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 ABSTRACT  

Human activities such as mining, industrial operations and waste management can lead to 

soil pollution by heavy metals including chromium, cadmium, mercury, lead and arsenic. 
These contaminants cause harm both to humans and the ecosystems where they are found. 
Of all the previously used techniques, phytoremediation is the most promising one for 
cleaning up heavy metal-contaminated soils. Phytoremediation refers to a technique where 
plants use roots for absorbing, storing and immobilizing soil contaminants while also 
removing them. Bioleaching is a method which uses microorganisms to dissolve metals that 
have been shown to facilitate phytoextraction in increasing the availability of metals. It is 
anticipated that research advancements and technological innovations will make it more 
efficient and appropriate. Root absorption is increased by bioleaching through modification 
of rhizosphere thus making it more bioavailable for plant uptake. Plant-bacterial interactions 
are proven to speed up the remediation rates. Both processes can help clear off pollutants 
from the soil environment. However, further research is needed to find and improve the best 
strains of microorganisms, assess long-term soil impacts and control massive influxes of 
bacteria. The combination of bioleaching and phytoextraction offers a reliable and efficient 
system for removing metals from polluted soils. 
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1. INTRODUCTION 
 
High levels of heavy metals in the soil cause pollution and therefore are a major problem for 
both the environment and public health (Purwanti et al., 2019; Yuliasni et al., 2023). 
These heavy metals include lead (Imron et al., 2021b), mercury (Imron et al., 2019a; 
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Arliyani et al., 2023), cadmium (Shojaei et al., 2021), arsenic (Titah et al., 2018) and 
chromium (Ramli et al., 2023a; 2023b). Heavy metals are naturally occurring elements 
which can be accumulated in the environment as a result of industrial activities like mining 
(Ighalo et al., 2022; Wibowo et al., 2023), agricultural practices such as waste disposal 
through inappropriate management and industries operations like mining, farming, etc. The 
presence of heavy metals in the soil sometimes is catastrophic to ecosystems as well as 
human lives. 
Several researchers have reported that these metals can persist in the environment for a 
long time (Titah et al., 2019; Ismail et al., 2020; Wiradana et al., 2024) and also that their 
toxic effects may interfere with biological processes (Ahmad et al., 2022a; Kurniawan et 
al., 2023). The growth of plants can be hindered by heavy metal pollution (Ahmed et al., 
2021; Almansoory et al., 2021), causing declining crop yields as well as build-up of metals 
in edible parts (Ramli et al., 2023b), which thus endanger both human and animal health. 
In this context, direct contact with polluted soil or by blood consumption of dishes and traffic 
can potentially cause a range of chronic health effects, showing adverse impact in our 
nervous system disorder, kidney failure problems, difficulty breathing and also cancers 
among other human beings that are currently explained (Oginawati et al., 2021; 2022). 
Phytoremediation is an ecologically sustainable and perhaps the most effective approach for 
the environmental remediation of soils contaminated by heavy metals (Al-Ajalin et al., 
2020; Purwanti et al., 2020a; Kurniawan et al., 2022c). This is a way whereby pollutants 
that are present in the soil, will be taken by plants translocated and stored. The latter extracts 
and eliminates the toxins from above-ground parts of plants (Al-Ajalin et al., 2022; AL 
Falahi et al., 2022; Imron et al., 2023). Plants take metals up from the substrate, move 
them within the plant and sequester most of these elements in their biomass through 
processes including root absorption (root-to-shoot transfer), movement inside plants 
(storage) or volatilization (Aransiola et al., 2013; Imron et al., 2019b; Osama et al., 
2022). 
Bioleaching, a method for using microbes to release metals from the stable components that 
bind them, may hold the potential to assist phytoextraction treat metal-polluted soils 
(Nayak et al., 2020; Tran et al., 2020). Although research on the combination of 
bioleaching together with phytoextraction is relatively new and scant, coupling these two 
techniques might now be a more absorb idea to maximize soil decontamination. This review 
is conducted to summarize the current knowledge about how bioleaching works together 
with phytoextraction for soil contaminated by metal pollution in terms of processes and 
problems that are investigated as well as possible directions into future research. This 
review is likely to provide new perspectives in the domain of metal-contaminated soil 
phytoremediation. 
  
