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ABSTRACT 

Real-world signals are often intricate and difficult to analyze. Therefore, to facilitate the 

analysis of signal components, the researchers represent the signal in different domains 
(transform domain), providing a new perspective and offering significant advantages in 
understanding the various components of signals. Therefore, discrete transforms have been 
the subject of extensive study.  In this paper, a new hybrid form of orthogonal polynomial is 
introduced named discrete Cosine-Krawtchouk–Tchebichef transform (DCKTKT). Which is 
based on combining discrete Cosine transform with krawtchouk and tchebichef polynomials. 
The mathematical and theoretical formulations of DCKTKT are presented, followed by an 
evaluation of its performance against other hybrid forms. The results demonstrate that 
DCKTKT along with their corresponding moments. Surpasses existing hybrid polynomials 
regarding energy compaction. Additionally, a face recognition application is performed and 
by using a well-known database with clean and noisy environments, DCKTKT is used to 
transform face images into the moment domain to facilitate feature extraction. illustrating 
the proposed polynomial's robustness against different types of noise and its superior 
feature extraction capabilities compared to the latest hybrid forms. 
 

Keywords: Discrete COS transform, Discrete Tchebichef transform, Discrete Krawtchouk 
transform, Face recognition, Hybrid form. 
 

1. INTRODUCTION 
 

Signals are considered an essential carrier of information. These signals can be either 
deterministic or stochastic (Pachori, 2023). Also, the conveyed signal can be classified as 
one-dimensional (1D), like a speech signal, two-dimensional (2D), like an image, three-
dimensional (3D), like a video, and four-dimensional (4D), like volume data over time. The 
study of signals is involved in many disciplines, including signal processing, communications 
theory, and control systems. This study aroused the interest of many researchers in the field 
of engineering, science, and many specializations, and they used different methods to 
analyze, transmit, and process that signal. 
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In general, signals are complex in nature, making them difficult to deal with and understand. 
Therefore, to facilitate their handling, we must simplify or represent them in an 
understandable mathematical formula, such as simple signals, general basis functions, 
complex exponential functions, Bessel functions, or orthogonal functions. 
Representation using orthogonal functions is one of the most preferred signal 
representations (Pachori, 2023) because of its properties, such as orthogonality in its basis 
function that gives an efficient analysis of the signal’s components by isolating each feature 
in a specific polynomial, making it easier to process. Also, it reduces noise (Yaru and 
Xiaohong, 2009) by analyzing the behavior of each type of noise and separating the signal 
from the noise. Also, the orthogonality property provides a high compression without losing 
essential information; and the discrete cosine transform undeniably exhibits this property 
to a significant extent (Walmsley et al., 1994). Lastly, it has a near-zero redundancy 
(Mukundan et al., 2001) and numerical stability (Mahmmod et al., 2022). 
Other unique properties of orthogonal functions that determine their performance and 
capabilities to extract features are localization and energy compaction (EC) properties 
(Mahmmod et al., 2018; Abdulhussain et al., 2021). Energy compaction facilitates data 
transmission and storage by concentrating the majority of the signal's energy into a limited 
number of transform coefficients (Wang et al., 2000). The localization property defines the 
orthogonal function's ability to extract features by creating a relation between the transform 
coefficients and their specific locations within the signal (Abdulhussain et al., 2021).  
Given the urgent need to extract more features and streamline data processing and storage 
for optimal analysis and transmission, combining multiple polynomials for example 
Tchebichef polynomial (Zhu et al., 2007), Krawtchouk polynomial (Feinsilver and Kocik, 
2005; Asli and Flusser, 2014), Charlier polynomial (Abdul-Hadi et al., 2020), wavelet 
polynomial (Abood, 2013) and Hahn polynomial (Yap et al., 2007) to leverage their unique 
features and introducing a new polynomial with more robust features than the individual 
one is imperative. Hence, the proposed polynomial combines the strengths of several 
polynomials, including Krawchouk, Chebyshev, and the Discrete Cosine Transform (DCT), to 
create a new hybrid transform that offers distinct advantages, particularly in terms of energy 
compaction and feature extraction. This elevates performance in various applications, such 
as image processing, compression, and pattern recognition. For instance, Krawchouk 
polynomials are effective at extracting features from signals, while Chebyshev polynomials 
and the Discrete Cosine Transform (DCT) are commonly used in compression algorithms. 
DCT achieves robust energy compaction by concentrating the signal's energy into a few low-
frequency coefficients. By combining these polynomials, the resulting transform leverages 
the strengths of each component, thereby enriching the overall transform's capability for 
efficient data representation and analysis.  
 

