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ABSTRACT

Anumerical solutions is presented to investigate the effect of inclination angle (6) ,
perforation ratio (m) and wall temperature of the plate (Ty) on the heat transfer in natural
convection from isothermal square flat plate up surface heated (with and without concentrated
hole). The flat plate with dimensions of (128 mm) length x (64 mm) width has been used five with
square models of the flat plate that gave a rectangular perforation of (m=0.03, 0.06, 0.13, 0.25, 0.5).
The values of angle of inclination were (0° 15° 30° 45° 60°) from horizontal position and the values
of wall temperature (50°C, 60 °C, 70 °C, 90 °C, 100°C). To investigate the temperature, boundary
layer thickness and heat flux distributions; the numerical computation is carried out using a very
efficient integral method to solve the governing equation. The results show increase in the
temperature gradient with increase in the angle of inclination and the high gradient and high heat
transfer coefficients located in the external edges of the plate, for both cases: with and without
holed plate. There are two separation regions of heat transfer in the external edge and the internal
edges. The boundary layer thickness is small in the external edge and high in the center of the plate
and it decreases as the inclination angle of plate increases. Theoretical results are compared with
previous result and it is found that the Nusslet numbers in the present study are higher by (22 %)
than that in the previous studies. And the results show good agreement in range of Raleigh number
from 10° to 10°.

Key words: natural convection, perforation plate, inclined flat plate.
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1. INTRODUCTION

Natural convection cooling of components in electronics which has been attached to printed
circuit boards, which are placed vertically and horizontally in an enclosure, is currently of great
interest to the microelectronics industry. Natural convection cooling is desirable because it doesn’t
require energy source, such as a forcing by fan and it is maintenance free and safe. Cavities with no
obstructions were studied in the past few years such as Zhong et. al., 1985 and Saravanan and
Kandaswamy, 2000. The exact solutions available in the literature, especially that was related to
the boundary layer thickness and temperature profiles and showed that there was a limited attention
to study the effect of the perforation in the flat plate.

The heat transfer by natural convection applied to simple geometries such as flat plates,
spheres, and cylinders, has been extensively studied for decades. Ostrach, 1952, was one who of
those solves the boundary layer equations for natural convection from vertical flat plate using a
numerical method. The set of three equations a continuity, momentum and energy were reduced to
only two equations with their respective boundary conditions. He found that this type of flow was
dependent on the Grashof number and Prandtl number.

