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ABSTRACT 

Audio and speech compression techniques are used to reduce the storage of these data in 

the required space and the transmission rate of these data in the communication and 
network systems. In this paper, the researchers exploit neural networks and artificial 
intelligence to compress audio signals. The researchers investigated compression ratios of 
8, 4, 2, and 1 (no compression), and then chose the highest ratio of 8. The compromising 
choice is based on the best SNR of the recovered audio signal and the required time for 
implementation. The researchers tested 119 different audio files from the standard BBC 
audio library. The duration of these files is about 1000 seconds. The average SNR was 26.33 
dB, and the mean square error was -52.58 dB. To reduce the running time, the epochs were 
30, the hidden layers were 64 to 128, the quantization level was 1, the dimensions were 15 
to 20, and each second of the input signal needed 100 seconds to be compressed. The input 
audio signal files were single-channel mono audio, and the stereo multi-channel audio files 
were reformatted to mono single-channel. According to the results, the proposal process 
accomplished good audio compression, while the other parameters were acceptable. 
 
Keywords: Deep learning, Audio compression, Variational autoencoders, Compression 

ratio. 

 
1. INTRODUCTION 
 

In the digital age, the proliferation of audio content across various platforms has 
necessitated the development of efficient compression techniques to facilitate storage, 
transmission, and streaming without compromising the listening experience. Traditional 
compression methods have long been categorized into two distinct lossy and lossless 
categories. Lossy compression, exemplified by formats like MP3 and AAC, reduces file size 
by discarding audio data deemed inaudible or irrelevant to human perception. While this 
approach has been widely adopted for consumer applications due to its high compression 
ratios, it inherently results in a loss of audio fidelity, which can be unacceptable for 
professional audio applications and audiophiles. The technical differences between the two 
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types were discussed in detail in the well-known lectures on data, image, and audio lossless 
and lossy compressions. Lossy compression is favored when the primary concern is file size 
and the slight loss in quality is acceptable. This is the go-to method for most consumer media 
applications due to its balance of quality and efficiency (Jain and Patel, 2009). In contrast, 
lossless compression is the preferred choice when absolute fidelity is non-negotiable. It is 
used in professional settings where even minor alterations in the data can have significant 
consequences, such as in music mastering, film post-production, and medical imaging Lossy 
compression offers the advantage of high compression ratios at the expense of data fidelity, 
while lossless compression ensures data integrity but with less efficient compression. The 
decision between the two methods hinges on the balance between quality, storage, and 
transmission needs (Jain and Patel, 2009). 
Conversely, a lossless compression field (such as Apple Lossless Audio Codec (ALAC) and 
Free Lossless Audio Codec (FLAC)) preserves every bit of the original audio data, ensuring 
that the decompressed file is identical to the source. However, the trade-off is a more modest 
reduction in file size, limiting its practicality for applications with stringent storage or 
bandwidth constraints. The main parameters of lossless audio compression are The 
Compression Ratio (CR), required time for the compression and decompression process, 
quality of the output compressed audio, stability, type of compression, threshold, attack, and 
release. Mainstream audio compression applications and researchers usually compromise 
among the above parameters (Crocco et al., 2016; Välimäki and Reiss, 2016). 
To enhance efficiency and maintain audio quality. (Shukla et al., 2022) explore RNNs, CNNs, 
and GANs for compact audio representations, while (Dubois et al., 2021) emphasize 
cognitive sincerity in compression. (Barman et al., 2022) integrate machine learning for 
adaptive lossless compression, and (Shukla et al., 2019) combine DCT and LZW encoding 
for improved compression rates. (Hennequin et al., 2017) propose CNN-based encoding-
independent compression techniques. (Schuller et al., 2002) develop predictive coding 
methods to reduce delay and redundancy. (Ramesh and Wang, 2021) address real-time 
audio streaming challenges, and (Friedland et al., 2020) analyze perceptual compression’s 
impact on deep learning. 
Our research proposes a possible paradigm shift in data compression; utilizing Variational 
Autoencoders (VAEs) to bridge the gap between lossy and lossless compression. VAEs for 
audio, language, text, and image processing are efficient deep-learning Digital Signal 
Processing models that have a high ability to perform different representations for the data 
of these fields in the future. For instance, by feeding observation input audio signals and data 
into the VAEs system, a closed and packed latent space can change and configure the 
observation and machine learning of their expression and presentation. The representations 
of those latent spaces can ideally extract the principles of data which we request to reformat 
the high definitions of speech and audio signals and data. Technically, this research is 
implemented particularly to reduce the size of the lossless compressed audio signal size and 
rate, i.e. and it can improve the Compression Ratio CR of those observation signals and data 
of audio and speech. The quality and the fidelity of the processes are acceptable and efficient. 
The scheme design of accurate VAE performed the above processing when variables of the 
latent spaces were discretized and then approximated to the best quantization levels. The 
quality of the lossless output compressed audio was immaculate with a high ratio of 
compression. That achievement could be evaluated as a remarkable challenge for the 
compression area. The researchers will describe their technique and how to implement that 
technique, and then test their results subjectively and objectively of the lossless compression 
technique based on the VAE algorithms. The researchers will present the details of the 
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analysis for their system about the compression with the results of the ratio, and the quality 
using different listeners to test the system subjectively. Object tests are used to cross-check 
these results and to confirm the evaluation of the system. This VAE approach to research can 
preface the road for other researchers to continue exploiting the efficient ability for deep 
learning in the audio and speech DSP. 
 
