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ABSTRACT 

       Anumerical solutions is presented to investigate the effect of inclination angle (θ) , 

perforation ratio (m) and wall temperature of the plate (Tw) on the heat transfer in natural 

convection from isothermal square flat plate up surface heated (with and without concentrated 

hole). The flat plate with dimensions of (128 mm) length × (64 mm) width has been used five with 

square models of the flat plate that gave a rectangular perforation of (m=0.03, 0.06, 0.13, 0.25, 0.5). 

The values of angle of inclination were (0
o
, 15

o
 30

o
 45

o
 60

o
) from horizontal position and the values 

of wall temperature (50
o
C, 60

 o
C, 70

 o
C, 90

 o
C, 100

o
C). To investigate the temperature, boundary 

layer thickness and heat flux distributions; the numerical computation is carried out using a very 

efficient integral method to solve the governing equation. The results show increase in the 

temperature gradient with increase in the angle of inclination and the high gradient and high heat 

transfer coefficients located in the external edges of the plate, for both cases: with and without 

holed plate. There are two separation regions of heat transfer in the external edge and the internal 

edges. The boundary layer thickness is small in the external edge and high in the center of the plate 

and it decreases as the inclination angle of plate increases. Theoretical results are compared with 

previous result and it is found that the Nusslet numbers in the present study are higher by (22 %) 

than that in the previous studies. And the results show good agreement in range of Raleigh number 

from 10
5
 to 10

6
. 

Key words: natural convection, perforation plate, inclined flat plate. 

يسخنة ر فوق صفيحة يائهةعهى انتقال انحرارة بانحًم انحراري انحيركزي طيم يست تجويفتأثير  دراسة   

 كاظى عودة جحفو.د. 

 قسى انًكائٍ ٔانًعداخ

 انعايعح انرقُيح انٕسطى,  تغداد -يعٓد ذكُهٕظيا

 انخلاصة

عهى اَرقال انحرارج   (Tw)ٔدرظح حرارج انسطح  (m)َٔسثح انرعٕيف  (θ) زأيح انًيملاسرقصاء ذأشير دراسح عدديح قديد        

يهفى(   528ٔانصفييحح تطفٕل  ) (يركفس  يف  ٔتفدٌٔ ذعٕيفف)تانحًم انحر يٍ صفييحح يسفرٕيح يرتعفح يسفمُح يفٍ انٕظفّ الاعهفى 

  يمرهيفففففح  ًَفففففاصض نهصفففففييحح انًرتعفففففح يففففف  شقفففففة يسفففففرطيم صاخ َسفففففة ذعٕيفففففف خًففففف ٔذفففففى اسفففففرمداو  يهفففففى( 46) ٔسفففففً 

0) ) ْي ييم يمرهيح ٔتسٔايا (m= 0.03, 0.06, 0.13, 0.25, 0.5)ْي 
o
, 15

o
, 30

o
, 45

o
, 60

o
درظاخ قيى ٔيٍ انٕض  الافقي 

50)حرارج يرغيرج ذرضًٍ 
o
C, 60

 o
C, 70

 o
C, 90

 o
C, 100

o
C) انطثقفح  ٔسفً انحفرارج راسح ذٕزي  كلا يٍ درظفح ٔيٍ اظم د

 ُْفا   اظٓفرخ انُرفائط اٌ. انحاكًفح انرياضفيحنركايم نحفم انًعفادلاخ تاسرمداو انرحهيم انعدد  تطريقح ا ٔانييض انحرار انًراخًح 

ًعايفم اعهفى قيًفح نٔ . ٔيرًركس اعهى اَحفدار ففي درظفاخ حفرارجزأيح انًيم نهصييحححرارج ي  زيادج اناَحدار درظاخ في زيادج 

ذرًركفس لاَرقفال انحفرارج ل اَيصفايُطقرفي .ُْٔا  (ي  ٔتدٌٔ ذعٕيف)انحانريٍ  نكهراصييحح انحافاخ انمارظيح نهفي اَرقال انحرارج 