2. MATERIALS 
 

In this section, the mathematical definitions and fundamentals of the materials utilized in 
this paper is presented, which include the preliminaries of discrete orthogonal polynomials 
and the definitions of orthogonal moments.  
 

2.1 Tchebichef Moments 
 

In general, orthogonal moments are coefficients that provide a concise representation that 
captures an image's global information (features) using orthogonal polynomials as basis 
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functions (Hu, 1962; Markandey and deFigueiredo, 1992). Let ∅mn be the definition of 
Tchebichef moments based on a discrete Tchebichef polynomial (Mukundan, 2004) 
 

∅𝑚𝑛 = 
1

𝜌(𝑚,𝑁)𝜌(𝑛,𝑁)
 ∑ ∑ 𝑇𝑛(𝑥)

𝑁−1
𝑦=0 𝑇𝑚(𝑦) 𝑓(𝑖, 𝑗)

𝑁−1
𝑥=0                                                                            (1) 

 
Where f(i,j) denotes the pixel value of (i,j) position in the image, 𝜌(⋅) is the squared-norm 
which is given by (Wu and Yan, 2016; Hussein et al., 2023): 
 

𝜌(𝑛,𝑁) =  (2𝑛)! ( 𝑁+𝑛
 2𝑛+1

 )                (2) 

 
Where N is the polynomial size Tn(x) is the Tchebichef polynomial (TP) function, with order 
n and length N, which is determined by (Pee, 2017; Lu and Asli, 2023): 
 

𝑇𝑛(𝑥) = √
𝜔𝑇(𝑥)

𝜌𝑇(𝑛)
(1 − 𝑁)𝑛  3 𝐹2(−𝑛,−𝑥, 1 + 𝑛; 1,1 − 𝑁; 1), 𝑛, 𝑥 = 0,1, … ,𝑁 − 1         (3) 

 

where n is the polynomial order , x is the signal length and 𝜔𝑇(𝑥) is the wight function and 
3𝐹2 is the hypergeometric function (Idan et al., 2020), they are expressed as follows: 
 
𝜔𝑇 (𝑥) =  1                  (4) 
 

3𝐹2(−𝑛,−𝑥, 1, +𝑛; 1,1 − 𝑁; 1)  =  ∑
(−𝑛)𝑘(−𝑥)𝑘(1+𝑛)𝑘

(1)𝑘(1−𝑁)𝑘𝑘!

∞
𝑘=0              (5) 

 

(a)k = 𝑎(𝑎 + 1) (𝑎 + 2), … , (𝑎 + 𝑘 + 1)  =
Γ(a+k)

Γ(a)
               (6) 

 
therefore, Tn(x) can be rewritten as follows: 
 

𝑇𝑛(𝑥) =
(1−𝑁)𝑛  3 𝐹2(−𝑛,−𝑥,1+𝑛;1,1−𝑁;1)

√(2n)! (𝑁+𝑛2𝑛+1)

                (7) 

 

Using of hypergeometric and gamma formulas to calculate the polynomial values is highly 
time-consuming and it causes numerical propagation (Radeaf et al., 2019). On the other 
hand, calculating the higher order of polynomial values using recurrence relations 
concerning order n and variable x is limited by numerical instabilities, which results in 
significant information loss in reconstructing large images. Thus, the algorithm in 
(Abdulhussain et al., 2017) is used to mitigate this issue, where the Tn(x) is equal to: 
 

𝑇𝑛(𝑥) =

{
 
 
 

 
 
 

𝑎1𝑇𝑛(𝑥 − 1) + 𝑎2𝑇𝑛(𝑥 − 2),

 0 < 𝑛 < 𝑁
2⁄ , 2 < 𝑥 < 𝑁

2⁄ − 1

𝑏1𝑇𝑛−1(𝑥) + 𝑏2𝑇𝑛−2(𝑥),
𝑁
2⁄ < 𝑛 < 𝑁 − 1, 𝐿𝑥 < 𝑥 <

𝑁
2⁄ − 1

1
𝑎2⁄ 𝑇𝑛(𝑥 + 1) +

𝑎1
𝑎2⁄ 𝑇𝑛(𝑥 + 2),

 𝑁 2⁄ < 𝑛 < 𝑁 − 1, 𝐿𝑥 < 𝑥 < 𝐿𝑥 − 12

             (8) 
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where 

a1 =
−n(n+1)−(2x−1)(x−N −1)−x

x(N −x)
  

a2 =
(x−1)(x−N −1)

x(N −x)
   

b1= 
2x+1_N

n
√
(4n2−1)