2. PHYTOREMEDIATION OF METALS FROM CONTAMINATED SOIL 
 
Previous literature mentioned that phytoremediation is a modern and eco-friendly 
technology to restore soils contaminated with high levels of metals (Purwanti et al., 2019; 
Imron et al., 2021a; Al-Baldawi et al., 2021). Phytoremediation involves the mechanisms 
of accumulation of metals, in which specific species of plants may pose metal 
hyperaccumulation capabilities (hyperaccumulator species). Hyperaccumulator species 
absorb metals from the soil through their roots, transport them, and store them into their 
tissues (both below and above ground). The use of plants in treating metal-contaminated soil 
has attracted attention as an alternative approach to traditional physicochemical treatments 
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due to its cost and environmental benefits (Tangahu et al., 2019; Rahim et al., 2022). 
Physical treatment of metal contaminated soil often involve soil digging which considered 
expensive in cost. In another view, chemical treatment of metal contaminated soil require 
the addition of chemicals, which residue may left and cause further contamination.  
Several processes are involved in the phytoremediation of contaminated soils, including 
phytoextraction (the process where plants absorb and remove metals from soil) (Li et al., 
2020), phytostabilization (the process where plants prevent the spread of contaminants in 
soil by immobilizing them in their roots) (Ismail et al., 2019), rhizodegradation (the 
process where plant roots release substances that help soil microbes break down 
contaminants) (Arliyani et al., 2023), rhizofiltration (the process where plant roots absorb, 
filter, and remove contaminants, especially heavy metals) (Kadir et al., 2020), 
phytovolatilization (the process where plants take up contaminants from soil or water, 
transform them into a gas, and release them into the atmosphere through their leaves) 
(Bhandari, 2018), phytodegradation (the process where plants break down or degrade 
contaminants in soil or water through metabolic activities within their tissues) (Al-Baldawi, 
2018), and phytofiltration (the process where plants filter and remove contaminants from 
water or soil by absorbing them through their roots or shoots) (Sandhi et al., 2018). Among 
the aforementioned processes, phytostabilization (immobilization of metals in soil and plant 
root matrix) and phytoextraction (mobilization, absorption, and conversion of metals to 
aboveground plant parts) play the most important roles in the remediation process of metal-
contaminated soils (Fig. 1).   
 
3. MECHANISMS OF PHYTOREMEDIATION OF METALS CONTAMINATED SOIL 
 
To date, there are many studies analyzing the way plants absorb contaminants, including the 
involved basic processes. (Du et al., 2020) noted that plants can both store and push away 
materials. Plants that store contaminants in their above-ground parts keep living. They 
change pollutants into more stable forms within their tissues to break them down or 
transform them (Zhang et al., 2022). Plants that exclude contaminants limit how much they 
take into their living matter. 
Plants have come up with smart and useful ways to get important micronutrients from their 
surroundings even when there's not much of them around. The roots of plants can break 
down and take in micronutrients from very small amounts in the soil even from stuff that's 
hard to dissolve. They do this by making chelating agents (Diarra et al., 2021) and changing 
the pH and redox reactions. Plants use special systems to move and store these 
micronutrients (Möller and Müller, 2012). These same methods also help plants take in, 
move, and build up harmful substances that have chemical features like important nutrients. 
Because of this how plants get micronutrients plays a big role in cleaning up polluted areas 
using plants . 
The plant cell plasma membrane contains many specialized proteins and transport systems 
that have an impact on ion uptake and movement (Were et al., 2017). These include proton 
pumps that create electrochemical gradients and use energy, co- and anti transporters that 
take in ions by using the electrochemical gradients proton pumps generate, and channels 
that help ions enter the cell. All transport systems can absorb a wide range of ions. The way 
different ions interact when plants take in various heavy metal pollutants poses a key 
challenge. Moving nutrients from roots to shoots makes sense, as pulling out root biomass 
isn't practical (Reboredo et al., 2021). 
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Figure 1. An overview of phytoremediation of contaminated soil (Tangahu et al., 2011). 
 