2. VARIATIONAL AUTOENCODERS (VAEs) 
 
Variational AutoEncoders VAEs are a type of rich DSP model in the research of Deep 
Learning area. More and more researchers are exploiting the efficient performance of 
Variational Autoencoders due to their abilities for machine learning of the complex 
statistical distributions of signals and data (Hemmer et al., 2020; Défossez et al., 2022). 
In speech, audio, text, and image processing, VAEs principally adapt jobs with structured 
data and multi-dimensional processing. The principles and basics of autoencoders are used 
in kernels of the VAEs. For the input observation of audio data and signals, their encoding 
process exploits the Neural Networks (NNs), which have been developed specifically for that. 
Then, the outputs of the NNs are processed by a latent space formulation. The latent space 
formulation can inversely decode NN outputs to produce its plaintext original audio and 
speech data and signals. For generative modeling and/or representation learning, the VAEs 
are based on statistics, stochastic, and probability analyses.  Those analyses gave power to 
the VAEs. Fig. 1 describes the scheme of Vibrational AutoEncoders VAEs in sequential stages. 
The VAE scheme contains an encoder network of the input signal at first and a decoder 
network of the signal at last. The model maps the input data/ signal to the latent that 
depends on the statical specification (Probability Distribution Function PDF), which is 
typically a multivariate Gaussian. This mapping is achieved through sequential Neural 
Network Layers (NNLs), which process the input mean vector and a variance vector, which 
together define the parameters of the Gaussian distribution in the latent space. This mapping 
is also achieved for the output signal/ data. The key here is the introduction of a variational 
inference framework, which allows the VAE to learn a distribution over latent variables 
rather than a single deterministic encoding (Hemmer et al., 2020; Pollastro et al., 2023). 
The decoder, or generative model, takes samples from this learned latent distribution and 
maps them back into the original data space. The decoder is also a neural network that 
reconstructs the input data from the latent representation, aiming to minimize the difference 
between the original and reconstructed data. The training of a VAE involves optimizing a 
loss function that balances two objectives: the reconstruction loss, which measures the 
fidelity of the decoded data to the original input, and the divergence of the Kullback-Leibler 
(KL) algorithm, which makes specific levels (quantifies) for the difference of the chosen prior 
PDF (usually Normal Gaussian Distribution) and the PDF of the learned latent. This balance 
ensures that the latent space is both informative about the input data and is regularized to 
prevent overfitting and to encourage meaningful structure (San Martin et al., 2019; 
Kalinin et al., 2021). 
The use of VAEs extends beyond simple data compression and reconstruction. They have 
many other uses such as in anomaly detection, where the learned latent representation can 
detect deviations from the normal data distribution; data generation, where samples from 
the latent space can be decoded into realistic data instances; and data interpolation, where 
transitions between different points in the latent space can reveal smooth, interpretable 
transformations in the data space. The positive merits of VAEs are (Shang et al., 2021; 
Dewangan and Maurya, 2021; Cunha et al., 2023): 
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1. VAEs present basic methods for latent representation learning. Learning is available in 