ففي انحاففح انمارظيفح قهيفم . ٔنفٕحع اٌ سفً  انطثقفح انًراخًفح انحراريفح يكفٌٕ انًعٕففحصفييحح انمارظيفح نهٔ انداخهيح في  انحافاخ

 دٔذًف لاٌتانرُفاق  كهًفا ازدادخ زأيفح انًفيذثفد  ْف ِ انطثقفح ٔ في حانفح انًُفٕصض انمفاني يفٍ ذعٕيفف.  في يركس انصييححٔعاني 
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عًا يٕظفٕد ففي انثحفٕز  %(22 )د َسهد في انثحس انحاني اعهى تُسثح اعدأظد اٌ انُظريح انحانيح ي  َرائط ساتقح  طرَح انُرائايق

10 يٍ في يد  رقى رانيظيد تيٍ انُرائط ذقارب  ٔٔظدانساتقح 
5
10. انى 

6
     

 .ئهحصييحح يصقثح, صييحح يسرٕيح يا : انحًم انحر,نرئيسيهانكهًات ا

1. INTRODUCTION 

     Natural convection cooling of components in electronics which has been attached to printed 

circuit boards, which are placed vertically and horizontally in an enclosure, is currently of great 

interest to the microelectronics industry. Natural convection cooling is desirable because it doesn’t 

require energy source, such as a forcing by fan and it is maintenance free and safe. Cavities with no 

obstructions were studied in the past few years such as Zhong et. al., 1985 and Saravanan and 

Kandaswamy, 2000. The exact solutions available in the literature, especially that was related to 

the boundary layer thickness and temperature profiles and  showed that there was a limited attention 

to study the effect of the perforation in the flat plate. 

       The heat transfer by natural convection applied to simple geometries such as flat plates, 

spheres, and cylinders, has been extensively studied for decades. Ostrach, 1952, was one who of 

those solves the boundary layer equations for natural convection from vertical flat plate using a 

numerical method. The set of three equations a continuity, momentum and energy were reduced to 

only two equations with their respective boundary conditions. He found that this type of flow was 

dependent on the Grashof number and Prandtl number. 

     The geometry of an inclined, semi infinite without holed flat plates had been considered by a 

number of researchers because of its engineering applications. Among whom are Ganesan and 

Palani, 2003, Said et. al., 2005, Sparrow and Husar, 1969 and Patterson, et. al. 2007. Most of 

these studies had been conducted by either numerical simulations or experimental observations. 

Zekeriya and kurtul, 2006, performed a numerical study of laminar natural convection in tilted 

rectangular enclosures that contain a vertically situated hot plate using the finite volume method 

with SIMPLE algorithm. The Raleigh number and the tilt angle of the enclosure were ranged from 

10
5
 to 10

7 
  and from 0

o
 to 90

o
 respectively. Kobus and Wedekind 2000, presented experimental 

heat transfer data and developed dimensionless correlation for natural convection from heated 

horizontal stationery isothermal circular disks over a wide range of Raleigh numbers. The air was 

used with variety of disks of different diameters and thickness-to-diameters aspect ratios. Another 

type of important convective heat transfer problem is the free and mixed convection boundary-layer 

flow near a flat plate which is inclined at a small arbitrary angle to the horizontal or vertical plate. 

Jones, 1973 studied theoretically the free convection boundary-layer near a flat plate at small 

angles of inclinations to the horizontal by taking into account both the parallel and the normal to the 

plate temperature gradients which drive the fluid flow and both positive and negative inclination 

angles of the plate were considered. When the inclination angles of the plate was positive, both of 

the mechanisms which drive the flow produce favorable effective pressure gradients, so that the 

fluid continued to be accelerated along the plate to a final state, far from the leading edge, which 

was described by the classical free convection boundary-layer solution over a vertical flat plate. For 

negative inclination angles, although the pressure gradient associated with the processes remained 
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favorable, separation of the boundary-layer from the plate eventually occured, since the buoyancy 

force opposes the motion. Important contributions to these convective flow configurations had also 