The geometry of an inclined, semi infinite without holed flat plates had been considered by a
number of researchers because of its engineering applications. Among whom are Ganesan and
Palani, 2003, Said et. al., 2005, Sparrow and Husar, 1969 and Patterson, et. al. 2007. Most of
these studies had been conducted by either numerical simulations or experimental observations.
Zekeriya and kurtul, 2006, performed a numerical study of laminar natural convection in tilted
rectangular enclosures that contain a vertically situated hot plate using the finite volume method
with SIMPLE algorithm. The Raleigh number and the tilt angle of the enclosure were ranged from
10° to 10" and from 0° to 90° respectively. Kobus and Wedekind 2000, presented experimental
heat transfer data and developed dimensionless correlation for natural convection from heated
horizontal stationery isothermal circular disks over a wide range of Raleigh numbers. The air was
used with variety of disks of different diameters and thickness-to-diameters aspect ratios. Another
type of important convective heat transfer problem is the free and mixed convection boundary-layer
flow near a flat plate which is inclined at a small arbitrary angle to the horizontal or vertical plate.
Jones, 1973 studied theoretically the free convection boundary-layer near a flat plate at small
angles of inclinations to the horizontal by taking into account both the parallel and the normal to the
plate temperature gradients which drive the fluid flow and both positive and negative inclination
angles of the plate were considered. When the inclination angles of the plate was positive, both of
the mechanisms which drive the flow produce favorable effective pressure gradients, so that the
fluid continued to be accelerated along the plate to a final state, far from the leading edge, which
was described by the classical free convection boundary-layer solution over a vertical flat plate. For
negative inclination angles, although the pressure gradient associated with the processes remained
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favorable, separation of the boundary-layer from the plate eventually occured, since the buoyancy
force opposes the motion. Important contributions to these convective flow configurations had also
been made by several authors, notably by Schneider, 1995, Umemura and Law, 1990 ,Weidman
and Amberg, 1996 and Waheed, 2001, conducted a numerical study to solve the governing
equation with the finite difference volume method for the disks and rings with outer diameter (0.2 <
ri<0.9) (where ry is the ratio of inner to outer diameter) heated from the upper surface with constant
temperature in range of Grashof number (10° < Grp, < 107). He observed that the main process of
heat transfer was conduction at Grashof number less than (10°) and the convection at Grashof
number less than (10%). The maximum rate of heat transfer for the rings that had the same outer
diameter for the disk was achieved at the inner diameter with outer diameter between (0.2-0.3).
Mohammed, 2002, studied experimentally the laminar heat transfer by natural convection from
the disks. Waheed, 2001, used inclined upward and downward heated rings at constant temperature
in the rang of Raleigh number (1.7x10° < Rap, < 3.1x10°). The results showed that the average
Nusselt number which depended wholly on the angle of inclination, and there was clear difference
in the rates of heat transfer between the horizontal upward and downward surfaces where the effect
of inner diameter was limited to the increase which leads to rates of heat transfer in the case of
upward rings. Addition of the extended surface to the external edge leads to decrease in the rates of
heat transfer for all inclination angles. Abd, 2005, presented a numerical study of three dimensional
laminar natural convection heat transfer process from isothermal square plate and another plate with
a circular perforation (ratio of perforation to the plate external length ranges from 0.6 to 0.8), and
angle of inclination ranging from (0°-180°). The numerical study included solution of the
momentum and energy equations by using the finite difference method for the range of Grashof
number (10 < Grp, < 5x10* with Prandtle number (Pr=0.72). The results showed that the
maximum temperature gradient was achieved at external edge for the case of horizontal perforation
square plate and heated from upward and at lower external edge for the case of inclination plate.
The local Nusselt number for the perforation plate wholly depended on the inclination angles and
the values of average Nusselt number with a higher level than the square plate and increase as the
perforation ratio increase. While the values of average Nusselt number increases with increasing of
the inclination angles for the upward heated square plate and reach the high limit at the vertical
position, then decrease the inclination angles. Kadhim, 2003, studied three dimensional natural
convection heat transfer from the rings and disks (inner to outer diameter equal to 0.2, 0.5 and 0.8)
angles of inclination ranged from (0° < 6 < 180°) with Prandtle number (Pr=0.72). The results
showed that the local Nusselt number wholly depends on the inclination angles. The variation in
inner diameter caused a limited increase in the heat transfer rates in case of the heated upward rings
and high effected in case of rings heated downward. The average Nusselt number increases with the
increase in the angle of inclination and the ratio of inner to outer diameter for heated upward rings.
Where the maximum value of average Nusselt number is in depended of the inclination angles, its
change depends only on the inner to outer diameter ratio for these rings. The maim aim of this study
is investigating the enhancement the shared influence of the plate perforation and angle inclination
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on the natural convection heat transfer process by using the numerical computation carried out
using the integral method to solve the governing equation and compare the theoretical result with
those of the previous studies.

2. PHYSICAL MODELS AND MATHEMATICAL FORMULATION
Consider the steady free convection flow of a viscous incompressible fluid over an inclined semi-
infinite plate at an angle (@), as shown in Fig. 1. The temperature of plate is assumed constant at (Ty)
and the ambient fluid has the uniform temperature T, where Ty, > T.. For this configuration, the
assumption is that the Boussinesq approximation is valid ,loan 2001.
v & Fliud Thermal boundary layer
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Figure 1. Physical models and coordinate systems of the heated inclined flat plate.

The body force by unit volume is —p g sin (&), where g is the local acceleration of gravity. And
the key assumptions are:

1) Constant properties (p, k, Cp), except for the variation in density that drives the flow

2) Pressure gradients perpendicular to the plate can be neglected.

3) Density variation can be approximated by a linear dependence on temperature. This is called
the Boussinesq approximation.

4) Diffusive transport (of both momentum and energy) in the direction parallel to the plate can be
neglected. There are also, of course, many other implied assumptions (steady-state situation,
viscous dissipation is negligible in the energy equation, everything is constant in the z-
direction (parallel to plate, perpendicular to gravity)).