the generative and the meaningful stages. 
2. Due to the above statistical backgrounds, the VAEs provide uncertainty against the robust 

inference and the approximation of the quantification. 
3. With inherently scalable procedures, VAEs can handle complex dataset applications with 

large-scale ranges. 
VAEs can incorporate different designs of other architectures. They have acknowledgments 
for audio encoding and decoding (Shang et al., 2021; Dewangan and Maurya, 2021; 
Cunha et al., 2023). 

 

Figure 1. Variational Autoencoders Architecture 
 
3. PROPOSED ALGORITHM 
 
The proposed methodology for lossless audio compression using Variational Autoencoders 
(VAEs) is a systematic approach that combines deep learning techniques with signal 
processing to achieve high compression ratios without compromising audio fidelity. The 
core of this methodology lies in the design and training of a VAE tailored to the nuances of 
audio data, ensuring that the learned latent representation captures the essential features of 
the audio signal while being amenable to efficient encoding and decoding. The VAE model 
employed in this work consists of an encoder network and a decoder network, both of which 
are composed of fully connected layers with rectified linear unit (ReLU) activations. The 
encoder network takes as input the raw audio waveform, which is typically a one-
dimensional time series, and maps it to a lower-dimensional latent space. The encoder 
outputs two vectors: a mean vector, μ, and a log variance vector, log(𝜎), which together 
parameterize a Gaussian distribution from which the latent representation Z is sampled. 
Mathematically, this process is represented as follows (Amada et al., 2018; Liu, 2021): 
 

Z~N (μ, diag(σ2))                                (1) 
 

Where 𝑁 denotes the normal distribution, 𝜇 is the mean, 𝜎 is the variance, and 𝑑𝑖𝑎𝑔 indicates 
a diagonal matrix with the variances along the diagonal. The decoder network, conversely, 
takes samples from the latent space and reconstructs the original audio waveform. The 
architecture mirrors that of the encoder, with fully connected layers that progressively 
increase the dimensionality of the data until it matches the original audio signal. The 
decoder's output is a reconstruction of the input audio, denoted as x̂, which is compared to 
the original input (x), to compute the reconstruction loss (Huang et al., 2019). The training 
of the VAE involves optimizing a loss function that comprises two components: the 
reconstruction loss (Lrec), and the Kullback-Leibler (KL) divergence loss (LKL). These losses 
are dimensionless (unitless) parameters. The reconstruction loss measures the difference 
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between the original audio and the reconstructed audio, typically using the mean squared 
error (MSE) for regression tasks (Yoshimura et al., 2018; Passricha and Aggarwal, 
2019): 
 

Lrec =
1

M
∑ (Xi − x̂i) 2

i=M

i=1
                (2) 

 
Where M is the number of samples in the batch, and the summation is over all samples. 
The KL divergence loss quantifies the dissimilarity between the learned latent distribution 
and a prior distribution, which is usually a standard normal distribution (Zeghidour et al., 
2021): 

 

LKL =
1

2
∑ (μj

2 − σj
2 − log ( σj

2) − 1)
j=M

j=1
              (3) 

 

Where the summation is over the dimensions of the latent space. 
The total loss (Ltotal) is a weighted sum of the reconstruction loss and the KL divergence loss 
(Nagaraj et al., 2020; Nogales et al., 2023): 
 
Ltotal = Lrec + λLKL                    (4) 