Plants have tight control over how they take in and move substances around (Kabra et al., 
2012; Li et al., 2021). They don't store more trace elements than they need for their bodily 
functions. Most trace elements are needed at 10 to 15 ppm, which is enough for most uses 
(Tangahu et al., 2011). Some plants called "hyperaccumulators" can soak up harmful metal 
ions at levels as high as thousands of ppm (Purwanti et al., 2020b; Imron et al., 2024a). 
Another key question is how these hyperaccumulators avoid metal poisoning and how they 
keep the dangerous metal ions inside (Purwanti et al., 2018b; Ahmed et al., 2021; Ahmad 
et al., 2024). Several systems are at work, with the vacuole playing a big role in storage . 
The process of transpiration helps plants absorb nutrients and other elements from the soil 
into their roots (Bolan et al., 2011). This involves water evaporating from plant leaves. This 
mechanism of evapotranspiration also has an impact on moving contaminants into plant 
branches. Contamination moves from the roots to the shoots, which are then harvested. This 
process allows to remove of contamination while keeping the original soil intact. Plants used 
in phytoextraction methods are called accumulators (Masinire et al., 2021). These plants 
have shoot-root metal concentration ratios higher than one. Non-accumulator plants can be 
categorized based on their low shoot-root ratios (which are mostly lower than 1). There are 
also some plants resistant to certain metals which show growth in metal-contaminated soil 
but not performing any metal uptake. Hyperaccumulator species show a high shoot-root 
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ratio, able to grow in a toxic environment, and produce high biomass (Salido et al., 2003). 
Currently, only a few species are considered metal hyperaccumulator plants and research to 
identify new species is emerging.  
 
4. PHYTOEXTRACTION OF METALS FROM CONTAMINATED SOIL 

 
Phytoextraction is a unique and environmentally favorable method for remediating soil that 
has been contaminated with high levels of heavy metals. This mechanism enables plants to 
mobilize absorbed metals into their branches and leaves (Chellaiah, 2018). The process of 
metal absorption by plants is also somehow called bioconcentrating mechanisms. This 
process enables plants to accumulate metal concentrations that are significantly higher than 
those in the soil environment to which they are exposed. By performing this mechanism, the 
concentration of metals in the soil will be reduced and concentrated into the plants’ biomass. 
Metals can be eliminated further from the soil system through the periodic harvesting of 
aboveground plant parts, provided that appropriate operation and maintenance are 
implemented. The appropriate disposal and handling of harvested plant biomass are 
essential to prevent further environmental contamination, as it contains high concentrations 
of metals (Kurniawan et al., 2021). 
Phytoextraction has demonstrated numerous advantages in the context of soil remediation. 
In comparison to conventional soil excavation and chemical treatments, it is comparatively 
simple to operate, involves fewer chemicals, and is cost-effective (Alaboudi et al., 2018). It 
maintains ecosystem health and mimics natural processes, thereby reducing reliance on 
chemicals and benefiting the environment. Phytoextraction is appropriate for long-term 
remediation initiatives and can address extensive surface areas (Keller et al., 2005). In 
addition, the utilization of plants in the remediation of contaminated soil offers the additional 
advantage of creating new habitats for a variety of organisms, thereby enhancing 
biodiversity (Agarwal et al., 2018). 
The success of phytoextraction is contingent upon the identification of specific 
hyperaccumulator species that can adapt to specific living conditions, despite the substantial 
advantages of this method (Benizri et al., 2021). In addition, this approach is also perceived 
as time-consuming when contrasted with conventional pharmacological and physical 
treatments (Ali et al., 2020). However, it should be emphasized that not all plants can take 
up all metals. Also how well they work may vary depending on the metal type or quantity 
present in soil. Throwing away contaminated plant material carefully is necessary to 
overcome pollution spread and contamination of the environment (AL Falahi et al., 2022). 
Also, the soil properties and weather conditions may affect how well plants take up metals 
(Herath and Vithanage, 2015). 
However, there are times when these difficulties have been bypassed by researchers. To 
mention, such plants as Alpine pennycress also known as Thlaspi caerulescens possess high 
capabilities for accumulating zinc and cadmium (Cosio et al., 2004). Again, Indian mustard 
or Brassica juncea is effective in lead accumulation (Sut-Lohmann et al., 2023). Removal of 
arsenic from soils can be done using ferns such as Chinese brake fern whose scientific name 
is Pteris vittata (Zhao et al., 2023). Genetic engineering advancement could possibly allow 
higher metal extraction capacity by plants (Mallikarjuna and Yellamma, 2019) thus 
making them more tolerant to heavy metals or able to assimilate larger quantities of them. 
In addition, research on plant-microbe interactions might result in bioleaching 
microorganisms including microbial inoculants that promote metal uptake (Kumar and 
Gopal, 2015; Nayak et al., 2020). Knowing the challenges and the future research 
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directions, phytoextraction is a viable option for metal contaminated soil remediation with 
continuous research developments as well as technological advancements to improve its 
effectiveness and applicability (Ahmad et al., 2022a; Kurniawan et al., 2022a; 2022b).  
 