(n2−N2)
  

b2= 
1−n

n
√
(2n+1)

(2n−3)
√
N2−(n−1)2

(n2−N2)
  

Lx = 0.5N − √(0.5N)
2 − (0.5n)2  

 
For signal reconstruction the following formula is used (Zhu et al., 2010): 
 

𝑓(𝑖, 𝑗) =  ∑ ∑ 𝑇𝑛(𝑖; 𝑁)
𝑁−1
𝑚=0 𝑇𝑚 (𝑗;  𝑁)∅𝑛𝑚

𝑁−1
𝑛=0  , 𝑖, 𝑗 =  0,1, … ,𝑁 − 1;                                            (9) 

 
2.2 Krawtchouk Moments 
 
Krawtchouk moments are constructed using Krawtchouk polynomials, which serve as the 
basis function set (Yap et al., 2003); these polynomials are linked to the binomial 
distribution and satisfy the orthogonality property that introduced in (Zhu et al., 2010), and 
which states that: 
 
∑ 𝐾𝑛

𝑝(𝑥)𝐾𝑚
𝑝 (𝑥)𝑤𝑘(𝑥) = 𝜌𝑘(𝑛)∅𝑛𝑚

𝑁−1
𝑥=0                                                                                                 (10) 

        
where ∅𝑛𝑚 is the krawtchouk moment, 𝜌𝑘(𝑛) is the square norm of krawtchouk polynomial 
which is given by (Abdulhussain et al., 2018): 
 

𝜌𝑘(𝑛) =  (−1)
𝑛 (

1−𝑝

𝑝
)
𝑛 𝑛!

(−𝑁+1)𝑛
            (11) 

 
𝑤𝑘(𝑥) is the weight function which is given by (Abdulhussain et al., 2018) and define as:  
 

𝜔𝑘(x)  = (
𝑁−1
𝑥 )p𝑥 (1 −  p)

N −x−1                                  (12) 

and  𝐾𝑛
𝑝(𝑥) is a classical krawtchouk polynomial with nth order and parameter p, which is 

define by (Yap et al., 2003): 
 

𝐾𝑛
𝑝(𝑥) =  ∑ 𝑎𝑘,𝑛,𝑝𝑥

𝑘 = 𝐹 1(−𝑛,−𝑥;−𝑁;
1

𝑝
)2

 𝑁
𝐾=0           (13) 

 
Where x, n=0,1,2, …, N, N > 0, p ∈ {0, 1}, and 𝐹 12

  named the hypergeometric function of 
krawtchouk polynomial and is given by (Yap et al., 2003): 
 

𝐹 1(𝑎, 𝑏; 𝑐; 𝑧) =  ∑
(𝑎)𝑘(𝑏)𝑘

(𝑐)𝑘
 
𝑧𝑘

𝑘!

∞
𝑘=02

             (14) 

 
And (𝑎)𝑘 is the rising factorial which is given by: 
 

(a)k = a(a + 1)(a + 2),… , (a + k + 1) =
Γ(a+k)

Γ(a)
          (15) 
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To avoid numerical fluctuations in Krawtchouk polynomial computations, the traditional 
method of normalizing by the norm is used (Yap et al., 2003): 
 

�̃�𝑛
𝑝(𝑥) =  

𝐾𝑛
𝑝(𝑥)

√𝜌𝑘(𝑛)
              (16) 

 
But when dealing with higher values of 𝑁  (e.g., 100), the above equation alone fails to 
guarantee the stability of the Krawtchouk polynomials. Therefore, a weighted Krawtchouk 
polynomials is introduced to achieve numerical stability (Tahiri et al., 2022): 
 

�̃�𝑛
𝑝(𝑥) = 𝐾𝑛

𝑝(𝑥) √
𝑤𝑘(𝑥)

𝜌𝑘(𝑛)
             (17) 

 

 

Figure 1. Four parts partitioning of krawtchouk polynomial plain. 

