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ABSTRACT 

Since the coverage of millimeter waves (mmWave) is limited due to high path loss and 

blockage, it is deployed in small cells. This dense deployment of base stations and access 
points resulted in significant interference. Therefore, interference mitigation is the main 
challenge in designing the new millimeter-wave communication technologies in the existing 
5G system. Therefore, in this paper, a two-tier Heterogeneous Cloud Radio Access Network 
model is presented, which performs a technique inspired by soft frequency reuse (SFR) to 
mitigate interference. The cellular service region is divided into two sub-regions, center 
region is served by conventional macro base stations, which operate in the sub-6 GHz 
frequency band, while the edge area is served by Remote Radio Heads (RRHs), which operate 
in the millimeter-wave frequency band to avoid interference between tiers. User-RRH 
associations are introduced to mitigate interference between small RRHs and maximize 
network throughput using an Online Multi-Agent Q-Learning (MAQL). The proposed MAQL 
solution, based on the least path loss as a basic criterion for User-RRH association, 
outperforms in average network throughput per user a previous study based on average 
SINR as a basic criterion for association for two types of RRHs deployment scenarios in the 
heterogeneous network approximately by 66.4% and 21%, respectively, at the lowest 
number of users. The difference gradually decreases with the increasing user numbers until 
it reaches 8.7% and 9.8%, respectively. Even though the gap between throughput 
performance narrows as user density increases, the proposed method consistently 
outperforms the alternative strategy, indicating its ability to adapt and manage network 
resources more effectively even under higher traffic loads. 
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1. NTRODUCTION 
 

The fast progress of communication technologies, in the latest years, has influenced 
significant hurdles in 5G networks. These hurdles come from the rise in mobile data usage 
due to the adoption of various personal computing devices like laptops, smartphones, and 
smart wearables along with a multitude of data-intensive mobile applications. This increase 
in demand is anticipated to push systems to their limits (Fakhri et al., 2019). To meet this 
escalating need, millimeter Wave (mmWave) technology offers a solution for addressing 
capacity constraints (Akdeniz et al., 2014; Wang et al., 2019). A key advantage of 
mmWave is its bandwidth compared to sub-6 GHz frequencies, which can greatly enhance 
network capacity. Operating within the 30 to 300 GHz range mmWave is positioned to play 
a role as a technology of choice. However, these frequencies have a limited range (Dehos et 
al., 2014). May experience performance issues due to obstacles and significant signal losses 
(Fang et al., 2021; Banar et al., 2022). In this context, cloud radio access network (C-RAN) 
(Luo et al., 2020; Kai et al., 2021) appears as a favorable new infrastructure that objectives 
to enhance the use of mmWave spectrums and improve performance in 5G networks and 
future wireless systems (Pompili et al., 2015; Hajisami and Pompili, 2018). BBU and RRH 
are the two main components that make up a CRAN. BBUs are placed in the cloud as clusters 
in the BBU Pool, which has all information about the network, whereas all RRHs are 
distributed in the network over multiple sites, which are connected to the BBUs through 
wireless links or fiber optic cables based on the network requirements (Kolawole et al., 
2018; Obi et al., 2023). Periodically, based on reports received from users through 
associated RRHs network information is updated to the controller in the BBU pool, including 
location coordinates and coverage areas of all known RRHs to the controller, who then runs 
algorithms for handover and engagement decisions, which are then transmitted to the RRHs. 
As a result, C-RAN is considered a cost-effective solution for network densification, reducing 
resource consumption, and managing future communication network interruptions (Taleb 
et al., 2018). In the initial deployment of mmWave cellular communications, especially in 
dense urban environments, Heterogeneous Cloud Radio Access Networks (HC-RANs) prove 
highly effective in enhancing network performance. This is achieved through the 
deployment of ultra-dense mmWave small base stations (SBSs) coexisting with conventional 
macro base stations (MBSs) within a multi-band heterogeneous network architecture 
(Fakhri et al., 2019). Despite these advantages, HC-RN switching is expensive and presents 
serious challenges. These include the integration of technology models and the gradual 
implementation of heterogeneous network architecture. Furthermore, the high frequency 
and the unique propagation characteristics of mmWave signals result in unprecedentedly 
large intercellular interference (Noor and Omran, 2018), especially at the cell edges. 
Therefore, developing effective interference management strategies is crucial and remains 
a hot research topic (Trabelsi et al., 2024).  The rapid development of technology in recent 
years has been accompanied by a rapid expansion of machine learning (ML) applications in 
numerous studies in all fields (Al-Araji and Al-Zangana, 2019; Mohammed and Hussein, 
2022; Abdulrezzak and Sabir, 2023) especially in wireless networks. This growth has 
been mainly driven by ML (Haidine et al., 2021). Machine learning has become an integral 
part of 5G networks and is expected to be a key driver of future mobile and 6G technologies 
(Nguyen et al., 2021).  
The contributions of this paper are outlined as follows: 
• Representation and Evaluation:  present, verify, and evaluate a two-tier HC-RAN system 

based on various performance criteria, considering actual network load and deployment 
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scenarios. By using different frequency ranges for each tier, aiming to mitigate 
interference and improve rate and coverage, not only at the cell edges but throughout the 
entire cell area. 

• Interference Mitigation: address inter-RRHs interference for the association between User 
and RRH. Specifically, by employing an online Multi-Agent-Q-Learning (MAQL) algorithm 
to improve network throughput, thereby improving the Quality of Service (QoS) for end 
users and boosting overall network performance. 