First, will be look up the “general” governing equations in a reference text, to find the following
equations. Any terms involving the z coordinate or the corresponding velocity component, can be
neglected as well as the transient terms. This leaves: Rolando, 2004, the basic conservation Egs. (1),
(2) and (3) can be written as follows:
Continuity equation (overall mass balance)

o) o) (1)
X oy
and momentum balance in x direction (parallel to plate and gravity) for a Newtonian fluid with
constant p and .
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For a horizontal flat plate, the energy balance for a Newtonian fluid with constant p and x equation

reduces to,

o a1

U&-FVE:aayz (3)
where
[a_u]=0
ot
ou  d%
o o
Then, Eq. (2) becomes:
ou du oP o%u .
U—+V—|=——+n— |- pgsin(@ 4
p[ = GJ ™ n{ayz} pgsin(o) 4
< —p.gsing )

where p_ is the density outside the boundary layer. Replacing Eq. (5) in Eq. (4) yields

p[ug—i +v%“} = gsin(@)(p, - ) +77By—ﬂ (®)

The first term on the right-hand side of Eq. (6) is the buoyancy force, where the density p is a
variable. The density may be represented by a linear function of temperature for small temperature
differences and the change in density is related to the thermal expansion, B, as: Rolando, 2004,

1(0p
—_—| £ 7
/ p[aTjP 0
If B is approximated by:
1(p.-p
x| == 8
p p[Tw_Tj ®)
then
P.—p=pp(T-T,) 9)
and Eq. (2) becomes ,Rolando, 2004:
ou  ou : o%u
Uu—+v—=g(siné T, )+ryr— 10
x g(sind)p(T -T,) i (10)

hence, the buoyancy force is related to the temperature difference.
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Momentum integral method is approximate and much easier to apply to a wide range of
problems than any exact method of solution. The idea behind this: is it is not really interest in the
detailing of the velocity or temperature profiles beyond learning their slopes at the wall (John,
2004). [These slopes give the shear stress at the wall is 7, = 1(0u/dy),, and the heat flux at the

wall is q, =k(dT/dy),_, Schlichting, 1979, where the boundary conditions are:

T=Tw aty=0
w fory » o
0 aty=0
0 fory»ow

T=T
u=yv
u=v

If the integral method is applied in Egs. (10 and 3), these equations (momentum and energy
equations) will be respectively,John, 2004:

ij.uzdyzgﬂj.(T—T )dy—va—u (11)
dx 0 0 : oy y=0
d § oT
—|u(T =T )dy = —a— (12)
dx-([ oy y—0
The functional forms are assumed as follows ,John, 2004
U= -8 3
and
T-T
= 2 = (1-&)? 14
e () (14)
The first derivative of this equation with respect to (y) will be ,John, 2004
oT 2
T =-£@,-T.) (15)
., o
y
where & ==
d 0

After the first derivative of Eq. (13) is used and equaled to zero in order to obtain the value of
maximum velocity component termed u; substituting this equation with Eq. (15) into Eq. (11) gives
the general solution of the laminar thermal boundary layer without pressure gradient

S 1 1 1
= =3.93[0.952 + pr]“(pr) 2(Gr,) * (16)
X

the Gry is the local Grashof number

X 2
14

where (@) is the inclination angle of flat plate with horizontal position.

The solution of the boundary-layer equations for any convection heat transfer problem gives
the velocity and temperature distributions. This is true for any type of solution (analytical or
numerical) and for any type of convection (forced or natural). Once the solution is obtained, the
heat-transfer coefficient is obtained by realizing that as we approach the solid surface, the velocity
vector is tangent to the surface and the heat-flux vector is normal to the surface, thus the heat
transfer is by conduction at the limit as the distance from the wall approaches zero. Therefore, for
the problem described in the previous section, the heat flux is:
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q=h(T, -T,)=kZ- )
I
Subtracting into Eq. (17), will give:
h 2
k &

The value of & from Eq. (16) is used to get the local heat transfer coefficient along the length
of flat plate with respect to x component as follows:

1 1 1 1
h, =0.508(pr)2[0.952 + pr] “k(Gr,)*x * (18)
The Nusselt number is found from the following relation:
Nu, = th(X (19)
The heat dissipation from the heated flat plate can be determined from the following relation:
Q=hA( -Ty) (20)