 
The calculation of polynomial values using the hypergeometric and gamma functions is 
highly demanding in terms of time, requiring high mathematic operations (factorials, 
powers, sums, etc.) for each polynomial order, therefor, to mitigate this problem, the 
algorithm described in (Mahmmod et al., 2020) is used. First the coefficients Kn(0) and 
Kn(1) are computed, using the following formula: 

 

�̃�𝑛
𝑝(0) =  √

(𝑁−𝑛)𝑝

𝑛(1−𝑝)
× �̃�𝑛−1

𝑝 (0)            (18) 

 

�̃�0
𝑝(0) =  √(1 − 𝑝)𝑁−1              (19) 

 

�̃�𝑛
𝑝(1) =  

−𝑛 + 𝑝(𝑁 – 1)

𝑝(𝑁 – 1)
√
(𝑁 – 1) 𝑝

(1 – 𝑝) 
�̃�𝑛
𝑝(0), n =  0, 1, … , N –  2           (20) 

 
For the R1 coefficients as Fig. 1 shows the following equations are used: 
 
�̃�𝑛
𝑝(𝑥 + 1) = 𝐸 × 𝐾𝑛

𝑝(𝑥) − 𝐹 × 𝐾𝑛
𝑝(𝑥 − 1), 𝑛 =  0, 1, … ,𝑁 –  1        (21) 
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𝐸 =  
𝑝(𝑁−𝑥−1)+𝑥(1−𝑝)−𝑛

√𝑝(1−𝑝)(𝑥+1)(𝑁−1−𝑥)
              (22) 

𝐹 = 
√𝑝(1−𝑝)𝑥(𝑁−𝑥)

√𝑝(1−𝑝)(𝑥+1)(𝑁−1−𝑥)
             (23) 

 
Third, to compute the R2 coefficients using the symmetry relation of Krawtchouk polynomial 
about the primary diagonal (n=x) the following equation is used: 
 
�̃�𝑛
𝑝(𝑥) =  �̃�𝑥

𝑝(𝑛)              (24) 

 
And for the R3 and R4 coefficients the symmetry relation about secondary diagonal is used:  
 
�̃�(𝑁−𝑥−1)
𝑝 (𝑁 − 𝑛 − 1) = (−1)𝑁−𝑛−𝑥−1�̃�𝑛

𝑝(𝑥)          (25) 

 
At the end, the (p > 0.5) coefficients are computed using the following relation:  
 

𝐾𝑛
1−𝑝(𝑥) = (−1)𝑛 𝐾𝑛

𝑝(𝑁 − 𝑥 − 1)            (26) 
 
To compute krawtchouk moments the following equation is used: 
 
∅𝑛𝑚 = ∑ ∑ 𝐾𝑛

𝑝(𝑥)𝐾𝑚
𝑝 (𝑥)𝑁−1

𝑚=0 𝑓(𝑖, 𝑗) 
𝑁−1
𝑛=0 , i, j =  0,1, … , N − 1;         (27) 

 
 
While, for signal reconstruction the following formula is used: 
 

𝑓(i, j) = ∑ ∑ 𝐾𝑛
𝑝(𝑥)𝐾𝑚

𝑝 (𝑥)𝑁−1
𝑚=0 ∅𝑛𝑚

𝑁−1
𝑛=0 , i, j =  0,1, … , N − 1;         (28) 

      

 
2.3 Discrete Cosine Transform (DCT) 
 
In image processing, the Discrete Cosine Transform (DCT) is highly regarded by researchers. 
Large DCT coefficients are mainly found in the low-frequency region, leading to excellent 
energy compaction (Abbas, 2005; Wang and Shang, 2020). The discrete cosine transform 
a(k) function is defined using the following Eq. given by (Jain, 1989): 
 

α(k) =

{
 

 √
1

𝑁
cos(

𝜋𝑛

2𝑁
(2𝑥 + 1))   𝑓𝑜𝑟 𝑘 = 0

√
2

𝑁
cos(

𝜋𝑛

2𝑁
(2𝑥 + 1))  𝑓𝑜𝑟 𝑘 > 0 

           (29) 

 

the moments computation of 2D signal for the DCT are given by the following equation 
(Wang and Shang, 2020): 
 

∅𝑛𝑚 = 𝛽𝑛𝛽𝑚∑ ∑ f(i, j) cos(
𝜋𝑛

2𝑀
(2𝑥 + 1)) cos(

𝜋𝑛

2𝑁
(2𝑥 + 1))𝑁−1

𝑗=0
𝑀−1
𝑖=0        (30) 

 