5. BIOLEACHING MICROORGANISMS ASSISTING PHYTOEXTRACTION 
 
Researchers have stated that bioleaching can assist phytoextraction in cleaning up metal-
contaminated soil (Gomes et al., 2018; Nayak et al., 2020). Bioleaching can reduce the 
severity of metal contamination in soil by dissolving stable metals in a solid matrix, allowing 
further uptake by plants (Purwanti et al., 2020b; Kurniawan et al., 2022c; Imron et al., 
2024b). Acidithiobacillus ferrooxidans and Aspergillus niger are said to be superior in 
carrying out this action because of their ability to produce organic acids, as well as other 
metabolic by-products, which dissolve metal compounds in soil (Cui et al., 2021; Giese, 
2021). Organic acids, such as citric acid, malic acid, and oxalic acid, released by 
microorganisms can assist metal uptake by plants by increasing the bioavailability of metal 
compounds, which then increases the efficiency of phytoextraction (Fig. 2). 

 

Figure 2. An overview of how bioleaching microorganisms assist the phytoremediation of 
contaminated soil (Kurniawan et al., 2022c). 

 
One important benefit of bioleaching that supports phytoextraction is its facilitation of easier 
entry to the metals (McCutcheon and Jørgensen, 2018). Microbes convert metal 
compounds into dissolvable forms hence increasing the amount of plant-available metals in 
the soil with respect to A. ferrooxidans which can oxidize iron and sulfur compounds (Valdés 
et al., 2008), thereby releasing copper, zinc, nickel among others into the soil solution. Other 
organisms such as A. niger, produce citric and oxalic acids. These acids can stick to heavy 
metals (Odoni et al., 2017) making them more soluble and easier for plants to absorb. 