 
Where λ is a hyperparameter that controls the trade-off between the two components. 
During training, the VAE is optimized using the Adam optimizer, which adjusts the learning 
rate adaptively for each parameter. The training process involves iteratively updating the 
weights of the encoder and decoder networks to minimize the total loss, thereby learning a 
latent space that is both informative and regularized (Jing et al., 2014; Chen et al., 2021). 
Once trained, the VAE can be used for compression by encoding the audio into the latent 
space, which is then quantized to further reduce the data size. The quantized latent 
representation is losslessly compressed using standard compression algorithms, such as 
Huffman coding or arithmetic coding. The compressed data can be stored or transmitted, 
and upon receipt, it is decompressed and decoded using the VAE's decoder network to 
reconstruct the original audio with no loss in quality (Shin et al., 2022). 
The proposed methodology leverages the power of VAEs to learn a compact and meaningful 
representation of audio data, enabling the realization of high compression ratios while 
retaining the integrity of the audio signal. The mathematical framework underpinning the 
VAE ensures that the compression process is both effective and principled, making it a 
promising approach for lossless audio compression in various applications. The training 
phase involves iterative updates to the VAE's parameters to minimize the total loss, while 
the compression and decompression phases utilize the trained VAE to achieve lossless 
compression of audio signals. Fig. 2 illustrates the proposed algorithm of the research. 
 
4. DEEP LEARNING PARAMETERS FOR THE RESEARCH 
 

These are the variables that have the ability for learning, which resolve the Neural Networks 
(NNs) performances and behaviors. The following are the Deep Learning parameters (Al-
Bayati et al., 2020; Ghadi and Salman, 2022; Alfarhany and Abdullah, 2023; Hassan 
and Dawood, 2024; Yasir and Al-Barrak, 2024): 
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Figure 2. The research Algorithm. 
 

4.1 Initial Observations 
 

For the high initial loss, the initial loss value is 6.1e-03, which is relatively high compared to 
subsequent values. This suggests that the model starts with a significant amount of error, 
which is common in the early stages of training. For the rapid decrease in loss, the loss 
quickly decreases to values in the range of 10-5 to10-6. This rapid decline indicates that the 
model is learning efficiently from the training data and that the chosen learning rate and 
optimization algorithm are effective. 
 
4.2 RMSE Analysis 

 

The RMSE values provided a minimum value of 1µ. The maximum value is 0.001. A lower 
RMSE is desirable as it indicates that the model's predictions are closer to the actual values. 
 
4.3 Consistency in RMSE 

 

The RMSE values show a consistent decrease, which is a positive sign. However, fluctuations 
in RMSE (e.g., from 0.0038 to 0.0039) suggest that while the overall trend is downward. 
There may be some variabilities in the model's performance from one epoch to the next in 
Model Performance. 
 
4.4 Learning Rate 

 

The rapid decrease in loss and RMSE suggests that the learning rate is appropriately set. If 
the learning rate were too high, the model might overshoot the optimal solution, leading to 
instability or divergence. If it were too low, the model would learn too slowly or get stuck in 
a suboptimal solution. 
 
4.5 Overfitting Concerns 

 

The relatively low RMSE values towards the end of training could indicate that the model is 
fitting the training data well. However, it's important to monitor for overfitting. The 
monitoring is especially important if the model's performance on unseen data (validation or 
test set) is not as good as on the training set. 
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4.6 Comparison with Loss 
 

For the correlation between loss and RMSE, they generally decrease together, which is 
expected since both are measures of error. The specific values and the rate of decrease can 
vary depending on the nature of the data. The model complexity also has specific values. 
 