3. PROBLEM DEFINITION
In natural or free convective heat transfer, heat is transferred between a solid surface and a fluid

moving over it, where the fluid motion is entirely caused by the buoyancy forces arising from density
changes that result from the temperature variations in the fluid, this motion is called natural convection
which can be either laminar or turbulent. However, because of the low velocities that usually exist in
natural convection, laminar flow occurs more frequently than turbulent flow. In this paper, attention is
therefore focused on two dimensional laminar natural convective flow. If the temperature differences
are small enough, the fluid properties, except the fluid density, may be assumed to be constant (fluid
density can not be assumed constant, because its variation induces the fluid motion).

In the present work a heated aluminum flat plate is used with dimensions of (128mm length x
64mm width) and additionally five models of central perforation are used heated from upward flat plate
with dimension of rectangular perforates dimensions of (2mmx4mm), (4mmx8mm), (8mmx16mm),
(16mmx32mm) and (32mmx64mm) are represented by the ratio of the flat plate length to the
perforation length of (m=0.03, 0.06, 0.13, 0.25 and 0.5) respectively. The constant wall temperatures
used in this search were (50°C, 60 °C, 70 °C, 90 °C, 100 °C). Fig. 2 illustrates the flat plate with and
without central perforation and shows the perforation length.
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4. RESULTS AND DISCUSSION

The figures in this paper were generated by the (MATLAB 7) simulation program to study the
effect of the five central rectangular perforations in the heated upward flat plate. Figs. 3 and 4 show
the relationship between the distribution of dimensionless wall temperatures gradient and the region
above the flat plate represented by y-direction for the model of heated upward rectangle flat plate
without perforation (m=0) for values along the x-direction ranging as follows (x/L, =1, 0.75, 0.5,
0.25, 0.15, 0.06 and 0.03) at horizontal position (6=0°). The results compared with the results of the
model (m=0.13) for range of values along the x-direction (x/L, =1, 0.75, 0.5, 0.25) at the same
position (0=0°). The numerical data shows that central perforation is used in the plate in order to
avoid entering the slight declination region. The temperature gradients were located at positions
(x/L, = 0.03, 0.06 and 0.15) in the range of the central perforation. The figures show that high
temperatures gradient along y-direction is achieved for the all models at the external edge while the
low temperatures gradient exists at the internal edge of perforation models and increases with
increasing the perforation ratio. And Fig. 5 shows the development of the thermal boundary layer
thickness (8) along the x-direction of the heated flat plate for various value of the wall temperature
(50°C, 60 °C, 70 °C, 90 °C, 100°C) for two selected models of (m=0 and 0.13) respectively at
horizontal position (6=0°). As is shown in these figures, the thermal boundary layer thickness (3) is
low at the external edge and increases gradually towards the flat plate center, because the fluid
molecular density near the models edges is higher than that near the center with high velocity
leading to generate the Plume ( the thermal separation happens). As a result the thermal boundary
layer thickness (8) increases at the center more than at edges. The transmitted heat at the thermal
separation region will be less than that at the external edge.

Fig. 6 shows the development of thermal boundary layer along x-axis for various values of wall
temperature for the model of heated flat plate (m= 0.13). It is noticed that the thickness of thermal
boundary layer increases gradually from the edge of flat plate towards the center and decreases as
the wall temperature increases. in comparison with the model (m= 0.13) in Fig.5 which shows in
that the thickness of boundary layer is interrupted in the edge at (x=0.056 m) while in the
centerline of flat plate at (x=0.064 m), the boundary layer thickness increases from the external
edges towered the internal edge in which the thickness decreases with increase in the perforation
ratio, compared with first model (m=0) show that the thickness of boundary layer decreases with
increasing the perforation ratio because of the increase in the temperature gradient at the internal
edges.

Figs. 7 and 8 present the effect of flat plate inclination angle on the thermal boundary layer
thickness for two models of the heated plate (m= 0) and (m= 0.13). As shown in these figures, the
thermal boundary layer decreases as the angle inclination deviates from horizontal towards inclined
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position because increasing the temperatures gradient, Abd 2005. Eventually; the effect of all
models of upward heated flat plate on the dimensionless wall temperature gradients (¢) with y-
direction are collected in Fig. 9 that shows the increasing the dimension of the central perforation
from (m=0 and 0.06) leads to increasing the dimensionless wall temperature gradients, then this
increase goes down when the model (m=0.5) is used because the high area removed from the flat
plat leading to decreasing the wall temperature distribution exposed to the ambient.