Journal of Engineering, 2024, 30(11) 
 

S. B. Kurniawan  

 

7 

Acidophilic aerobic, and chemolithotrophic microbes play a key role in autotrophic 
bioleaching. These bacteria and archaea have the ability to turn inorganic sulfur compounds 
and/or ferrous ions into sulfuric acid and ferric ions (Jones and Santini, 2023). These 
substances kick off weathering processes. In autotrophic leaching, Acidithiobacillus stands 
out as the most common and well-studied bacterium. Meanwhile, Sulfolobus spp. take the 
spotlight as the best-known autotrophic archaea in metal leaching. You'll often find these 
microbes in acidic, sulfide-rich spots. They have a knack for converting carbon through the 
Benson-Calvin cycle (Ayangbenro et al., 2018). 
Experts group autotrophic bioleaching processes into two types: contact and non-contact 
bioleaching. These labels have replaced "direct" and "indirect" leaching, as scientists haven't 
proven that metal sulfides and attached cells transfer electrons (Gavrilescu, 2022). In non-
contact bioleaching, microbes produce substances that dissolve metals. Contact bioleaching 
requires microbes to stick to sulfide mineral surfaces. This means they need to stay close and 
connected. Bacterial cells attach to metal particles often within minutes or hours. A. 
ferrooxidans make sticky substances that cover metal particles. These substances contain 
complex iron ions that help break down sulfide minerals. This works like the free-floating 
iron ions in non-contact bioleaching (Sarkodie et al., 2022). Some experts suggest a third 
method cooperative bioleaching, to explain situations where both contact and non-contact 
bioleaching happen together. Autotrophic bioleaching involves microbes interacting with 
metal compounds through biological and chemical oxidation (Purwanti et al., 2023; Al-
Ajalin et al., 2024). So, in real situations, people should speed up whichever method they're 
using (contact or non-contact bioleaching) based on what materials they need to leach. 
Heterotrophic leaching has an impact on the extraction of metals from metal-containing 
materials. This process uses heterotrophic microorganisms to produce organic acids or 
complexing agents. Many bacteria, fungi, and yeast play a role in heterotrophic bioleaching. 
The main difference between autotrophic and heterotrophic bioleaching lies in the need for 
organic resources to grow heterotrophic organisms. Researchers have studied Penicillium 
spp. and Aspergillus spp. to explore their use in bioleaching (Sarkodie et al., 2022). The most 
common heterotrophic bacteria used in this process are Bacillus spp. and Pseudomonas spp.  
Heterotrophic bioleaching is considered to be less competitive as compared to autotrophic 
due to the generation of common chelating (leaching) agents by heterotrophic leaching 
microorganisms e.g., organic ligands, including succinate, citrate, malonate, and oxalate. In 
addition to that, heterotrophic leaching is also considered superior in extracting metals from 
non-sulfide compounds (Sarkodie et al., 2022). 
The rhizosphere environment can be altered by bioleaching organisms, which in turn 
influences root assimilation (Niu et al., 2021). The release of organic acids and other by-
products by bioleaching organisms and plants results in a synergistic action that alter the 
redox conditions in the rhizosphere, thereby increasing the bioavailability of metals in the 
soil matrix and enabling plant roots to assimilate them more efficiently. A slightly more acidic 
condition is preferred by microorganisms to boost their metabolic activities, while also 
benefiting the plants due to the increased metal bioavailability. In an alternative perspective, 
plants also emit chemicals known as exudates, which aid in the proliferation of rhizosphere 
microorganisms. The secretion of exudates, which contain natural bioactive compounds, by 
plants also called as phytostimulation mechanism. This collaboration has the potential to 
lead to a more efficient and effective remediation of metal-contaminated soils (Zahoor et al., 
2017; Hawrot-Paw et al., 2019). The presence of bioleaching organisms can increase the 
time required for phytoextraction, thereby facilitating a more efficient soil remediation 
process (McCutcheon and Jørgensen, 2018). 
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Although the integration of phytoextraction and bioleaching appears to be promising, it 
continues to encounter numerous obstacles. The current research should concentrate on the 
identification and enhancement of specific microbial strains that are most effective in 
solubilizing specific metals while coexisting with hyperaccumulator plants (Briffa et al., 
2020). Optimizing the amount of microorganisms to be introduced to the soil ecosystem for 
bioleaching needs to be carefully conducted and monitored. The long-term effects of 
bioleaching microorganisms and their processes on soil health and microbe ecosystems need 
to be investigated to avoid unwanted effects on the soil ecosystem (Pande et al., 2022). Most 
improbably, several laboratory studies already demonstrated successful application, while 
field or even real-scale application is currently still limited and not without its challenges 
(Kurniawan et al., 2020; Ahmad et al., 2022b; Sohaimi et al., 2024). 
In conclusion, the efficacy of metal removal from contaminated soils is influenced by the 
combination of bioleaching and phytoextraction. Some species that may be suitable for 
bioleaching are listed in Table 1. Based on Table 1, it is worth to mention that some species 
e.g., Acidithiobacillus thiooxidans, Aspergillus sp. and Aspergillus niger achieved >99% 
bioleaching efficiencies. Among several mentioned metals, Zn showed to be the most 
targeted metal for bioleaching, followed by Cu, Pb, and Cd.  