In communication networks, researchers have explored interference mitigation strategies 
and the application of machine learning techniques, some of which are highlighted. In (Wang 
et al., 2019), the authors studied coverage in multi-tier downlink mmWave HC-RAN with 
user-centric smallcell deployments, in order to enhance user connectivity and its 
performance by focusing on techniques of interference mitigation, as well as taking into 
consideration user and base station location associations, and mmWave communication 
characteristics. Their results refer that when set the transmitted power of macro base 
stations (MBSs) whereas the transmitted power of small cell base stations increases, 
improving coverage probability. To improve data rates in large cell areas leverage mmWave 
spectrum the authors (Fakhri et al., 2019) proposed approach based on soft frequency 
reuse (SFR) for the  interference mitigation between MBSs, the cellular service region is 
divided into two sub-regions, each of tier is operated by distinct frequency range in order to 
prevent cross-tier interference. The center region is served by conventional MBSs which 
operate in the sub-6 GHz frequency band, while the edge area is served by Remote Radio 
Heads (RRH), which operate in the millimeter-wave frequency band. Thus, this model 
targets the entire cell area. Using stochastic geometry techniques in 5G, the authors (Fang 
et al., 2021) assessed the performance of two-tier heterogeneous networks by taking into 
account various biases, which can help in improving load distribution across tiers; they get 
a formula for cell association probabilities. In addition to mitigating interference and 
forming an association with users, they proposed a method based on the least path loss as 
criteria. Based on machine learning, the authors (Elsayed et al., 2020), mitigate 
interference in mmWave 5G networks. The aim of their approach is optimizing resource 
allocation and user-cell association to enhance the network's overall sum rate by 
implementing an algorithm designed to manage power distribution between packets and 
user-cell associations by generating a priority list of 5G-NodeBs, often referred to as gNBs in 
5G networks, are the next generation of base stations in the 5G architecture, organized 
according to average SINR.  
In (Cheng et al., 2021) they propose a learning-based interference management mechanism 
for smallcells, combining hybrid affinity propagation clustering and reinforcement learning 
in power control. by identifying and deactivating the most interfering aerial small cells, 
simplifying the interference structure and accelerating the learning process. A proposal for 
a mmWave C-RAN for 5G was introduced by (Banar et al., 2022), the study evaluated the 
performance of mmWave by comparing RRH association methods for half-duplex and full-
duplex configurations, with a focus on the interference. The evaluation took into 
consideration factors such as path loss, obstructions, directivity of fronthaul and access 
links, and the characteristics of the mmWave channel.  Within the framework of interference 
mitigation between dense small cells and to minimize call blocking and solve load balancing 
issues,  optimizing performance for each user, the authors (Suresh et al., 2022) suggested 
a cat swarm optimization algorithm to find the optimal RRH configuration across the 
network. A novel strategy called Multi-Agent Context Learning addressed by the authors 
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(Kose et al., 2024) to manage interference and allocate mmWave beams, maintain low 
interference levels even during heavy traffic by utilizing Contextual Bandit techniques, the 
agent of machine learning could identify and avoid interference with other transmissions 
based on understanding the status of neighboring beams as criteria. For the purpose of 
interference mitigation in this paper, we adopted a strategy that improves user-RRH 
association to maximize network throughput for mmWave RRH by applying an online 
(MAQL) algorithm to form associations with users in mmWave communications in 5G 
networks. 
 
2. SYSTEM MODEL 

 

2.1 Network Deployment 

The proposed model is a two-tier HC-RAN deployed in ultra-dense networks. The first tier 
consists of high-power macrocells arranged in a hexagonal grid and served by MBS, which 
provide good coverage and support for high mobility and a responsible for ensuring 
essential connectivity over a wide area as well as serving users at greater distances, which 
are positioned at higher altitudes and supplied with greater transmission power. The second 
tier is comprised of low-power small cells served by mmWave RRHs to enhance capacity and 
coverage in smaller, densely populated regions, enhancing network performance in hotspots 
with high user density. Typically, RRHs are deployed at lower altitudes, such as rooftops or 
street elements, and have lower transmission capacities compared to MBSs, RRHs are 
organized into clusters, where each cluster consists of several geographically adjacent 
RRHs. Typically, RRHs are distributed within macrocells to cover the whole cell region 
(Fakhri et al., 2019). To avoid the frequent handovers and mmWave channel blockages 
in C-RAN, the BBUs are separated from the RRHs, which are consolidated into a centralized 
BBU pool controller. The management and coordination are designed between tiers to 
efficiently spread network traffic between MBSs and RRHs to prevent congestion and 
optimize resource utilization. This involves the challenge of choosing which users should 
be served by MBSs or RRHs depending on factors such as capacity, user demand, and signal 
quality. These procedures are handled within the BBU pool, where smallcells (RRHs) of 
mmWave HC-RANs are accessed via fronthaul links. In addition, by using backhaul links 
and control interfaces, MBSs associated with BBU pool, according to 3GPP specifications  
(Khan et al., 2018; Rodoshi et al., 2020). The complication of the proposed model 
produces several types of interference, including interference between MBSs, interference 
between MBSs and smallcell RRHs, and interference among the smallcell RRHs themselves. 
The suggested paradigm uses the SFR method (Fakhri et al., 2019; yağcıoğlu, 2022) to 
mitigate interference between MBSs. The cellular serving area is divided into two regions, 
each operating on a distinct frequency spectrum to avoid cross-tier interference. The 
center region is served by MBSs operating in the sub-6 GHz frequency spectrum, while the 
edge area is served by RRHs operating in the mmWave frequency spectrum (Fang et al., 
2021). This method improves overall cell coverage, interference mitigation, and user 
throughput, the suggested network architecture illustrated in Fig. 1. On the other hand, 
the Inter-RRH interference among mmWave smallcells will be addressed in the proposed 
algorithm. 
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Figure 1. The proposed HC-RAN Network. 

2.2 Channel and Path Loss Model 

This paper takes into consideration a channel model appropriate for a two-tier downlink 
heterogeneous wireless network. This model considers the characteristics of mmWave 
frequencies, making it multilateral for use in various 5G network scenarios, which is 
essential for enhancing the capacity and coverage of mmWave systems. It includes two 
sub-models (TSGR, 2022): an Urban Macro (UMa) channel model for an MBS hexagonal 
grid with an antenna in the center of each MBS that operates in sub-6 GHz, which 
represents the first tier of the network. The second type of channel is an Urban Micro Street 
Canyon (UMi) for mmWave RRHs, which represents the second tier of network that 
overlaid each MBS to cover the cellular edge area. While users are distributed using 
uniform random distribution across the network. Users close to cell boundaries experience 
boundary effects, represented by interference between mmWave smallcells (Mohammed 
and Almamori, 2024). In the first tier of the network, which is represented by macrocells, 
there is  interference power received by the user k from all other macrocells, except the 
macrocells that served the same user k, and the equation of  signal-to-interference plus 
noise ratio (SINR) is formulated as follows (Fakhri et al., 2019; Fang et al., 2021): 
 

𝑆𝐼𝑁𝑅𝑘𝑚
=

𝑃𝑚𝑖 .𝐺𝑘𝑚𝑖
 

  ∑ 𝑃𝑚𝑖 .𝐺𝑘𝑚𝑗
𝑗∈𝑀,𝑗≠𝑖 + 𝜎𝑚

2                                                                                                              (1) 

Where pointing out the usage of "i" indicates the serving MBS for user k, while "j" indicates 
to other MBSs, 𝜎𝑚