been made by several authors, notably by Schneider, 1995, Umemura and Law, 1990 ,Weidman 

and Amberg, 1996 and Waheed, 2001, conducted a numerical study to solve the governing 

equation with the finite difference volume method for the disks and rings with outer diameter (0.2 ≤ 

r1≤ 0.9) (where r1 is the ratio of inner to outer diameter) heated from the upper surface with constant 

temperature in range of Grashof number (10
3
 ≤ GrDo ≤ 10

7
). He observed that the main process of 

heat transfer was conduction at Grashof number less than (10
3
) and the convection at Grashof 

number less than (10
3
). The maximum rate of heat transfer for the rings that had the same outer 

diameter for the disk was achieved at the inner diameter with outer diameter between (0.2-0.3).  

     Mohammed, 2002,  studied experimentally the laminar heat transfer by natural convection from 

the disks. Waheed, 2001, used inclined upward and downward heated rings at constant temperature 

in the rang of Raleigh number (1.7×10
5
 ≤ RaDo ≤ 3.1×10

6
). The results showed that the average 

Nusselt number which depended wholly on the angle of inclination, and there was clear difference 

in the rates of heat transfer between the horizontal upward and downward surfaces where the effect 

of inner diameter was limited to the increase which leads to rates of heat transfer in the case of 

upward rings. Addition of the extended surface to the external edge leads to decrease in the rates of 

heat transfer for all inclination angles. Abd, 2005, presented a numerical study of three dimensional 

laminar natural convection heat transfer process from isothermal square plate and another plate with 

a circular perforation (ratio of perforation to the plate external length ranges from 0.6 to 0.8), and 

angle of inclination ranging from (0
o
-180

o
). The numerical study included solution of the 

momentum and energy equations by using the finite difference method  for the range of Grashof 

number (10
3
 ≤ GrDo ≤ 5×10

4
) with Prandtle number (Pr=0.72). The results showed that the 

maximum temperature gradient was achieved at external edge for the case of horizontal perforation 

square plate and heated from upward and at lower external edge for the case of inclination plate. 

The local Nusselt number for the perforation plate wholly depended on the inclination angles and 

the values of average Nusselt number with a higher level than the square plate and increase as the 

perforation ratio increase. While the values of  average Nusselt number increases with increasing of 

the inclination angles for the upward heated square plate and reach the high limit at the vertical 

position, then decrease the inclination angles. Kadhim, 2003, studied three dimensional natural 

convection heat transfer from the rings and disks (inner to outer diameter equal to 0.2, 0.5 and 0.8) 

angles of inclination ranged from (0
o
 ≤ θ ≤ 180

o
) with Prandtle number (Pr=0.72). The results 

showed that the local Nusselt number wholly depends on the inclination angles. The variation in 

inner diameter caused a limited increase in the heat transfer rates in case of the heated upward rings 

and high effected in case of rings heated downward. The average Nusselt number increases with the 

increase in the angle of inclination and the ratio of inner to outer diameter for heated upward rings. 

Where the maximum value of average Nusselt number is in depended of the inclination angles, its 

change depends only on the inner to outer diameter ratio for these rings. The maim aim of this study 

is investigating the enhancement the shared influence of the plate perforation and angle inclination 
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on the natural convection heat transfer process by using the numerical computation carried out 

using the integral method to solve the governing equation and compare the theoretical result with 

those of the previous studies.          

 

 

2. PHYSICAL MODELS AND MATHEMATICAL FORMULATION  

     Consider the steady free convection flow of a viscous incompressible fluid over an inclined semi- 

infinite plate at an angle ( ), as shown in Fig. 1. The temperature of plate is assumed constant at (Tw) 

and the ambient fluid has the uniform temperature T∞, where Tw > T∞. For this configuration, the 

assumption is that the Boussinesq approximation is valid ,Ioan 2001.  

 
Figure 1. Physical models and coordinate systems of the heated inclined flat plate. 