Where 0 ≤ 𝑛 ≤ 𝑀 − 1 and 0 ≤ 𝑚 ≤ 𝑁 − 1 
While to reconstruct the 2D signal, the following equation is used: 
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f̂(i, j) = 𝛽𝑛𝛽𝑚∑ ∑ ∅𝑛𝑚 cos(
𝜋𝑛

2𝑀
(2𝑥 + 1)) cos(

𝜋𝑛

2𝑁
(2𝑥 + 1))𝑁−1

𝑗=0
𝑀−1
𝑖=0        (31) 

 
3. THE PROPOSED HYBRID POLYNOMIAL 
 

For effective signal analysis and enhanced efficiency in signal transmission and storage, the 
combination of various polynomials exploits and strengthens their individual characteristics 
(localization and energy compaction). This combination ensures that the strengths of each 
polynomial are utilized to their fullest potential, resulting in more effective and reliable 
signal processing. Therefore, this section presents the proposed hybrid form of orthogonal 
polynomial namely DCKTKT, which is based on a combination of well-known OPs such as 
Cosine transform with krawtchouk and tchebichef polynomials. The nth order hybrid form 
Rn(x), is defined by the following formula: 
 

Rn(x; N) = ∑ 𝑍𝑗(𝑁)𝑋𝑗(𝑥; 𝑁)𝑌𝑗(𝑛;𝑁)𝑋𝑗(𝑥; 𝑁)𝑌𝑗(𝑛;𝑁), n, x =  0, 1, … , N –  1
𝑁−1
𝑗=0       (32) 

 

where 𝑋𝑗(𝑥; 𝑁), 𝑌𝑗(𝑛;𝑁), and  𝑍𝑗(𝑁)  are krawtchouk polynomial (KP), tchebichef 

polynomial (TP) and discrete Cosine transform (DCT), respectively. The matrix 
representation is defined as follows: 
 

R =  Q𝑐Q𝑘Q𝑇Q𝑘Q𝑇               (33) 
 

R = Q𝑐(Q𝑘Q𝑇)
2 = RDCKTKT             (34) 

 

where QK, Qc and QT are matrix form of KP, DCT, and TP, respectively. Fig. 2 shows the plot 
of the DCKTKT of a cameraman image of (128×128) image size, and using control parameter 
p = 0.5, and N = 128. Observably, the first quarter accumulates all the signal information by 
containing the high energies, whereas the low energies are dispersed among the other 
transform coefficients; therefore, this hybrid form can achieve high energy compaction as 
compared to other hybrid forms. 
 

 

Figure 2. The representation of cameraman image in DCKTKT domain. 
 
Fig. 3 demonstrates the process for generating DCKTKT coefficients based on DCT, KP and 
TP. It is essential to mention that DCKTKT has superior EC property over previous hybrid 
forms and does not localize in space. 
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Figure 3. The flow chart of DCKTKT moments generation. 
 

4. METHODS 
 

In this section, the methods used to evaluate the performance of the DCKTKT hybrid form is 
presented. 
 

4.1 Energy Compaction (EC) 
 

Energy compaction is a cornerstone of any orthogonal polynomial. It is defined as the ability 
of a transformation to represent the signal with a small number of transform coefficients 
while maintaining the accuracy and quality of the signal. This property is particularly useful 
for data compression, noise reduction, efficient storage and transmission and feature 
extraction.  
Using a Markov sequence procedure of the first-order, zero mean and length N to find the 
distribution of moment energies for DCKTKT which is based on conversion the M matrix 
(covariance matrix with different covariance coefficient, ρ) into a transform domain using 
the following equation from (Abdulhussain et al., 2019):     
   
𝑇𝑚 = 𝑅 ∗ 𝑀 ∗ 𝑅𝑇               (35) 
 
Where R is any orthogonal polynomial matrix and Tm is the transform coefficients’ matrix. 
ρ=0.8 and ρ=0.9 are two covariance coefficients that used in this study with N=8 to make a 
comparison between the existing polynomials (DKTK (Mahmmod et al. 2018), DTKT 
(Jassim and Raveendran, 2012), SKTP (Abdulhussain et al., 2019), STKP (Idan, 2020)) 
and the proposed one in terms of the transform coefficient variance as shown in Table 1, for 
DKTT and SKTP.  
The minimum values start from the edges and then gradually increase until reaching the 
middle, where the maximum value settles and vice versa for DTKT, STKP and DCKTKT where 
the maximum value settle in the middle. 
 