2  is the noise power, 𝑃𝑚𝑖  is the downlink transmited powers of MBS, and 

𝐺𝑘𝑚𝑗
is a combination channel gain, which composed of channel fading and path loss, which 

is given as follows: 
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𝐺𝑘𝑚𝑖
=  𝑔𝑚𝑖

 𝑠𝑚𝑖
 𝑙𝑚𝑖

 𝑃𝐿𝑚 
−1(𝑑𝑚)                                                                                                              (2) 

 

Where 𝑔𝑚𝑖
 is the antenna gain of MBS, 𝑠𝑚𝑖

 represents small scale fading channel, which is 

supposed as Rayleigh random variable, 𝑙𝑚𝑖
 the large scale channel fading, which is 

supposed as lognormal shadowing (Andrews et al., 2016), and  𝑃𝐿𝑚 (𝑑𝑚) denote the UMa 
path loss  for k user linking to a MBS from 3GPP TR 38.901(Zhu et al., 2021; TSGR, 2022), 
given for LOS and NLOS cases as follow: 
 

𝑃𝐿𝑚𝐿𝑂𝑆(𝑑𝑚) = {
𝑃𝐿𝑚1 , 𝑓𝑜𝑟 10𝑚 ≤ 𝑑𝑒𝑚 ≤ 𝑑𝐵𝑃𝑚

𝑃𝐿𝑚2  , 𝑓𝑜𝑟  𝑑𝐵𝑃𝑚 ≤ 𝑑𝑒𝑚 ≤ 5𝑘𝑚
                                                                           (3) 

                                                                                                                

𝑃𝐿𝑚𝑁𝐿𝑂𝑆(𝑑𝑚) = 𝑚𝑎𝑥 (𝑃𝐿𝑚𝐿𝑂𝑆(𝑑𝑚), 𝑃𝐿𝑚
̀ (𝑑𝑚)) , 𝑓𝑜𝑟10𝑚 ≤ 𝑑𝑒𝑚 ≤ 5𝑘                                      (4) 

 
Where:  
 
𝑃𝐿𝑚1 = 28 + 20 𝑙𝑜𝑔10(𝑓𝑐𝑚) + 22 𝑙𝑜𝑔10(𝑑𝑚)                                                                                    (5) 
                                                                                      
𝑃𝐿𝑚2 = 28 + 20 𝑙𝑜𝑔10(𝑓𝑐𝑚) + 40 𝑙𝑜𝑔10(𝑑𝑚) − 0.6 𝑙𝑜𝑔10(ℎ𝑘 − 1.5)                                           (6) 
                                               
𝑃𝐿𝑚

̀ (𝑑𝑚) = 13.54 + 20 𝑙𝑜𝑔10(𝑓𝑐𝑚) + 39.08 𝑙𝑜𝑔10(𝑑𝑚) − 0.6 𝑙𝑜𝑔10(ℎ𝑘 − 1.5)                        (7)  
 

𝑑𝑚 = √𝑑𝑒𝑚
2 + (ℎ𝑀𝐵𝑆−ℎ𝑘)2                                                                                                                   (8)               

 
where 𝑑𝑚 and 𝑑𝑒𝑚 are the 3 slope distance and Euclidian distance between a MBS and user, 
respectively. 𝑑𝐵𝑃𝑚 is Breakpoint distance, given as: 
 

𝑑𝐵𝑃𝑚 =
4ℎ𝑀𝐵𝑆

`  ℎ𝑘
`  𝑓𝑐𝑚 

𝑐
                                                                                                                              (9) 

 

where𝑓𝑐𝑚 is the carrier frequency of MBSs and c is the speed of light,  ℎ𝑀𝐵𝑆
` = ℎ𝑀𝐵𝑆−ℎ𝐸 , and 

ℎ𝑘
`  = ℎ𝑘 − ℎ𝐸 , are the effective heights of the antenna at the MBS and user, respectively, 

ℎ𝑀𝐵𝑆  and ℎ𝑘  are the actual heights of the antenna, and ℎ𝐸  is the effective height of the 
environment. 
 ∑ 𝑃𝑚𝑖 . 𝐺𝑘𝑚𝑗

𝑗∈𝑀,𝑗≠𝑖 indicates the interference power received from other MBSs. 

In the second tier of network which is represented by RRHs. The dense deployment of 
RRHs may result in an inter-RRH interference power received by the user k from all other 
RRHs, with the exception of the RRH that served the user k, therefore SINR formulates as 
follows (Fakhri et al., 2019; Fang et al., 2021): 
 

𝑆𝐼𝑁𝑅𝑘𝑟
=

𝑃𝑟𝑖 . 𝐺𝑘𝑟𝑖

  ∑ 𝑃𝑟𝑗 . 𝐺𝑘𝑟𝑗
𝑗∈𝑅,𝑗≠𝑖 + 𝜎𝑟

2                                                                                                                         (10)                                                                      

where pointing out the usage of "i" indicates the serving RRH for user k, while "j" indicates 
other RRHs, 𝜎𝑟

2 is the noise power, 𝑃𝑟 is the downlink transmit powers of RRHs and   𝐺𝑘𝑟𝑖
 is 

a combination channel gain, which is composed of channel fading and path loss, which is 
given as follows: 
 
𝐺𝑘𝑟𝑖

= 𝑔𝑟𝑖
𝑠𝑟𝑖

 𝑙𝑟𝑖
 𝑃𝐿𝑟 

−1(𝑑𝑟)                                                                                                                               (11)  
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where 𝑔𝑟𝑖
 is the antenna gain of RRH, 𝑠𝑟𝑖

represents small scale fading channel, which is 

supposed as a Nakagami with normalized gamma distribution (Simon and Alouini, 2005), 
𝑙𝑟𝑖

  is large-scale fading channel, which is supposed to lognormal shadowing (Andrews et 

al., 2016), and𝑃𝐿𝑟(𝑑𝑟) denote the UMi path loss for user k linking to an RRH from 3GPP 
TR 38.901 (TSGR, 2022), given for LOS and NLOS cases as follows: 
 

𝑃𝐿𝑟𝐿𝑂𝑆(𝑑𝑟) = {
𝑃𝐿𝑟1, 𝑓𝑜𝑟 10𝑚 ≤ 𝑑𝑒𝑟 ≤ 𝑑𝐵𝑃𝑚

𝑃𝐿𝑟2 , 𝑓𝑜𝑟  𝑑𝐵𝑃𝑚 ≤ 𝑑𝑒𝑟 ≤ 5𝑘𝑚
                                                                                                     (12) 

 