 

         The body force by unit volume is –ρ g sin ( ), where g is the local acceleration of gravity. And 

the key assumptions are: 

1) Constant properties (ρ, k, Cp), except for the variation in density that drives the flow 

2) Pressure gradients perpendicular to the plate can be neglected. 

3) Density variation can be approximated by a linear dependence on temperature. This is called 

the Boussinesq approximation. 

4) Diffusive transport (of both momentum and energy) in the direction parallel to the plate can be 

neglected. There are also, of course, many other implied assumptions (steady-state situation, 

viscous dissipation is negligible in the energy equation, everything is constant in the z-

direction (parallel to plate, perpendicular to gravity)). 

       First, will be look up the “general” governing equations in a reference text, to find the following 

equations. Any terms involving the z coordinate or the corresponding velocity component, can be 

neglected as well as the transient terms. This leaves: Rolando, 2004, the basic conservation Eqs.  (1), 

(2) and (3) can be written as follows: 

Continuity equation (overall mass balance) 

0
)()(











y

u
v

x

u
u


                                                                                                               (1) 

and momentum balance in x direction (parallel to plate and gravity) for a Newtonian fluid with 

constant   and . 
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
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












                                                                 (2) 

For a horizontal flat plate, the energy balance for a Newtonian fluid with constant   and  equation 

reduces to, 

 

2

2

y

T

y

T
v

x

T
u














                                                                                                         (3) 

where 

0












t
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2

2

2

2

y

u

x
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







 

Then, Eq. (2) becomes: 

)sin(
2

2

 g
y

u

x

P

y

u
v

x

u
u 

















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


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







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                                                                            (4) 

 sing
x

P





                                                                                                                   (5) 

where   is the density outside the boundary layer. Replacing Eq. (5) in Eq. (4) yields  
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y
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g

y
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x
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        The first term on the right-hand side of Eq. (6) is the buoyancy force, where the density ρ is a 

variable. The density may be represented by a linear function of temperature for small temperature 

differences and the change in density is related to the thermal expansion, β, as: Rolando, 2004, 

PT



















1
                                                                                                                       (7) 

If β is approximated by: 



















TT






1
                                                                                                                    (8) 

then  

)(   TT                                                                                                                      (9) 

and Eq. (2) becomes ,Rolando, 2004: 

2

2

)()(sin
y

u
TTg

y

u
v

x

u
u














                                                                                        (10) 

 hence, the buoyancy force is related to the temperature difference. 
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       Momentum integral method is approximate and much easier to apply to a wide range of 

problems than any exact method of solution. The idea behind this: is it is not really interest in the 

detailing of the velocity or temperature profiles beyond learning their slopes at the wall (John, 

2004). [These slopes give the shear stress at the wall is 0)(  yw yu  and the heat flux at the 

wall is 0)(  yw yTkq  Schlichting, 1979, where the boundary conditions are: 

T = Tw        at y = 0 

T = T∞        for y » ∞ 

u = v = 0    at y = 0 

u = v = 0    for y » ∞ 

 

   If the integral method is applied in Eqs. (10 and 3), these equations (momentum and energy 

equations) will be respectively,John, 2004: 

000

2 )(






 

y
y

u
dyTTgdyu

dx

d




                                                                              (11) 

00

)(








y
y

T
dyTTu

dx

d




                                                                                             (12) 

The functional forms are assumed as follows ,John, 2004  
2

1 )1(   uu                                                                                                                           (13) 

and  

2)1(  









TT

TT

W

                                                                                                               (14) 

The first derivative of this equation with respect to (y) will be ,John, 2004  

)(
2

0









TT

y

T
w

y


                                                                                                       (15) 

where 



y

  

After the first derivative of Eq. (13) is used and equaled to zero in order to obtain the value of 

maximum velocity component termed u1 substituting this equation with Eq. (15) into Eq. (11) gives 

the general solution of the laminar thermal boundary layer without pressure gradient  

4

1

2

1

4

1

)()(]952.0[93.3


 xGrprpr
x


                                                                             (16) 

 the Grx is the local Grashof number  

2

3)()sin(



 xTTg
Gr W

x


  

where ( ) is the inclination angle of flat plate with horizontal position. 