Table 1. Bioleaching microorganisms with the potential to assist phytoremediation of metals 
contaminated soil. 

 
Species Target 

metal 
Bioleaching 

efficiency (%) 
Reference 

Acidithiobacillus ferrooxidans Cu 
Cr 
Mn 
Sb 
Zn 

36 
65 
95 
2 

34 

(Nguyen et al., 2015) 

Acidithiobacillus ferrooxidans 
Acidithiobacillus thiooxidans 

Fe 
Zn 

36 
70 

(Diaz et al., 2015) 

Acidithiobacillus ferrooxidans 
Acidithiobacillus thiooxidans 

 

Cu 
Cr 
Pb 
Zn 

>80 
>80 
63 

>80 

(Akinci and Guven, 2011) 

Acidithiobacillus sp. Cd 
Cu 
Zn 

79 
89 
98 

(Fang et al., 2013) 

Acidithiobacillus thiooxidans Cd 
Cu 
Cr 
Pb 
Zn 

86-99 
86-99 
86-99 
59-66 
86-99 

(Nareshkumar et al., 
2008) 

Acidithiobacillus thiooxidans Cd 
Cu 
Cr 
Pb 
Zn 

90 
95 
90 
73 
98 

(Kumar and 
Nagendran, 2007) 

Acidithiobacillus. thiooxidans CGMCC 
2760 

Cu 
Cr 
Zn 

63 
29 
78 

(Fang et al., 2011) 

Aspergillus flavus Cd 
Pb 
Zn 

39 
18 
58 

(Qayyum et al., 2019) 
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Species Target 
metal 

Bioleaching 
efficiency (%) 

Reference 

Aspergillus flavus M7 
Aspergillus fumigatus M3 

Aspergillus niger M1 
Aspergillus terreus M6 

Hg 
Pb 

Up to 96 
Up to 99 

(Khan et al., 2019b) 

Aspergillus fumigatus Cd 
Cr 

79 
69 

(Khan et al., 2019a) 

Aspergillus niger Cd 
Cr 

98 
43 

(Khan et al., 2019a) 

Aspergillus niger F2 Cd 
Cu 
Pb 
Zn 

38 
53 

100 
74 

(Xinhui et al., 2019) 

Aspergillus niger strain SY1 Cd 
Cu 
Pb 
Zn 

90 
60 
30 
60 

(Zeng et al., 2015) 

Bacillus sp. B2 
Geotrichum sp. G1 

Cr 94 (Qu et al., 2018) 

Burkholderia sp. As 
Cd 
Cu 
Mn 
Pb 
Zn 

31 
37 
24 
52 
32 
44 

(Yang et al., 2016) 

Herbaspirillum sp. GW103 Cu 66 (Govarthanan et al., 
2014) 

Penicillium chrysogenum Cd 
Cu 
Pb 
Zn 

50 
35 
9 

40 

(Deng et al., 2012) 

Penicillium rubens Cr 98 (Khan et al., 2019a) 
Shewanella putrefaciens As 57 (Tran et al., 2020) 