Whilst, to check the EC capabilities of the existing polynomials and DCKTKT, the normalised 
basis restriction error Jn is used (Zhu et al., 2010): 
 

𝐽𝑛 =
∑ 𝜎𝑞

2𝑁−1
𝑞=𝑛

∑ 𝜎𝑞
2𝑁−1

𝑞=0
, n = 0, 1, … , N − 1            (36) 
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Table 1. The variance distribution of the transform coefficient when N = 8 and ρ = (0.8, 0.9). 
 

D ρ=0.8 ρ=0.9 
 DTKT DKTT STKT SKTT DCKTKT DTKT DKTT STKT SKTT DCKTKT 
1 2.336 0.254 3.031 0.188 2.038 2.585 0.160 3.402 0.108 2.616 
2 0.659 0.676 0.457 0.349 1.246 0.571 0.568 0.257 0.187 1.248 
3 0.526 1.295 0.269 1.016 2.515 0.446 1.309 0.183 0.869 2.852 
4 0.479 1.774 0.242 2.446 1.087 0.398 1.964 0.158 2.836 0.677 
5 0.479 1.774 0.242 2.446 0.577 0.398 1.964 0.158 2.836 0.348 
6 0.526 1.295 0.269 1.016 0.260 0.446 1.309 0.183 0.869 0.126 
7 0.659 0.676 0.457 0.349 0.155 0.571 0.568 0.257 0.187 0.074 
8 2.336 0.254 3.031 0.188 0.122 2.585 0.160 3.402 0.108 0.058 

 
4.2 Face Recognition Application 
 

Face recognition technology plays a crucial role in automatically identifying or verifying 
individuals from images or videos. It operates in two main modes: face 
authentication(Jassim and Raveendran, 2012), which is a one-to-one matching process, 
comparing a query face image with a specific template image to verify identity, and face 
identification (Jassim and Raveendran, 2012), which involves a one-to-many comparison 
between the query face against multiple images in a database to determine the correct 
identity. 
Historically, various approaches have been developed for face recognition, starting in the 
1990s where the entire face is used as input for recognition and included both linear and 
non-linear techniques such as PCA, LDA, DCT, KPCA, and CNNs; these approaches are called 
holistic approaches (Zafaruddin and Fadewar, 2014). While in the early 21st century, 
Feature-based approaches (Chellappa et al., 1992) gained traction by focusing on key facial 
features (e.g., nose, mouth, eyes) or geometric properties, employing tools like LBP, HOG, 
SIFT, and SURF. More recently, Hybrid approaches (Benradi et al., 2023) were developed, 
and blended these methods to leverage the strengths of both and enhance recognition 
performance (Ameen et al., 2023). 

 
Figure 4. Flow chart of face recognition system. 
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On the other hand, to extract more features efficiently from facial images, orthogonal 
moments are used, particularly those involving Krawtchouk polynomials, due to their 
robustness against noise and their ability to capture both global and local features. In this 
work a comparison between the recent hybrid forms and the proposed one in terms of 
accuracy in noisy and noise free environments using ORL database. Fig. 4  illustrates the 
flow chart of the face recognition implementation process that depends on CNN hybrid 
approach with orthogonal polynomials, which follows a similar structure to the face 
recognition workflow detailed in (El Madmoune et al., 2023). 
 
4.2.1 Dataset 
 
The ORL Faces database, formerly titled 'The ORL Database of Faces,' comprises a collection 
of face images captured between April 1992 and April 1994 at the laboratory. It includes ten 
images per subject for 40 distinct individuals, with variations in lighting, facial expressions 
(such as open/closed eyes or smiling/not smiling), and facial details (such as wearing glasses 
or not). The images were consistently taken against a dark, uniform background, with 
subjects positioned upright and facing forward, allowing for slight lateral movement. Each 
image is 92x112 pixels in size, with 256 levels of gray per pixel. Fig. 5 depicts an example of 
the used images. 
The database is randomly divided into 70% training images and the rest for testing in the 
case of a noisy and noise-free environment, except that in the case of a noisy environment, 
the (Speckle, Poisson, Salt and Pepper, and Gaussian) types of noise are added to the testing 
images.  
 

 

Figure 5. image examples of ORL database. 
 