         The solution of the boundary-layer equations for any convection heat transfer problem gives 

the velocity and temperature distributions. This is true for any type of solution (analytical or 

numerical) and for any type of convection (forced or natural). Once the solution is obtained, the 

heat-transfer coefficient is obtained by realizing that as we approach the solid surface, the velocity 

vector is tangent to the surface and the heat-flux vector is normal to the surface, thus the heat 

transfer is by conduction at the limit as the distance from the wall approaches zero. Therefore, for 

the problem described in the previous section, the heat flux is: 
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0
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Subtracting into  Eq. (17), will give:  



2


k

h
 

      The value of   from Eq. (16) is used to get the local heat transfer coefficient along the length 

of flat plate with respect to x component as follows: 

4

1

4

1

4

1

2

1

)(]952.0[)(508.0


 xGrkprprh xx                                                                         (18) 

 

The Nusselt number is found from the following relation:  

k

xh
Nu x

x                                                                                                                           (19) 

The heat dissipation from the heated flat plate can be determined from the following relation: 

)( WTThAQ                                                                                                                        (20) 

 
3. PROBLEM DEFINITION    
         In natural or free convective heat transfer, heat is transferred between a solid surface and a fluid 

moving over it, where the fluid motion is entirely caused by the buoyancy forces arising from density 

changes that result from the temperature variations in the fluid, this motion is called natural convection 

which can be either laminar or turbulent. However, because of the low velocities that usually exist in 

natural convection, laminar flow occurs more frequently than turbulent flow. In this paper, attention is 

therefore focused on two dimensional laminar natural convective flow. If the temperature differences 

are small enough, the fluid properties, except the fluid density, may be assumed to be constant (fluid 

density can not be assumed constant, because its variation induces the fluid motion). 

      In the present work a heated aluminum flat plate is used with dimensions of (128mm length × 

64mm width) and additionally five models of central perforation are used heated from upward flat plate 

with dimension of rectangular perforates dimensions of (2mm×4mm), (4mm×8mm), (8mm×16mm), 

(16mm×32mm) and (32mm×64mm) are represented by the ratio of the flat plate length to the 

perforation length of (m=0.03, 0.06, 0.13, 0.25 and 0.5) respectively. The constant wall temperatures 

used in this search were (50
o
C, 60

 o
C, 70

 o
C, 90

 o
C, 100

 o
C). Fig. 2 illustrates the flat plate with and 

without central perforation and shows the perforation length.  
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Figure 2. The studied models of flat plate have been heated from upward surface.  
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4. RESULTS AND DISCUSSION 

       The figures in this paper were generated by the (MATLAB 7) simulation program to study the 

effect of the five central rectangular perforations in the heated upward flat plate. Figs. 3 and 4 show 

the relationship between the distribution of dimensionless wall temperatures gradient and the region 

above the flat plate represented by y-direction for the model of heated upward rectangle flat plate 

without perforation (m=0) for values along the x-direction ranging as follows (x/Lo =1, 0.75, 0.5, 

0.25, 0.15, 0.06 and 0.03) at horizontal position (θ=0
o
). The results compared with the results of the 

model (m=0.13) for range of values along the x-direction (x/Lo =1, 0.75, 0.5, 0.25) at the same 

position (θ=0
o
). The numerical data shows that central perforation is used in the plate in order to 

avoid entering the slight declination region. The temperature gradients were located at positions 

(x/Lo = 0.03, 0.06 and 0.15) in the range of the central perforation. The figures show that high 

temperatures gradient along y-direction is achieved for the all models at the external edge while the 

low temperatures gradient exists at the internal edge of perforation models and increases with 

increasing the perforation ratio. And Fig. 5 shows the development of the thermal boundary layer 

thickness (δ) along the x-direction of the heated flat plate for various value of the wall temperature 

(50
o
C, 60

 o
C, 70

 o
C, 90

 o
C, 100

o
C) for two selected models of (m=0 and 0.13) respectively at 

horizontal position (θ=0
o
). As is shown in these figures, the thermal boundary layer thickness (δ) is 

low at the external edge and increases gradually towards the flat plate center, because the fluid 

molecular density near the models edges is higher than that near the center with high velocity 

leading to generate the Plume ( the thermal separation happens). As a result the thermal boundary 

layer thickness (δ) increases at the center more than at edges. The transmitted heat at the thermal 

separation region will be less than that at the external edge. 