Sulfobacillus thermosulfidooxidans 
Acidithiobacillus caldus 

As 
Cd 
Cu 
Hg 
Mn 
Pb 
Zn 

45 
89 
94 
34 
95 
22 
98 

(Gan et al., 2015) 

 
6. CONCLUSIONS 
 

Phytoremediation, specifically phytoextraction, is a promising and eco-friendly method for 
removing heavy metals from soils. Thlaspi caerulescens showed a high phytoextraction 
capability of cadmium and zinc, Brassica juncea showed a good lead accumulation, while 
Pteris vittata capable of extracting arsenic from soil. Bioleaching, a method using 
microorganisms to dissolve metals, can enhance phytoextraction by increasing metal 
accessibility. Advancements in research and technology are expected to improve its 
efficiency and effectiveness. Bioleaching improves root absorption by modifying the 
rhizosphere due to the release of organic acids and some functional by-products, enhancing 
metal availability to plants. Several species, such as Acidithiobacillus ferrooxidans, 
Acidithiobacillus thiooxidans, and Aspergillus niger, were known to have good bioleaching 
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capabilities. While bioleaching and phytoextraction can improve soil pollution remediation, 
further research is needed to identify potential microbial strains, monitor the soil health 
impacts, regulate microorganism introduction, and scale up from a successful laboratory 
story to real-field application. 
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 ، ماليزيا 21300معهد بحوث البيئة الساحلية، حرم غونغ باداك، جامعة سلطان زين العابدين، كوالا ترينجانو  2
 

 الخلاصة
الأنشطططططططططططططططة البشططططططططططططططرية مة، الدعدين، العملياإ التططططططططططططططنااية، وثدارة الن الاإ مل  تلوث الدر ة بالمعادن الة يلة مة، الكروم،  تؤدي  

والكادميوم، والزئبق، والرصطططاو، والزرنيتت تدسطططبا ملو الملو اإ اي للإطططرار لننسطططان والأنامة البيئية الدي توجد ايهات من بين 
ا لدنايل الدر ة الملو ة   جميع الد نياإ المسططططططططططدادمة سططططططططططاب  ا، تعدبر ت نية معالجة النباتاإ )ال يدوري ميدلاشططططططططططن  مي الألةر وعد 

بالمعادن الة يلةت تشطططططططير ال يدوري ميدلاشطططططططن مل  ت نية تسطططططططدادم ايها النباتاإ جلورما لامدتطططططططاو وتازين وتةبي  الملو اإ اي  
ات الدحل، الحيوي مو طري ة تسدادم ال كائناإ الدقي ة للو ان المعادن، وقد  ب  لنها تسه، عملية اسداراج الدر ة، مع مزالدها للض 

المعطادن من لالا  زيطادة توار المعطادنت من المدوقع لن تسططططططططططططططهم الد طدمطاإ البحةيطة والابدكطاراإ الدكنولوجيطة اي جعط، مطلو العمليطة  
، منط ة الجلور، مما لجعلها للةر للةر ك اءة وملاءمةت يدم زيادة امدتطططططططاو الجلور من لالا  الدحل، الحيوي عن طريق تعدي

تواارا  للنباتاإت ل بد  الد اعلاإ بين النباتاإ والبكديريا لنها تسطططططططططططرا من معدلاإ المعالجةت لمكن لن تسطططططططططططاعد كلا العمليدين اي  
دقي ة،  مزالة الملو اإ من بيئة الدر ةت ومع ذلك، مناك حاجة مل  مزيد من البحث للعةور عل  لاضططططططططط، سطططططططططلالاإ من الكائناإ ال

وت ييم الدأ يراإ طويلة الأمد عل  الدر ة، والدحكم اي تدا اإ البكديريا الكبيرةت يوار الجمع بين الدحل، الحيوي واسداراج المعادن  
 .ناام ا مو وق ا واعالا  لإزالة المعادن من الدر ة الملو ة
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