5. RESULTS AND DISCUSSION 
 

5.1 Energy Compaction 
 

The fewer polynomial coefficients used in signal reconstruction, the better, and this is 
achieved through the EC property using the restriction error equation (36). Figs. 6 and 7 
compare the existing polynomials and the proposed polynomial in terms of Jn against n, 
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where the covariance coefficient ρ is 0.8 and 0.9. This shows that DCKTKT exceeds the recent 
hybrid form in performance, achieving the minimum Jn value faster. As a result, DCKTKT's 
superior ability to concentrate signal energy into fewer coefficients leads to higher efficiency 
and reduced computational complexity. Adequate energy compaction guarantees that the 
majority of signal information is captured in a smaller subset of moments, leading to faster 
reconstruction and better preservation of essential features with minimal loss. 
 

 
Figure 6. Restriction error comparison of the proposed polynomial and the recent 

polynomials (ρ = 0.8). 

 

Figure 7. Restriction error comparison of the proposed polynomial and the recent 
polynomials (ρ = 0.9). 

 

5.2 Face Recognition Application 
 

Two benefits will be obtained by combining orthogonal polynomials with the CNN module 
in the face recognition application. The first is the reduction in the processing complexity, 
and the second is an increase in the computational speed (El Madmoune et al., 2023). 
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For noise-free environment and with different orders of moments’ selection, as shown in 
Table 2, which illustrates the accuracies of hybrid forms in different orders of moments’ 
selection, The accuracy can be computed using the following formula: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
Number of Correct Predictions

Total Number of Predictions
                              (37) 

 
the DCKTKT shows improved results, especially when the moments’ orders become smaller; 
At order (30×30) the DCKTKT achieve 90.00% also at order (40×40) the accuracy becomes 
95.00%, which lead to fewer data to be processed and less execution time. 
On the other hand and as shown in Fig. 8, with the addition of noise to the images, for 
example (Speckle, Poisson, Salt and Pepper, and Gaussian) at different rates (0.05 and 0.01), 
the DCKTKT polynomial shows remarkable accuracy results at order (30×30) as shown in 
Table 3, and especially with speckle noise, whilst at order (40×40) and as shown in Table 
4, the DCKTKT is superior to other polynomials in terms of salt and pepper noise the 
accuracy is 95.00% Which is similar to the accuracy result of noise-free environment. Also, 
when adding a Poisson noise, the DCKTKT polynomial achieved high results, 93.75%. This 
confirms that DCKTKT is highly noise-tolerant and successfully captures the essential 
features needed for face recognition. It also achieves the most remarkable recognition 
performance, even under the effect of noise. 

 
Table 2. Classification accuracies of recent hybrid forms with DCKTKT in different orders. 

 

Order SKTP STKP DTKT DKTT DCKTKT 
30 81.25% 78.75% 57.50% 83.75% 90.00% 
40 82.50% 80.00% 63.75% 88.75% 95.00% 
50 86.25% 86.25% 62.50% 92.50% 88.75% 

 
Table 3. Classification accuracies of recent hybrid forms with DCKTKT in (order = 30). 

 

 SKTP STKP DTKT DKTT DCKTKT 
= 0.052 Ϭ Speckle 86.25% 77.50% 38.75% 77.50% 90.00% 
= 0.012 Ϭ Speckle 85.00% 75.00% 53.75% 82.50% 91.25% 

Poisson 78.75% 82.50% 58.75% 85.00% 88.75% 
Salt and Pepper-d = 0.05 77.50% 71.25% 27.50% 76.25% 81.25% 
Salt and Pepper-d = 0.01 80.00% 73.75% 53.75% 82.50% 88.75% 

Gaussian = 0.05 72.50% 51.25% 7.50% 58.75% 60.00% 
Gaussian = 0.01 81.25% 71.25% 36.25% 82.50% 85.00% 

 
Table 4. Classification accuracies of recent hybrid forms with DCKTKT in (order = 40). 

 

 SKTP STKP DTKT DKTT DCKTKT 

Speckle Ϭ2 = 0.05 80.00% 73.75% 30.00% 82.50% 90.00% 

Speckle Ϭ2 = 0.01 80.00% 81.25% 61.25% 88.75% 91.25% 

Poisson 83.75% 76.25% 58.75% 85.00% 93.75% 

Salt and Pepper-d = 0.05 83.75% 63.75% 23.75% 87.50% 85.00% 

Salt and Pepper-d = 0.01 81.25% 80.00% 56.25% 90.00% 95.00% 

Gaussian = 0.05 76.25% 40.00% 7.50% 77.50% 72.50% 

Gaussian = 0.01 82.50% 66.25% 35.00% 90.00% 91.25% 
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Figure 8. Classification accuracy for different orders of different hybrid forms with DCKTKT. (a) 