𝑃𝐿𝑟𝑁𝐿𝑂𝑆(𝑑𝑟) = 𝑚𝑎𝑥 (𝑃𝐿𝑟𝐿𝑂𝑆(𝑑𝑟), 𝑃𝐿𝑟
` (𝑑𝑟)) , 𝑓𝑜𝑟10𝑚 ≤ 𝑑𝑒𝑟 ≤ 5𝑘𝑚                                         (13) 

                                            
where: 
 

𝑃𝐿𝑟1 = 32.4 + 20 𝑙𝑜𝑔10(𝑓𝑐𝑟) + 31.9 𝑙𝑜𝑔10(𝑑𝑟)                                                                                 (14)  
                                                                                                                             
𝑃𝐿𝑟2 = 32.4 + 20 𝑙𝑜𝑔10(𝑓𝑐𝑟) + 40 𝑙𝑜𝑔10(𝑑𝑟) − 9.5 𝑙𝑜𝑔10(𝑑𝐵𝑃𝑟

2 + (ℎ𝑅𝑅𝐻−ℎ𝑘)2)                 (15) 
  
𝑃𝐿𝑟

` (𝑑𝑟) = 22.4 + 21.3 𝑙𝑜𝑔10(𝑓𝑐𝑟) + 35.3 𝑙𝑜𝑔10(𝑑𝑟) − 0.3 𝑙𝑜𝑔10(ℎ𝑘 − 1.5)                       (16) 
 

   𝑑𝑟 = √𝑑𝑒𝑟
2 + (ℎ𝑅𝑅𝐻 − ℎ𝑘)2                                                                                                              (17) 

 
where 𝑑𝑟 and 𝑑𝑒𝑟 are the 3 slope distance and Euclidian distance between RRH and user, 
respectively. 𝑑𝐵𝑃𝑟 is Breakpoint distance, given as: 
 

𝑑𝐵𝑃𝑟 =
4ℎ𝑅𝑅𝐻

`  ℎ𝑘
`  𝑓𝑐𝑟 

𝑐
                                                                                                                                     (18) 

 
where𝑓𝑐𝑟 is the carrier frequency of RRHs and c is the speed of light,  ℎ𝑅𝑅𝐻

` = ℎ𝑅𝑅𝐻−ℎ𝐸 , and 

ℎ𝑘
`  = ℎ𝑈 − ℎ𝐸 , represent effective heights of antenna at RRH and user, respectively, ℎ𝑅𝑅𝐻 

represents the actual heights of antenna. ∑ 𝑃𝑟𝑗 .  𝐺𝑘𝑟𝑗
𝑗∈𝑅,𝑗≠𝑖  indicates the interference power 

received from all other RRHs. 
 
3. FORMULATION THE PROPOSED MACHINE LEARNING 

 

3.1 Overview on Q-learning 
 

Q-learning is a form of reinforcement learning where an agent interacts with an 
environment in order to achieve a specific objective. The agent learns about the 
environment's dynamics through trial and error. It receives feedback in the form of 
rewards or penalties as it acts, which also results in changes to the environment's state, as 
shown in Fig. 2. This interaction may be formalized like the Markov Decision Process 
(MDP) (Watkins and Dayan, 1992; Elsayed et al., 2020), characterized by a group 
consisting of reward function,  actions, states, and agents. The main goal of the agent is to 
optimize the overall projected rewards over time, adjusted for future discounting.  
To accomplish this,  the agent discovers an optimal policy that dictates the best action to 
take in each state, which is achieved through an action-value function that assesses the 
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potential value of different actions (Jang et al., 2019). This is achieved through the 
application function of action-value, which is expressed as: 
 
𝑄(𝑠, 𝑎) = 𝔼[𝑅 + 𝛾 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′)|𝑠, 𝑎]                                                                                          (19) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Diagram of Q-learning operation. 
 

The function 𝑄(𝑠, 𝑎) is the action-value function, i.e. Q-value, representing the expected 
return or utility of taking action in state s and adopting the optimal policy afterwards, R 
denotes to reward value obtained after taking action an in-state 𝑠, while γ represents the 
factor of discount, which influences the significance of future rewards (0 ≤ γ ≤ 1), whereas 
𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′) represents the highest expected future reward for the next state 𝑠′ across 
all feasible actions a′. In practice, the Q-learning algorithm updates the Q-values using the 
following update rule: 
 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 [𝑅 + 𝛾 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)]                                                           (20) 
 

where α is the learning rate (0 < α ≤ 1), controlling how much new information overrides 
the old value. In this work we introduced the proposed Q-learning algorithm designed to 
optimize user-RRH association in order to maximize the network's throughput. 
 
3.2 Optimization Problem Formulation 

 

Since each tier works at a distinct frequency band, as explained in the above Eq. (1) and 
Eq. (10), the proposed network does not suffer cross-tier interference, and it also does not 
suffer inter-cell interference between macrocells in the first tier because the use of the SFR 
method. In this case, the interference is only between the mmWave RRHs. The BBU pool 
controller maintains network comprehensive information. This information is updated 
regularly using reports from users across the associated RRHs. The controller has access 
to the position coordinates and coverage region of all RRHs. It is responsible for 
implementing the algorithms that manage handover and link decisions, which are 
subsequently communicated to the RRHs. Assume there are K number of users and 𝑅 
number of RRHs. The average throughput of a user, denoted by 𝑇ℎ𝑘,𝑟, is dependent on 
resource availability and, as a result, is dependent on resource allocation among users 
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attached to the same BBU in the network. Hence, assuming a full traffic model and a fair 
model of resource sharing, the average throughput attained by user k, who is associated 
with RRH 𝑟 and allocated to BBU s, is expressed as follows (Taleb et al., 2020): 
 

𝑇ℎ𝑘,𝑟 =
𝑇𝑘,𝑟

𝑘𝑟
                                                                                                                                                           (21)    

                                                                                                                   
where 𝑇𝑘,𝑟 is the peak throughput which is calculated by the Shannon formula: 
 

𝑇𝑘,𝑟 = 𝑊𝑟  𝑙𝑜𝑔2(1 +  𝑆𝐼𝑁𝑅𝑘,𝑟)                                                                                                            (22)   
                                                                                                 
where 𝑘𝑟 indicates the number of users that sharing the RRH r radio resource, as follows: 
 

𝑘𝑟 = ∑ 𝑋𝑘,𝑟𝑟∈𝑅                                                                                                                                          (23)    
  
