The FNN curve displays a more concerted effort to reach the measured curve than the MLR 
curve despite the crowded dataset in Fig. 12. The MLR curve considers the optimal values 
collected from all the data points and represents them in one MLR equation, while the 
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behavior of the FNN curve is evident as it tries to reach the measured ROP curve by a good 
percentage. The decrease in R2 in FNN and MLR compared to other cases is due to the vast 
number of 6000 data points. Both FNN and MLR attempt to handle the effect of the entire 
dataset and demonstrate optimal behavior for ROP within an overall point acceptable limit. 

 
Table 4. Case 3 details and statistic 

Case  Well number From depth m To depth m Data points  P-value 
3 Ga-J88P 233 1733 6000 0 
Models || Statistic MSE RMSE MAE R2 Adjusted-R2 

MLR 72.534 8.5167 6.3125 0.4494  0.46192 
FNN 48.887 6.9919 4.9884 0.6615  0.69432 

 

 

Figure 10. Measured ROP vs Predicted ROP of the ANN + MLR, case 3. 

 

Figure 11. Residuals vs Predicted ROP of the ANN + MLR, case 3. 
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Figure 12. Well Depth vs Measured + Predicted ROP of ANN + MLR, case 3. 
 

Case 4, which represents the combination of three oil wells, has an extended interval depth 
of 750m and approximately 3000 data points extracted from the three wells. The first data 
point is from Ga-J38P, the second from Ga-J52P, the third from Ga-J88P, and so on for the 
rest of the dataset points, alternating between the three wells. 
The statistical findings in Table 5 and Figs. 13 to 15 indicate that FNN outperforms MLR.  

Table 5. Case 4 details and statistic 

Case  Well number From depth m To depth m Data points  P-value 
4 Ga-J(38+52+88)P 1383 2133 3000 0 
Models || Statistic MSE RMSE MAE R2 Adjusted-R2 

MLR 15.187 3.8971 2.9127 0.4664  0.48932 
FNN 9.0411 3.0068 2.1922 0.7228 0.75632 

 

 

Figure 13. Measured ROP vs Predicted ROP of the FNN + MLR, case 4. 
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Fig. 15 appears cluttered due to the vast dataset collected, as the data points have different 
values and consistency from point to point. Each data point differs from the ones before and 
after because they belong to different oil wells. However, despite this variation, the overall 
result is the same in the other cases, and the FNN curve is more inclined than the MLR curve 
to integrate with the measured ROP curve. 

 

 

Figure 14. Residuals vs Predicted ROP of the FNN + MLR, case 4. 
 

 

Figure 15. Well Depth vs Measured + Predicted ROP of FNN + MLR, case 4. 
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5. CONCLUSIONS 
 

Getting all the variables for BYM equations can be challenging because they need many 
controllable and uncontrollable variables, and BYM's linear assumption may not effectively 
capture complex interconnections. On the other hand, FNN requires high-quality datasets to 
train accurately. It can suffer from over-fitting or under-fitting for rubbish and outlier data 
points, making it challenging to strike the right balance. However, FNN can capture complex 
patterns that MLR may miss. 
1. By integrating FNN with BYM equations, which depend on solid hypotheses, the model 

becomes better equipped to handle the complexities of the drilling process, including 
nonlinearity and interactions between various drilling parameters. 

2. The experiment showed that using fewer data points as a dataset made the results more 
accurate, but using more data points as much as possible reflected the actual drilling 
circumstances in the well. 

3. The present work results indicate improvement in the approach to real-time data testing. 
This is clear from the tables and graphs that compare everything involved, like R2, 
residuals, and ROP values. This finding demonstrates that combining BYM equations as 
a dataset for FNN enhances penetration prediction performance regardless of the 
number of data points available.  

4. These study outcomes were obtained by using FNN as a kind of ANN and particular cross-
validation. Better results may be obtained by using different kinds of ANN and other 
kinds of cross-validation so that more research can be developed. 

 
NOMENCLATURES 
 

Symbol Description Symbol Description 
a1 to a8 The regression coefficients. x1 The effect of variables not considered in the 

BYM on ROP. 
BYM Bourgoyne and young model. x2 The effect of increased rock strength due to 

normal compaction with depth on ROP. 
D Oil well, true vertical depth 

(ft).  
x3 The impact of under-compaction experienced 

in abnormally pressured. 
Fj Bit Jet impact force (in pounds 

of force) 
x4 Related to the effect of the hydrostatic and 

formation pressure differential on ROP. 
gp Pore pressure (ppg). x5 The impact of bit weight on ROP. 
ℎ Fractional tooth wear. x6 Related to the drilling pipe rotary speed on ROP. 

MLR Multiple linear regression. x7 Models the impact of tooth wear on ROP. 
N Rotary speed (revolutions per 

minute, RPM). 
x8 Models the effect of bit hydraulics on ROP. 

ROP BYM dependent variable, rate 
of penetration. 

[
𝑊

𝑑𝑏
]𝑡 

The drilling begins at Threshold WOB 
1000lbf/inch. 

Wb/db (Weight on bit) per (bit 
diameter) (pounds per inch). 

ρ mud weight (ppg). 

x1 to x8 BYM independent variables. ρc Equivalent circulation density (ppg). 
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Appendix A 

The following is a small part of the big MATLAB programming codes that I wrote to make the 
calculations, statistics, and plots; this part is related to FNN equations codes in MATLAB. 