The local heat transfer coefficient hy, at horizontal position (0=0°) of two models of heated
plate (m= 0) and (m= 0.13) is shown in Fig. 10 the maximum values are achieved in the external
edge because of the movement of the thermal boundary layer, and the heat separation at this
location of the flat plate. The local heat transfer coefficients decrease gradually from the edge of the
flat plate towards the center and the minimum values are at centerline, where the local heat transfer
coefficients increase as the wall temperatures increases. The effect of using perforation model of
(m=0.13) shown in Fig. 11. There are two regions of the heat separation along the upper surface of
heated flat plate: the first one exists in the external edge (x=0) of the plate because this edge is
adjacent to the infinity medium and the second one at (x=0.056) near the perforation internal edge
because this edge is adjacent to the finite medium. Fig. 12 shows the effect of perforation ratio on
the local Nusselt numbers for all models (m=0, 0.03, 0.06, 0.13, 0.25 and 0.5) with x-direction at
horizontal position (6=0°) the figure shows that the high value of local Nusselt numbers is located
in the external edge of the heated flat plate and at perforation edge, The local Nusselt numbers
increase as the perforation dimension increases and show that the model (m=0.5) shows high value
of Nusselt numbers compared with other models.

Fig. 13 shows the relation between the logarithmic local Nusselt numbers with the algorithm of
the local Raleigh numbers (1.5x10° < Ra, < 6.3x10°) at horizontal position (6=0°), where the
logarithm local Nusselt numbers increase as the perforation ratio increases, because by using the
perforation technique, the extraction of the thermal separation region centric in the central of the
plate. And when the inclination angles increase to (6=30°) as in Fig. 14 the relation between the
logarithm of the local Nusslet numbers and the algorithm of the local Raleigh numbers (1.01x10° <
Ray < 6.4x10°) for the all models, show that the local Nusslet numbers increase as the perforation
dimensions and the angle of inclination increase, and the high local Nusselt numbers of (Nu =0.761
Ra %%") of the model (m=0) and (Nu =0.985 Ra>*"*) of the model (m=0.13) where the perforation
dimensions are (8mmx16mm) at inclination of angle of (30°) and the increasing ratio between
(m=0) and (m=0.13) is (23%) .

A comparison of average Nusselt numbers for the square plate in present study with those of the
previous practical and numerical studies on the horizontal square heated plate for, Abd 2005
illustrated in Fig. 15 which shows the average Nusselt numbers for the present study at angle of
inclination (6 =0°) with no central perforation of model (m=0) increasing by (15 %). in the other
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hand, the results are compared with those of the previous studies which used horizontal heated disk
for Abd, 2005, Mohammed, 2002 and Kadhim, 2003 as shown in Fig. 16 which shows that the
average Nusselt numbers agreement with the value studied by them. And at Raleigh number 1.47
x10° the model (m=0.5) shows that Nusselt numbers in the present study compared with those in
the previous studies give an increase of about (20.3%), (22.6%) and (22.1 %) for the results of
Abd, 2005, Mohammed, 2002 and Kadhim, 2003 respectively. This study show a good agreement
in terms of the Nusselt numbers for the heated upward plate at angle of inclination (¢ =30°) with
central perforation of model (m=0.25) compared with the square plate perforated with the circular
perforation of Abd, 2005 and rings of the, Mohammed. 2002.