The optimization problem (TH) aims to mitigate interference by finding the user k 
associated with suitable RRH 𝑟 to maximize the total user throughput in the network which 
depends on Eq. (21) and Eq. (22), is expressed as follows: 
 

𝑚𝑎𝑥 (𝑇𝐻)  = ∑ ∑ 𝑋𝑘,𝑟  𝑇ℎ𝑘,𝑟𝑘∈𝐾𝑟∈𝑅                                                                                                     (24)    
 
where𝑋𝑘,𝑟 is the complexity solution matrix to make the decision about which User-RRH 
association solution is the best, and subject to the following constraints: 
 

∑ 𝑋𝑘,𝑟  𝑟∈𝑅 ≤ 1 , ∀𝑘 ∈ 𝐾                                                                                                                     (25) 

                                                                                                                             
𝑋𝑘,𝑟  ≤ 𝑡𝑟 , ∀𝑟 ∈ 𝐾 × 𝑅                                                                                                                         (26)     
                                                                                                                      
𝑋𝑘,𝑟 , 𝑡𝑟 ∈ {0,1}, ∀(𝑘, 𝑟)                                                                                                                             (27)    
                                                                                                        
The constraint in Eq. (25) refers that every user k in the network can at most be associated 
to a single RRH r. The constraint in Eq. (26) illustrates that each RRH 𝑟 is activated only 
when it is connected with one user k at least. The constraint in Eq. (27) show that the 
variables 𝑋𝑘,𝑟 , 𝑡𝑟  are binary decisions. We adopted a User-RRH association strategy 
suitable for mmWave communications in 5G HC-RAN network to eliminate inter-RRH 
interference in a way that maximizes the overall throughput of the network achieved by 
the user. In order to solve the problem, the User-RRH association is solved by using the 
Proposed Q-learning algorithm. 

 

3.3 The Proposed Q-Learning 
 

The proposed online MAQL algorithm for is described as follows: 
• The Agents: RRHs 
• The Actions: The actions available to each RRH (agent) are the different users they can 

choose to associate with. The action vector 𝑎𝑖 represents the choice of RRH for user 𝑖. 
• States: the state for each RRH (agent) is the context or situation in which the RRH is 

making its decision. In this case, the state for each RRH can be represented by the path 
loss values to all Users. Specifically, for each RRH𝑖, the state is a vector of path losses from 
that RRH with each user. Therefore, the state vector State𝑖 for RRH 𝑖 is represented by the 
vector: 
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    𝑆𝑖 = [𝑠1,𝑠2,𝑠3,…………….𝑠𝑘]                                                                                                                  (28) 
 

This vector directly represents the state of the agent environment and is used to 
determine the RRH to associate with the user based on the current policy (exploration or 
exploitation). 

• Reward: the reward is a measure of how good or bad an action (associating with a 
particular RRH) is. In this case, the reward is based on the path loss; specifically, the 
reward is the negative of the path loss to maximize SINR (which corresponds to 
minimizing path loss). Therefore, the reward function R is formulated based on the least 
path loss as follows: 

 

     𝑅𝑖 = −𝑃𝐿(𝑅𝑅𝐻𝑖)                                                                                                                                    (29) 
 

Furthermore, the user-RRH association procedure includes the learning part within RRH's 
side by generating a list of priority for RRHs ranked according to the least path loss path 
loss (Lee et al., 2015; Fang et al., 2021) to create association with users, then users are 
associated with the RRH with a preferred value in the list of priorities. To demonstrate the 
effectiveness of the proposed algorithm, it was compared with another online MAQL 
algorithm in a previous study (Elsayed et al., 2020) that associates a user to the cell by 
generating a list of priorities for 5G-NodeBs ranked depending on average SINR. Then, 
users are associated with 5G-NodeBs with preferred value in the list of priorities; this was 
applied for two types of deployment scenarios   for mmWave RRHs in the proposed system 
under NLOS conditions, for simplicity and understanding, the Q-Learning algorithm 
steps illustrated in pseudo-code in Algorithm 1. 
 

Algorithm 1: MAQL Algorithm For User-RRH Association 

Input: Q (s, a) = 0, α, γ, ϵ, Users' positions, RRHs' positions, Path loss estimations between users and RRHs 

Output: Final user-RRH association decisions 

Begin 

1: Initialize Parameters: 𝑄(𝑠, 𝑎) = 0, 𝛼, 𝛾, 𝜖, Set positions of users and RRHs, Estimate path loss between 

users and RRHs 

2: For scheduling simulation SIM=1 to No. of Simulation do 
3: Perform MAQL algorithm for User-RRH association for each state s do 
4: Compute least path loss for each state s 
5: Exploration Vs Exploitation Decision If rand ≤ 𝜖 then 
6: Action: The decision to associate a user with a best RRH based on exploration or exploitation. 
7: else 
8: Exploitation - Choose the action with the highest Q-value (Next action:  𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′)) 
9: End if 
10: Calculate reward R as negative path loss for the chosen RRH as in Eq. (29). 
11: Update Q-value for the best User-RRH using Q-learning update rule as in Eq. (20). 
12: Transition to the next state 𝑠′ 
13: Transmit User-RRH association decisions to each user. 
14: The user performs the final User-RRH association decisions 
15: End for 
16: End for 
End 
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4. PERFORMANCE METRICS 
 

4.1 The Coverage Probability 
 

This network assumed open access, which is unconstrained, meaning that user can 
associate with any tier of MBS or RRH without any constraints (Hassan and Fernando, 
2020). Hence, Positive power biasing and least path loss are used to switch more edge 
users from the MBS tier to the RRH since MBS transmit at a higher power than RRHs. For 
example, a user would associate with a RRH if:  
 
𝑃𝑟 𝑔𝑟𝐵𝑟 𝑃𝐿𝑚𝑖𝑛,𝑟

−1 (𝑑𝑟) > 𝑃𝑚 𝑔𝑚 𝐵𝑚𝑃𝐿𝑚𝑖𝑛,𝑚
−1 (𝑑𝑚) 

 

Moreover, if not, a user would associate to an MBS, where 𝑃𝐿𝑚𝑖𝑛,𝑚
−1 (𝑑), 𝑃𝐿𝑚𝑖𝑛,𝑟

−1 (𝑑) refer to 

the minimum path loss of user connecting to the MBS, and RRH respectively, and 𝐵𝑚, B𝑟 
work as a user association biasing factor with MBS, and RRH respectively. Depend on 
maximum received biased power, user linked to the MBS in the center area have 𝐵𝑚 =0dB, 
while 𝐵𝑟 >0 is for user linked to a RRH and situated in the cellular edge area. The coverage 
probability is introduced in a scenario where users are located in network coverage, where 
each user associates to a defined cell, if their SINR is above a predefined threshold SINR 
(𝒯𝑐). 
 