noise free environment, ((b) poisson, (c) 1% salt and pepper, (d) 5% salt and pepper, (e) 1% 
Gaussian, (f) 5% Gaussian, (g) 1% spacle, (h) 5% spacle) noises. 
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In summary, the study reveals that by combining different polynomials such as TP, KP, and 
DCT, the resulting hybrid form can leverage the strengths of each polynomial. For instance, 
the discrete cosine transform has a superior energy compaction property, distinguishing it 
from other polynomials, and the krawtchouk polynomial has a high localization, giving it a 
high ability to extract features. Therefore, the proposed hybrid form has superior energy 
compaction, and with improved feature extraction property, the proposed polynomial can 
more effectively focus on relevant information, resulting in a more precise and resilient face 
recognition system capable of identifying subtle variations in facial features under various 
conditions, whether noise-free or noisy. Furthermore, this hybrid form minimizes 
redundancy in data representation, optimizing resource utilization and improving the 
overall recognition performance. 
 
6. CONCLUSIONS 

 

This paper proposes a new hybrid form of orthogonal polynomials along with their 
corresponding moments. The proposed hybrid form, named DCKTKT, is derived from three 
OPs: DKP, DTP, and DCT. The results show that DCKTKT excels in energy compaction 
compared to existing hybrid forms. To assess its effectiveness, a Face Recognition system 
was implemented as an application. The integration of orthogonal polynomials with a CNN 
module in the Face Recognition system achieved remarkable accuracy, surpassing SKTP, 
STKP, DTKT, and DKTT in both clean and noisy environments. Thus, the proposed DCKTKT 
hybrid OP exhibits superior performance and holds significant promise in signal feature 
extraction. Future work will focus on applying DCKTKT and its transform domain to various 
computer vision fields, particularly image compression, due to its high energy compaction 
properties. 
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 :DCKTKTتحويل متقطع جديد يجمع بين جيب التمام وكراوتشوك وتشيبشيف 

 
 *عبدالحسينصادق حبيب ،  مريم طه ياسين 

 
 جامعة بغداد، بغداد، العراق كلية الهندسة، قسم هندسة الحاسوب، 

 

 الخلاصة
 

في مجال معالجة الصوووووووم الرقعية ةمعالجة  اوووووواماي الصوووووووي، د علم كالراي الحدةد الع عامدل ودةم مهم في دحلل  ةاسوووووو  را  
الععلماي من الإاواماي بضلو  اصوااصوها الضرودل ةقدمادها العاليةه لضهم ةدحلل   لار ل صوااا الإاواماي دوجح ال اياود   جاد 

امعادلاي جديده لكالراي الحدةد الع ع  Hybrid) امده دحع  مواصوووووضاي  لار دحوم، يلض  عر  هبا ال حض  وجيا هجلنيا جديدي
form)  من كالراي الحدةد الع عامدل( يرمم لح بDCKTKT) (  ع عد بشوو   مايسووي جلل دالة الجلت ال عا DCT بالإضووافة )

هبا ال حض دقد م ا طر الرواضووووية ةالن روة ي م في  ه (TcPةم عددل الحدةد دشوووول شووووي  ) (KrPالل م عددل الحدةد كرةدشووووو  )
دم ال ركلم جلل دقليم اصوووووووووووووووااا الععوادلوة العق ريوح من  واييوة دجعي  الحواقواي   للععوادلوة الهجلنوة العق ريوةه جعةل جلل  لو ،

(Energy compaction EC  يلض ا     الععادلة ،)( ةالقدمل جلل اسووووووووو  را  معلماي  لار من الااوووووووووامل )صووووووووووي ةصوووووووووومل
العق رية كضاا ها مقام ةي م  معادلاي هجلنة مق رية سابقاي في اس  را  الععلماي ةهي ا فل  في دجعي  الحاقةه بالإضافة الل 

( كدماسوووة يالة  رهام فعالية الععادلة العق رية Face recognition application ل  دم دح لق دقنية ال عرف جلل الوجوه )
اي ةال عرف جلل الوجوه، ة      الععادلة العق رية ا ها ا فلووووو  في ولوة مشوووووواوووووة اة ةاسووووو  دامها كديد  دةاي اسووووو  را  العلم 

 االية من ال شووش )اللوضاء(ه
 

 دالة الجلت دعا ، م عددل الحدةد الهجلنح، دقنية ال عرف جلل الوجوه، كالراي الحدةد الع عامدلهال ت   الكلمات المفتاحية:

 
 