%% Load the ROP dataset (drilling parameters and corresponding ROP values) 
%% load('rop_dataset.mat'); %% Replace 'rop_dataset.mat' with your dataset file then 
%% calculate each data point depending on B&Y equations and this done by a lot of  
%% programming codes 
%% Split the dataset into training, validation and testing sets 
trainRatio = 0.8;             % 80% for training 
validationRatio = 0.1;    % 10% for validation 
testRatio = 0.1;               % 10% for testing 
 [trainInd, valInd, testInd] = dividerand(size(X, 1), trainRatio, validationRatio, testRatio); 
 X_train = X(trainInd, :); 
 Y_train = Y(trainInd); 
 X_val = X(valInd, :); 
 Y_val = Y(valInd); 
 X_test = X(testInd, :); 
 Y_test = Y(testInd); 
%% Create the FNN model 
hiddenLayerSize = 50; % Number of neurons in the hidden layer 
net = fitnet(hiddenLayerSize); 
%% Set the training parameters 
net.trainParam.epochs = 100; % Number of training epochs 
net.trainParam.lr = 0.01; % Learning rate 
net.trainParam.min_grad = 1e-6; % Minimum gradient threshold for stopping training 
net.trainParam.showWindow = false; % Disable training window display 
%% Train the FNN model 
net = train(net, X_train', Y_train'); 
%% Evaluate the performance of the validation set 
 Y_val_pred = net(X_val'); 
 mse_val = mean((Y_val - Y_val_pred').^2); 
 rmse_val = sqrt(mse_val); 
 R2_val = 1 - (sum((Y_val - Y_val_pred').^2) / sum((Y_val - mean(Y_val)).^2)); 
%% Generate predictions for the testing set 
Y_test_pred = net(X_test'); 
mse_test = mean((Y_test - Y_test_pred').^2); 
rmse_test = sqrt(mse_test); 
R2_test = 1 - (sum((Y_test - Y_test_pred').^2) / sum((Y_test - mean(Y_test)).^2)); 
%% Then the section on calculations and measuring MLR, by many programming codes 
%% Then the section on making different kinds of comparison graphs and statistical  
%% results and values by many programming codes 
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تطبيق الشبكات العصبية الاصطناعية مع موديل بورغوين ويونغ للتنبؤ بمعدل الاختراق في  
 حقل الغراف النفطي 

 
 سميرة حمد الل  ،*إبراهيم العصاد 

 

 قسم هندسة النفط، كلية الهندسة، جامعة بغداد، بغداد، العراق
 

 الخلاصة
لحفر آبار النفط أمرًا ضرررررررررررررر رلًا لعلآليا  الحفر ا منة  الفعالة م؛ تسع الت لفة  تسرررررررررررررع    ROP)يعتبر توقع معدل الاختراق )
منذ العقود الأ ل  لهذه الصررررررررررناقةه  لتحقسف هذا الهد ،  م؛  س؛ العداد م؛ النلآا  ، تم  (ROP)شررررررررررركا  الحفر  ل  ت لآس؛ 

( قل   (ROP(،  هو نهج قائم قل  اللآعادلا ،  اسرررررت د  قل  نطاق  اسرررررع للتنب   ررررررررررررررررررر  (BYMتطولر نلآو    ورغول؛  لونغ  
 تدى تقنيا  التعلم ا لم التم تحلل    (ANN)الشررررالة العصرررربية الا ررررطنا ية   دتع  ه(MLR)أسرررران الانحدار ال طم اللآتعدد 

(،  سنلآا هدحت  (BYMه تم  جراء العداد م؛ الدراسررررررررررا  حم جلآيع أنحاء العالم لاسررررررررررت دا  (ROP) يانا  الحفر  تقو   تنب ا   
تقترح هذه الدراسة نهجا  ( أيضًا حعالستها حم هذه اللآجالا ه(ANNدراسا  أخرى  ل  تحسسنها حم ظر   م تلفةه  قد أظهر  

  (ROP). ( لتعزلز التنب   رر (BYM(  معادلا   (ANN( م؛ نلآو     (FNNيجلآع  س؛ حوائد الشالا  العصبية التغذية الأمامية
ا قل  تسرررررررررر سر قو.  كفاء. التعلم ا لمه     ل  تعزلز النلآو   القائم قل  اللآعادلة    (FNN)( مع  (BYMا دي دمج  لعلآل أيضررررررررررً

  (ROP)تتضررلآ؛ معللآا   دخال نلآذجة  ( حم آبار النفطه(ROP ل دي هذا  ل  تحسرر؛ كبسر حم الدقة  ال فاء. حم التنب   رررررررررررررررر  
العلآف الرأسرررررم ايجلآالم اللآقان  الح يقم،  الوى  قل  الحفر.،  الد را  حم الد يقة،  ضرررررغط الأنبول،  تدحف اللآضررررر ة،   ى   
الطس؛ اللآلاحئ،  تجم الحفر.،  تجم الفوهة،  ضرغط الت ول؛،  قو. تثيسر نفاية الحفر.،  التم اتم  قاد. تسرا ها  واسرطة معادلا  

(BYM)    إدخرالهرا  ل  كرل م؛ (MLR)   .(FNN)  قنرد اختارارهرا قل   يرانرا  حم الوقرت الفعلم م؛ تقرل الغرا ، تتهر النترائج
R2   أقل ،  بقايا أقل،   يلآةP  فرلة مقارنة  ررر    (MLR)   ملآا اثبت دقة النهج  لوحر تنبً ا د يقًا بلآعدل الانحدار ال طم حم

 .خطط الحفر اللآستقبلية
 

الشالا  العصبية الا طنا ية، نلآو    ورغول؛  لونغ، الانحدار ال طم اللآتعدد، معدل الاختراق، تقل    :المفتاحيةالكلمات  
 هالنفطمالغرا  

 
 

 