𝑃𝑆𝐼𝑁𝑅(𝒯𝑐) = 𝑃(𝑆𝐼𝑁𝑅 > 𝒯𝑐)                                                                                                                   (30)  
 
The coverage probability (PSINRk

) of the suggested network can be introduced by the 

following (Fakhri et al., 2019; Hassan and Fernando, 2020): 
 

𝑃𝑆𝐼𝑁𝑅𝑘
(𝒯𝑐) = 𝒜𝑚𝑃𝑆𝐼𝑁𝑅𝑘𝑚

(𝒯𝑐) + 𝒜𝑟𝑃𝑆𝐼𝑁𝑅𝑘𝑟
(𝒯𝑐) = (⋃ 𝒜𝑗  𝑃(𝑆𝐼𝑁𝑅𝑘𝑗 > 𝒯𝑐)𝑗∈{𝑚,𝑟} )                 (31) 

 
where 𝒜m and 𝒜r: represent association probabilities for sub-6Ghz and mmWave, 
respectively, 𝒜j∈{m,r} is the association probability, which is based on users’ association to 

the MBS or mmWave RRH. 
 
4.2 Rate Coverage Probability 

 
The rate achieved for the user can be given as follows: 
 

ℛ(𝐾𝑗) =  𝑙𝑜𝑔2 (1 + 𝑆𝐼𝑁𝑅𝑘𝑗
) , 𝑗 ∈ {𝑚, 𝑟}                                                                                             (32) 

 
The rate coverage probability in an open access network is introduced when users are 
considered to be within rate coverage in the network, if their downlink rate is above a 
predefined threshold rate (ρr). Therefore, Rate Coverage Probability: 
 
ℛ(𝜌𝑟) = 𝑃(ℛ > 𝜌𝑟)                                                                                                                                         (33) 
                                                                   
Thus,  the rate coverage probability ℛ(𝜌𝑟) of the suggested network is presented by the 
following expression (Fakhri et al., 2019) as follows: 
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ℛ(𝜌𝑟) = ⋃ 𝒜𝑗 𝑃 ( 𝑙𝑜𝑔2 (1 + 𝑆𝐼𝑁𝑅𝑘𝑗
) > 𝜌𝑟)𝑗∈{𝑚,𝑟} = ⋃ 𝒜𝑗 𝑃 (𝑆𝐼𝑁𝑅𝑘𝑗

> (2𝜌𝑟 − 1))𝑗∈{𝑚,𝑟}              (34) 

 
5. SIMULATION IMPLEMENTATION SCENARIO 

 
 

Simulation results for the proposed system's architecture are obtained using MATLAB, while 
the analysis with 100 iterations is conducted to evaluate the proposed system performance 
based on the general simulation parameters outlined in Table 1. The proposed online MAQL 
algorithm associates the user with RRH by generating a priority list of RRHs ranked 
according to the least path loss. Then, users are associated with the RRH with a preferred 
value in the list of priorities. To demonstrate the effectiveness of the proposed algorithm 
during simulation, it was compared with another online MAQL algorithm that associates a 
user to the cell by generating a list of priorities for 5G-NodeBs ranked depending on average 
SINR. Then, users are associated with 5G-NodeBs with preferred values in the list of 
priorities; this was applied for two types of deployment scenarios for mmWave RRHs in the 
proposed system under NLOS conditions. 

Table 1. Simulation Parameters 
 

Parameter Value Parameter Value 
No. of Users 70 - 1000 Sub-6 GHz noise power (σ𝑚

2 ) -174dBm/Hz 

No. of macrocells (MBSs) 7 mmWave noise power (σ𝑟
2) -174dBm/Hz 

No. of smallcells (RRHs) 84 Uma Shadow fading for NLOS 6dB 

Radius of macrocells 500m UMi Shadow fading for NLOS 7.82dB 

Radius of smallcells 100m Transmit powers of RRH (𝑃𝑟) 30 dBm 

Sub-6 GHz carrier frequency 2GHz Transmit powers of MBS (𝑃𝑚) 44 dBm 

mmWave carrier frequency 28GHz Learning rate (α) 0.1 

Sub-6 GHz bandwidth (𝑊𝑚) 20MHz Discount factor (γ) 0.9 

mmWave bandwidth (𝑊𝑟) 1GHz Exploration probability (𝜖) 0.1 

 
6. RESULTS AND DISCUSSION 
 

Fig. 2 shows the simulation result of a two-tier HC-RAN network deployment model 
proposed, Fig. 2(a) represents the simulation result of the network deployment model for 
mmWave smallcells, using uniform random distribution within the macrocells, while Fig.  
2(b) represents the simulation result of arranging mmWave smallcells on the edges. The 
reason for this comes against the backdrop of obtaining different results proving the 
effectiveness and performance of the proposed system. 
Fig. 3 shows the effectiveness of user-RRH association solution in inter-RRH interference 
mitigation for both deployment scenarios, as each user is associated with at most one RRH 
according to the first constraint in Eq. (25) which states “that every user k can at most be 
associated to a single RRH r". Any RRH that is associated with at least one user is activated 
and appears in red, while an inactive RRH appears in green indicating that it is inactive and 
in sleep mode because it is not associated with any user. Fig. 4 displays the average network 
throughput versus the number of iterations under the same network conditions and with the 
same number of RRHs while serving 500 users for both random and on-edge deployment. It 
was observed from the general trends that the proposed online MAQL (UA EQ) solution 
outperforms the other online MAQL (UA Q) solution when applied to both deployment 
strategies by 13.9% and 9.57%, respectively.  
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Figure 2. Comparison scenarios of network (a) Random RRHs (b) On edges RRHs. 
 

 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 

Figure 3. User Association with Active RRHs (a) Random RRHs (b) On edges RRHs. 
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Figure 4. Average Network for User-RRH association. 
 

This is due to following the optimal resource utilization policy. Using the best selection policy 
during exploration leads to more efficient signal routing and reduced signal loss. In addition 
to effective load distribution of users across RRHs with the best signal strength despite 
obstacles, which reduces congestion on specific units and leads to improved overall 
performance, reducing interference between different users contributes to increasing the 
maximum productivity that can be achieved. These findings confirm the effects of the 
suggested UA EQ algorithm in enhancing wireless communication systems, contributing to 
improved quality of service and reduced interference in both random and edge network 
deployments in the proposed system. 