      Fig. 6 shows the development of thermal boundary layer along x-axis for various values of wall 

temperature for the model of heated flat plate (m= 0.13). It is noticed that the thickness of thermal 

boundary layer increases gradually from the edge of flat plate towards the center and decreases as 

the wall temperature increases. in comparison with the model (m= 0.13) in Fig.5 which shows in 

that the thickness of boundary layer is interrupted in the edge at (x=0.056 m) while in  the 

centerline of flat plate at (x=0.064 m), the boundary layer thickness increases from the external 

edges towered the internal edge in which the thickness decreases with increase in the perforation 

ratio, compared with first model (m=0) show that the thickness of boundary layer decreases with 

increasing the perforation ratio because of the increase in the temperature gradient at the internal 

edges.  

        Figs. 7 and 8 present the effect of flat plate inclination angle on the thermal boundary layer 

thickness for two models of the heated plate (m= 0) and (m= 0.13). As shown in these figures, the 

thermal boundary layer decreases as the angle inclination deviates from horizontal towards inclined 
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position because increasing the temperatures gradient, Abd 2005. Eventually; the effect of all 

models of upward heated flat plate on the dimensionless wall temperature gradients (φ) with y-

direction are collected in Fig. 9 that shows the increasing the dimension of the central perforation 

from (m=0 and 0.06) leads to increasing the dimensionless wall temperature gradients, then this 

increase goes down when the model (m=0.5) is used because the high area removed from the flat 

plat leading to decreasing the wall temperature distribution exposed to the ambient. 

        The local heat transfer coefficient hLo at horizontal position (θ=0
o
) of two models of heated 

plate (m= 0) and (m= 0.13) is shown in Fig. 10 the maximum values are achieved in the external 

edge because of the movement of the thermal boundary layer, and the heat separation at this 

location of the flat plate. The local heat transfer coefficients decrease gradually from the edge of the 

flat plate towards the center and the minimum values are at centerline, where the local heat transfer 

coefficients increase as the wall temperatures increases. The effect of using perforation model of 

(m=0.13) shown in Fig. 11. There are two regions of the heat separation along the upper surface of 

heated flat plate: the first one exists in the external edge (x=0) of the plate because this edge is 

adjacent to the infinity medium and the second one at (x=0.056) near the perforation internal edge 

because this edge is adjacent to the finite medium. Fig. 12 shows the effect of perforation ratio on 

the local Nusselt numbers for all models (m=0, 0.03, 0.06, 0.13, 0.25 and 0.5) with x-direction at 

horizontal position (θ=0
o
) the figure shows that the high value of local Nusselt numbers is located 

in the external edge of the heated flat plate and at perforation edge, The local Nusselt numbers 

increase as the perforation dimension increases and show that the model (m=0.5) shows high value 

of Nusselt numbers compared with other models.  

     Fig. 13 shows the relation between the logarithmic local Nusselt numbers with the algorithm of 

the local Raleigh numbers (1.5×10
5
 ≤ Rax ≤ 6.3×10

5
) at horizontal position (θ=0

o
), where the 

logarithm local Nusselt numbers increase as the perforation ratio increases, because by using the 

perforation technique, the extraction of the thermal separation region centric in the central of the 

plate. And when the inclination angles increase to (θ=30
o
) as in Fig. 14  the relation between the 

logarithm of the local Nusslet numbers and the algorithm of the local Raleigh numbers (1.01×10
5
 ≤ 

Rax ≤ 6.4×10
5
) for the all models, show that the local Nusslet numbers increase as  the perforation 

dimensions and the angle of inclination increase, and the high local Nusselt numbers of (Nu =0.761 

Ra 
0.201

) of the model (m=0) and (Nu =0.985 Ra
0.211

) of the model (m=0.13) where the perforation 

dimensions are (8mm×16mm) at inclination of angle of (30
o
) and the increasing ratio between 

(m=0) and (m=0.13) is (23%) .  