6. CONCLUSIONS

A numerical investigation was carried out to study the natural convection heat transfer in the
rectangular upward heated inclined perforated flat plate. In this paper, the influence of perforation
ratio (m), Raleigh number (Ra), the angle of inclination (0) and wall temperatures (T,) were
investigated. The numerical results show that: (1) the thermal boundary layer thickness increases as
the wall temperature increases and as the angle of inclination decreases (2) The maximum values of
local heat transfer coefficients are achieved at the leading edge of the flat plat for all models and at
any angle of inclination. (3) The heat transfer process is enhanced with the perforation dimension
increases. (4) The average Nusslet number for the present paper at angle of inclination (6=0°) with
no central perforated perforation ratio (m=0) increases by (15 %). (5) The Nusselt number values
agree with these values presented by previous studies, with increase by (22 %) at (Ra=1.47 x10°)
and (m=0.5).
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NOMENCLATURES
A area of the heated plate, m?
Nu average Nusselt number, --
p pressure, N/m2
g acceleration due to gravity, m/s’
t dimensional time, s
Gr Grashof number, ---
h average heat transfer coefficient, W/m?.°C
hx local heat transfer coefficient, W/m2.°C

u,v  dimensional velocity components, m/s®
X,y  dimensional coordinates, m

Nux  local Nusselt number, ---

Pr Prandtl number, ---

m perforation ratio, ---
k thermal conductivity, W/m.°C
T predicted temperature
T ambient temperature
Tw plate wall temperature
X
Greek Symbols

thermal conductivity, m?/s

volumetric coefficient of thermal expansion, 1/K
angle of inclination, degree

density, kg/m®

boundary layer thickness, mm

kinematic viscosity, m?/s

absolute viscosity, kg/m.s

dimensionless temperature

dimensionless viscosity

ﬂ'e':<00'o DS ™™ K
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Figure 3. Dimensionless wall temperatures gradient vs. y-direction for the model of heated upward
rectangle flat plate without perforation (m=0) for range values along the x-direction at horizontal
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Figure 4. Dimensionless wall temperature gradients vs. y-direction for the model of heated upward
rectangle flat plate with central perforation of dimension of (16mmx32mm) (m=0.13) for range
values along the x-direction at horizontal position (6=0°).
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Figure 5. Thermal boundary layer thickness vs. x-direction for the model of heated upward
rectangle flat plate without perforation (m=0) for a range of wall temperature.
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Figure 6. Thermal boundary layer thickness vs. x-direction for the model of heated upward rectangle

flat plate with central perforation of dimensions (16mmx32mm) (m=0.13) for a range of wall
temperature.
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Figure 7. Thermal boundary layer thickness vs. x-direction for the model of heated upward
rectangle flat plate without perforation (m=0) for a range of inclination angles.
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Figure 8. Thermal boundary layer thickness vs. x-direction for the model of heated upward
rectangle flat plate with central perforation of dimensions (16mmx32mm) (m=0.13) for a range of
inclination angles.

200



g;; ;4 Number 9 Volume 21 September 2015 Journal of Engineering

1.2
1%
N\ ——m=0.13
—¥—m=0.25
0.8 - ——m=0.5
X —%—m=0.06
= —o—m=0.03
¢ = (T TOO) 0.6 Q —o—m=0
(TW'Too) " 7, -
0.4 -
0.2 1 ° ;
O -
0 T T T T T T
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
y(mm)

Figure 9. Dimensionless wall temperatures gradient vs. y-direction for the all studied models of
heated upward rectangle flat plate.
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Figure 10. Local heat transfer coefficients vs. x-direction for the model of heated upward rectangle
flat plate without perforation (m=0) for a range of wall temperature at horizontal position (6=0°).
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Figure 11. Local heat transfer coefficients vs. x-direction for the model of heated upward rectangle
flat plate with central perforation of dimensions (16mmx32mm) (m=0.13) for a range of wall
temperature at horizontal position (6=0°).
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Figure 12. Comparison the distribution local Nusselt number vs. x-direction for all studied models
of heated upward rectangle flat plate angle of inclination (0°).
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Figure 13. Comparison the distribution the local Nusselt number vs. Raleigh number for all studied
models of heated upward rectangle flat plate for horizontal position at angle of inclination (0°)
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Figure 14. Comparison the distribution the local Nusselt number vs. Raleigh number for all studied
models of heated upward rectangle flat plate for horizontal position at angle of inclination (30°).
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Figure 15. Comparison of the distributions of the logarithm Nusselt number vs. Raleigh number
without perforation (m=0) heated upward rectangle flat plate for horizontal position at angle of
inclination (0°).
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Figure 16. Comparison of the distribution of the local Nusselt number vs. Raleigh number with

perforation (m=0.5) heated upward rectangle flat plate for horizontal position at angle of inclination
(30).
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