Figure 5. Average Network Throughput per user for User-RRH association. 
 

Fig. 5 shows the average network throughput as a function of the number of users under the 
same network conditions and with the same number of RRHs for both random and on edge 
deployment, given as the total throughput achieved within the network over total users 
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connected to the network. which offers a user-centric perspective, reflecting the experience 
of individual users within the system. The general trend in both scenarios of deployment is 
that average throughput decreases as the number of users increases. The reasons for this 
fact are: resource allocation: when there are fewer users, each user can have more of the 
network's resources allocated to them, such as bandwidth and processing power. 
Reduced Congestion: With fewer users, there's less competition for network resources, 
leading to reduced congestion and faster data transmission. 
Improved Efficiency: When network resources are not heavily utilized, they can be used 
more efficiently, resulting in higher throughput. 
However, it's important to note that this relationship is not always linear. As the number of 
users increases, the network may be able to utilize its resources more efficiently through 
techniques like load balancing and resource allocation optimization. Beyond a certain point, 
though, increasing the number of users can lead to diminishing returns and even decreased 
throughput this behavior is consistent with the principles of network congestion and 
interference, where more users share the available bandwidth, reducing individual 
throughput. 
The highest user throughput was obtained with the proposed problem online MAQL (UA EQ) 
solution compared to the other online MAQL (UA Q) solution when applied to both random 
and on-edge deployment strategies by 66.4% and 21%, respectively, at the lowest number 
of users. The difference gradually decreases with increasing user numbers until it reaches 
8.7% and 9.8%, respectively, but the difference remains noticeable even with increasing 
user numbers. In random deployment of RRHs, it generally achieves the highest throughput 
for each user, indicating that specific UA EQ might be more effective than applied on edge 
deployments. This might be due to better management of the higher user density and 
specific geographical challenges over the whole cell area. The proposed problem online 
MAQL (UA EQ) solution distributes the load more effectively, leading to higher overall 
throughput per user. This indicates better utilization of available resources and more 
efficient interference reduction. Provides a more consistent and higher quality of service for 
individual users due to better load distribution and interference management. Users 
experience higher throughput, leading to better overall performance and user satisfaction. 
Even though the gap between throughput performance narrows as user density increases, 
the proposed method consistently outperforms the alternative strategy, indicating its ability 
to adapt and manage network resources more effectively even under higher traffic loads. 
Fig. 6 shows the numerical simulation results of SINR coverage probability performance for 
various scenarios with the same number of mmWave RRHs and users under the same 
network conditions where mmWave RRHs are either randomly deployed or placed at the 
edges of the macrocells. The general trends in each deployment scenario indicate that the 
probabilities of coverage are high and convergent at the lowest SINR threshold values (from 
-10 to 0) for all scenarios. As the SINR threshold increases from 0dB to 30dB, there is a 
steeper decline in coverage probability, this gradual decline is attributed to obstacles and 
multipath fading in environments. At higher SINR thresholds, notable differences emerge 
between scenarios. Specifically, random deployments tend to outperform edge deployments 
at higher SINR thresholds by approximately 26.7% and 27.81%, respectively. The results 
emphasize the significance of strategic deployment of cell sites (RRHs) deployment, whether 
at the edge or randomly distributed in network design. This is vital for network planning to 
improve SINR coverage probabilities, especially when aiming to meet high quality of service 
standards. Also, the proposed online MAQL (UA EQ) solution tends to outperform the other 
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online MAQL (UA Q) solution when applied to both deployment strategies at higher SINR 
thresholds by approximately 8.8% and 9.9%, respectively. Generally, random RRHs 
deployments provide better coverage probability across all SINR thresholds compared to 
RRHs on Edge. The proposed online MAQL (UA EQ) shows an overall improvement in 
coverage probability over the other online MAQL (UA Q), regardless of the RRHs deployment 
type.  
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 6. Coverage Probability Performance. 
 

Fig. 7 shows a rate coverage probability comparison for HC-RAN across different 
deployment scenarios, random and on edge deployment, which was also conducted under 
the same network conditions and with the same number of RRHs and users. At the outset, 
scenarios exhibit high coverage probabilities near or at 1 when the rate threshold is zero, 
indicating that nearly all cells can provide minimal rates. However, as the rate threshold 
increases, the probability that a cell can meet this rate declines. This is expected since 
sustaining higher data rates is more challenging across various locations and conditions 
within the network. Random RRH deployments are more effective at meeting higher rate 
demands, with average gains of 28.52% and 26% in rate coverage probability compared to 
on-edge RRH deployments. This suggests that on-edge RRHs deployment generally provides 
the lowest coverage across various rate thresholds. The proposed online MAQL (UA EQ) 
solution is more effective at meeting higher rate demands, with average gains of 9.3% and 
7.1% in rate coverage probability compared to the other online MAQL (UA Q) solution, 
regardless of the RRHs deployment type. The observations underscore that using the 
proposed online MAQL (UA EQ) approach with different cell deployment strategies 
significantly influences network performance. Random RRH deployments prove more 
effective than edge deployments, offering better rate coverage probability and adapting 
more adeptly to real-world challenges such as obstacles, user distribution, and interference.  
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Figure 7. Rate Coverage Probability. 
 
7. CONCLUSIONS 
 

This paper presents an online MAQL algorithm to handle User-RRH association problem for 
mmWave HC-RAN in 5G systems for interference mitigation and to maximize total 
throughput in the network. The suggested algorithm associates the user with the RRH having 
each agent generate a priority list of RRHs ranked according to the least path loss between 
it and all users in its environment for two types of deployment scenarios and compared with 
another online MAQL algorithm in a previous study that associates the user with the cell by 
having each agent associate the user with the cell by generating a priority list of 5G-NodeBs 
ranked according to the average SINR between it and all users in its environment. 
Additionally, the strategic deployment of mmWave cell sites within the coverage area of the 
MBS cells plays a crucial role in enhancing network coverage, rate, and throughput, as well 
as mitigating interference based on User-RRH association and the prudent use of machine 
learning techniques, where the simulation results of Q-learning strategies of implementation 
User-RRH association strategies have proven effective in enhancing network performance 
and quickly adapting to varying traffic loads. 
 