5. EXPERIMENTS AND RESULTS 
 

Our proposal has been tested using Matlab IDE, Notepad++, and Audacity DSP audio player. 
The tests included 119 audio files from the standard BBC audio library. The total duration of 
these standard audio files is about 1000 seconds (more than 150 minutes). The audio files 
are single-channel mono files, and the multi-channel stereo files were mixed to produce 
mono format (double-channel). The sampling rate is a standard 44100 sample/second with 
a depth of 16 bits/sample. The files were different types of audio such as bubble sound, 
music piano, the market in a specific country, domestic hens, flamingo birds, classic 
symphonies, different machines and vehicles, etc. The length of the files ranged from 0.142 
to 297.4 seconds. The subjective tests for the compressed and decompressed audio denote 
that the method is very good. The testers were different people of different ages, cultures, 
and genders. Their response was it is difficult to recognize the original, compressed and 
recovered audio. Fig. 3 displays the original input waveforms of a typical audio signal and 
the reconstructed output signal. The samples of the two waveforms are identical for all that 
tested typical audio signals. For the objective tests, the Signal Noise Ratio of the recovered 
samples was very high (from 8.04 to 50.08 dB) with a 26.33 dB average value. The mean 
Square Error was negligible (from -65.08 to 40.01 dB) with a -52.58-dB average value. The 
researchers checked 3 values of compression ratios: 8, 4, 2, and 1 (no compression). After 
different compressions and cross-checking, the researchers chose the highest ratio of 8. The 
choice is a compromising solution based on: The best SNR of the recovered audio signal, the 
best MSE, and the less required time for the real-time compression implementation. The 
time range is from 32 to 212 sec, with a 100 sec average value for each 1 sec of the input 
signal. To reduce that time, the Epochs were 30, hidden layers were 64 to 128, the 
Quantization level was unity, and Latent Dimensions were 15 to 20. The above maximum, 
average, and maximum values are tabulated in Table 1, and illustrated in Fig. 4. 

 
Figure 3. The original (blue) and the recovered (green) audio signals. 
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Table 1. Minimum, Average, and Maximum value of the Compression process for the research. 

Parameter Minimum Average Maximum 

Duration of audio file (sec) 0.142 8.973 297.4 

Signal to Noise Ratio (SNR) (dB) 8.04 26.33 50.08 

Mean Square Error (MSE) (dB) -65.08 -52.58 -40.01 

Processing time (sec) for 1 sec input signal 32 100 212 

 
Figure 4. RMSE (blue) and Loss (red) versus the Epochs iterations. 

 
6. CONCLUSIONS 

 

According to compression between this paper's research with other reliable and standard 
research ,The method is efficient for the compression ratio, SNR, MSE, and stability against 
different types of audio. The maximum obtained CR is 8, with 2×10-3 RMSE and 5×10-6 loss 
over 30 epochs, 128 hidden layers, and 20 latent dimensions. The weak point of this method 
is the long-required time for real-time implementation. The compression ratio is acceptable 
compared with other famous algorithms and techniques. The loss and the mean square error 
of the reconstructed audio signal could be omitted compared with the original input audio 
signal. The tables, figures, and waveforms denote successful and stable performance, versus 
the other lossless audio compression systems and techniques. 
 
NOMENCLATURE 

 

Symbol Description Symbol Description 
𝑑𝑖𝑎𝑔 diagonal matrix. 

X, X


 
Input, and estimated input signals. 

Ltotal Total loss. Z  Latent representation. 

Lrec & 
LKL 

Reconstruction & Kullback-Leibler 
divergence losses. 

λ Hyperparameter to control the trade-
off between the components. 

M Number of samples per batch. 𝜎 Variance. 
N Normal distribution. 𝜇 Mean value. 
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 التعلم العميق لضغط الصوت بدون فقدان 
 

 ، حسن محمدعلي كاظم *علي أحمد عبيد

 
 قسم الهندسة الكهربائية، كلية الهندسة، الجامعة المستنصرية، بغداد، العراق  

 

 الخلاصة
 

يتم استخدام تقنيات ضغط الصوت والكلام لتقليل تخزين هذه البيانات في المساحة المطلوبة وتقليل معدل نقل هذه البيانات في  
أنظمة الاتصالات والشبكات. في هذا البحث، يستغل الباحثون الشبكات العصبية والذكاء الاصطناعي لضغط الإشارات الصوتية. 

. يعتمد اختيار التسوية على أفضل  8)بدون ضغط(، ومن ثم اختيار أعلى نسبة    1و  2،  4،  8ط  قام الباحثون بدراسة نسبة الضغ
ملفًا صوتيًا مختلفًا من مكتبة  119، والوقت المطلوب للتنفيذ. اختبر الباحثون SNRنسبة إشارة صوتية مستردة الى الضوضاء 

ديسيبل، ومتوسط    26.33كانت    SNRمتوسط: نسبة    ثانية.  1000بي بي سي الصوتية القياسية. مدة هذه الملفات حوالي  
، ومستوى  128إلى    64، والطبقات المخفية من  30ديسيبل. لتقليل وقت التشغيل، كانت العصور    52.6-الخطأ المربع هو  

ثانية ليتم ضغطها   211، وكل ثانية واحدة من إشارة الدخل تحتاج إلى معدل  20إلى    15، والأبعاد الكامنة من  1التكميم هو  
لمدخلة صوت أحادي القناة وتمت إعادة تنسيق ملفات الصوت الستريو متعددة  وفك ضغطها. كانت ملفات الإشارة الصوتية ا

 القنوات إلى قناة أحادية مونو. نتائج البحث حققت ضغطاً صوتياً جيداً بينما كانت المعلمات الأخرى مقبولة.

 التعلم العميق، ضغط الصوت، أجهزة الترميز التلقائي المتغيرة، نسبة الضغط. الكلمات المفتاحية:
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APPENDIX 
 

Arbitrary samples of the tested audio files. Duration of each audio, MSE of the compression 

(×10-3), SNR of the recovered decompressed audio, and the processing time for each second. 

The Hidden Layers = 128, the Latent Dimensions = 20, the Epochs = 30, and the Compression 

Ratio = 8. The researchers exploited the BBC audio dataset to test their proposed algorithm. 

The library contains different high-quality audio.  

File name (.wav) Duration/S  MSE SNR/Db Time/s 

Stage Show.wav 2.190 0.056 8.14 628 

Music Hassjk.wav 2.700 0.006 25.32 822 

Flamingo.wav 0.998 0.013 19.25 1580 

First Aid.wav 2.440 0.001 47.52 676 

Bubbles.wav 0.142 0.003 37.52 40 

Big-Ben.wav 4.420 0.005 27.20 1658 

09 Bells of Sant Gervais Church.wav 2.000 0.007 24.54 851 

Automatic Washing Machine.wav 1.020 0.003 32.72 274 

Amusement Arcade (Sitia) .wav 2.430 0.022 14.76 727 

Man Speech .wav 1.490 0.006 29.11 96 

General Atmosphere 1.100 0.007 41.98 411 

Wood File.wav 4.500 0.013 18.52 1714 

Biano.wav 1.990 0.004 38.84 778 

Day Old Boy (Restless).wav 4.900 0.019 16.92 798 

Week Old Girl (Hiccoughs).wav 2.640 0.004 33.17 334 

Month Old Girl, Talking Nonsense.wav 3.990 0.006 22.87 627 

1-Year Old Boy (Laughing).wav 8.026 0.019 16.70 2782 

Heart Beat (Average).wav 1.470 0.029 15.50 592 

Fetal Heart Beat.wav 0.502 0.011 20.56 71 

Men’s Ward.wav 4.000 0.011 22.55 1423 

Morocco (Medina Food).wav 1.090 0.029 33.21 401 

Morocco Street (Menkes).wav 1.000 0.003 31.80 319 

Algeria (Market).wav 1.700 0.020 15.69 604 

Zaire (Small But).wav 2.290 0.004 28.63 638 

Cameroun (Insects and Bard).wav 1.002 0.007 23.23 186 

Senegal (Insects and Bard).wav 6.520 0.003 27.80 2006 

Elephants (Elephants Clos).wav 7.590 0.004 29.27 2591 

Burchell’s Zebra (Close Up Calls).wav 2.000 0.002 33.97 606 

Chimpanzees (Close Up).wav 4.600 0.001 33.38 1765 

 
 