NOMENCLATURE 

Symbol Description Symbol Description 

𝑑𝑚 
3D distance between serving MBS 
and user 

ℎ𝑘
`  Effective antenna height for user 

𝑑𝑟 
3D distance between serving RRH 
and user 

ℎ𝑅𝑅𝐻
`  Effective antenna heights for RRH  

𝑄(𝑠, 𝑎) action-value ℎ𝐸  Effective environment height 

ℎ𝑀𝐵𝑆 Actual antenna height for MBS 𝑑𝑒𝑚 
Euclidian distance between serving 
MBS and user 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

R
at

e
 C

o
ve

ra
ge

 P
ro

b
ab

ili
ty

 

Rate Threshold 𝝆 (bps)

Random RRHs_EQ
Random RRHs_Q
RRHs on Edge_EQ
RRHs on Edge_Q



Journal of Engineering, 2025, 31(3) 
 

N. M. Swadi and F. A. Sabir 

 

148 

ℎ𝑘 Actual antenna height for user 𝑑𝑒𝑟  
Euclidian distance between serving 
RRH and user 

ℎ𝑅𝑅𝐻 Actual antenna heights of RRH 𝑙𝑚𝑖
 Large scale channel fading for MBS 

𝜂(𝑡) Actual load in the system  𝑙𝑟𝑖
 Large scale channel fading for RRH 

𝑔𝑚𝑖
 Antenna gain for MBS α Learning rate 

𝑔𝑟𝑖
 Antenna gain for RRH 𝜎𝑚

2  Noise power for MBS 

𝒜𝑚 
Association probabilities for MBS 
work in sub-6Ghz 

𝜎𝑟
2 Noise power for RRH 

𝒜𝑟 
Association probabilities for RRH 
work in mmWave 

𝑇𝑘,𝑟,𝑠 Peak user throughput 

𝑑𝐵𝑃𝑚 Breakpoint distance for MBS ℛ(𝜌𝑟) Rate coverage probability  
𝑑𝐵𝑃𝑟  Breakpoint distance for RRH 𝜌𝑟 Rate threshold 
𝑓𝑐𝑚 Carrier frequency for MBS 𝒯𝑐 SINR threshold  

𝑓𝑐𝑟 Carrier frequency for RRHs 𝑠𝑚𝑖
 Small scale channel fading for MBS 

𝑋𝑘,𝑟 
Complexity for User-RRH association 
solution  

𝑠𝑟𝑖
 Small scale channel fading for RRH 

𝑃𝑆𝐼𝑁𝑅(𝒯𝑐) Coverage probability 𝐺𝑘𝑚𝑗
 Total channel gain for MBS 

𝛾 Discount factor 𝐺𝑘𝑚𝑗
 Total channel gain for RRH 

𝑃𝑟 
Down link transmitting powers for 
RRH 

𝑁𝑃𝑅𝐵
𝑘  

Total number of Physical Resource 
Blocks 

𝑃𝑚  Downlink transmit powers for MBS 𝑃𝐿𝑚  
UMa path loss for user connecting to 
MBS  

ℎ𝑀𝐵𝑆
`  Effective antenna height for MBS 𝑃𝐿𝑟 

UMi path loss for user connecting to 
RRH 
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التخفيف من التداخل في اتصالات الموجات المليمترية في شبكات الجيل الخامس باستخدام  
 (Q-Learning) التعلم الآلي المعزز

 
 2فراس علي صابر*، ،1نجوان محمد سوادي 

 
 والاتصالات، كلية الهندسة، جامعة بغداد، بغداد، العراق  ةهندسة الالكترونيالقسم 1

 ، كلية الهندسة، جامعة بغداد، بغداد، العراق بات قسم هندسة الحاس2
 

 الخلاصة
محدودة بسبب فقدان المسار العالي والانسداد، يتم نشرها في خلايا صغيرة.   (mmWave)نظرًا لأن تغطية الموجات المليمترية  

أدى هذا النشر الكثيف لمحطات القاعدة ونقاط الوصول إلى تداخل كبير. لذلك، فإن تخفيف التداخل هو التحدي الرئيسي في  
شبكة لفي هذه الورقة يتم تقديم نموذج  تصميم تقنيات اتصالات الموجات المليمترية الجديدة في نظام الجيل الخامس الحالي.  

 Soft))ذات المستويين، والذي يؤدي تقنية مستوحاة من إعادة استخدام التردد  (  HC-RAN) وصول راديوي سحابي غير متجانسة

Frequency Reuse  ها  للتخفيف من التداخل. تنقسم منطقة الخدمة الخلوية إلى منطقتين فرعيتين، المنطقة المركزية التي تخدم
جيجاهرتز، في حين تخدم المنطقة الحافة رؤوس الراديو   6محطات القاعدة الكبرى التقليدية، والتي تعمل في نطاق تردد أقل من  

ارتباطات   خوارزمية تم تقديم  .، والتي تعمل في نطاق تردد الموجات المليمترية لتجنب التداخل بين الطبقات(RRHsالبعيدة )
البعيدة الصغيرة وتعظيم إنتاجية  التداخل بين وحدات رؤوس الراديو  للتخفيف من  البعيدة  المستخدمين بوحدات رؤوس الراديو 

التعلم باستخدام  الوكلاء  الالي  الشبكة  يOnline Multi-Agent Q-Learning (MAQL)  متعدد  التفوق  .  خوارزمية  حل 
MAQL  باط المستخدم بوحدات رؤوس الراديو البعيدة، المقترحة ، الذي يعتمد على أقل خسارة في المسار كمعيار أساسي لارت

التداخل  معدل    إلى  تستند  سابقة  دراسة  على  مستخدم  لكل  الشبكة  إنتاجيةفي متوسط   إلى  الإشارة    SINR) والضوضاءنسبة 
average  ) كمعيار أساسي للارتباط لنوعين من سيناريوهات نشر وحدات رؤوس الراديو البعيدة في الشبكة غير المتجانسة بنحو

٪ على التوالي، عند أقل عدد من المستخدمين. يتناقص الفرق تدريجيًا مع زيادة أعداد المستخدمين حتى يصل 21٪ و  66.4
الفجوة بين أداء الإنتاجية تضيق مع زيادة كثافة المستخدمين، إلا أن الطريقة  ٪ على التوالي. على الرغم من أن  9.8٪ و  8.7إلى  

المقترحة تتفوق باستمرار على الاستراتيجية البديلة، مما يشير إلى قدرتها على التكيف وإدارة موارد الشبكة بشكل أكثر فعالية حتى  
 في ظل أحمال مرورية أعلى. 

 
ارتباطات المستخدمين بوحدات  ،  الراديوي السحابية غير المتجانسة  الوصولشبكة   ،الموجات المليمترية الكلمات المفتاحية:

 .رؤوس الراديو البعيدة

 

 
 