      A comparison of average Nusselt numbers for the square plate in present study with those of the 

previous practical and numerical studies on the horizontal square heated plate for, Abd 2005 

illustrated in Fig. 15 which shows the average Nusselt numbers for the present study at angle of 

inclination (θ =0
o
) with no central perforation of model (m=0) increasing by (15 %). in the other 
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hand, the results are compared with those of the previous studies which used horizontal heated disk 

for Abd, 2005, Mohammed, 2002 and Kadhim, 2003 as shown in Fig. 16 which shows that the 

average Nusselt numbers agreement with the value studied by them. And at Raleigh number 1.47 

×10
5
 the model (m=0.5) shows that Nusselt numbers in the present study compared with those in 

the previous studies give an increase of  about  (20.3%), (22.6%) and (22.1 %) for the results of 

Abd, 2005, Mohammed, 2002 and Kadhim, 2003 respectively. This study show a good agreement 

in terms of the Nusselt numbers for the heated upward plate at angle of inclination (φ =30
o
) with 

central perforation of model (m=0.25) compared with the square plate perforated with the circular 

perforation of Abd, 2005 and rings of the,Mohammed. 2002.      

 

6. CONCLUSIONS  

      A numerical investigation was carried out to study the natural convection heat transfer in the 

rectangular upward heated inclined perforated flat plate. In this paper, the influence of perforation 

ratio (m), Raleigh number (Ra), the angle of inclination (θ) and wall temperatures (Tw) were 

investigated. The numerical results show that: (1) the thermal boundary layer thickness increases as 

the wall temperature increases and as the angle of inclination decreases (2) The maximum values of 

local heat transfer coefficients are achieved at the leading edge of the flat plat for all models and at 

any angle of inclination. (3) The heat transfer process is enhanced with the perforation dimension 

increases. (4) The average Nusslet number for the present paper at angle of inclination (θ=0
o
) with 

no central perforated perforation ratio (m=0) increases by (15 %). (5) The Nusselt number values 

agree with these values presented by previous studies, with increase by (22 %) at (Ra=1.47 ×10
5
) 

and (m=0.5). 
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NOMENCLATURES 

A          area of the heated plate, m
2 

  

Nu        average Nusselt number, -- 

p           pressure, N/m2 

g           acceleration due to gravity, m/s
2
 

 t           dimensional time, s 

Gr        Grashof number, --- 

h           average heat transfer coefficient, W/m
2
.
o
C 

hx          local heat transfer coefficient, W/m
2
.
o
C  

u, v       dimensional velocity components, m/s
2
 

x, y      dimensional coordinates, m 

Nux      local Nusselt number, ---  

Pr         Prandtl number, ---  

m         perforation ratio, --- 

k           thermal conductivity, W/m.
o
C 

T          predicted temperature   

           T∞         ambient temperature 

           Tw              plate wall temperature 

            x                      

 

Greek Symbols 

α     thermal conductivity, m
2
/s                   

β     volumetric coefficient of thermal expansion, 1/K 

θ      angle of inclination, degree                   

ρ     density, kg/m
3
 

δ     boundary layer thickness, mm 

ν     kinematic viscosity, m
2
/s 

μ     absolute   viscosity, kg/m.s                                             

          φ     dimensionless temperature 

ζ     dimensionless viscosity 
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Figure 3. Dimensionless wall temperatures gradient vs. y-direction for the model of heated upward 

rectangle flat plate without perforation (m=0) for range values along the x-direction at horizontal 

position (θ=0
o
). 
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Figure 4. Dimensionless wall temperature gradients vs. y-direction for the model of heated upward 

rectangle flat plate with central perforation of dimension of (16mm×32mm) (m=0.13) for range 

values along the x-direction at horizontal position (θ=0
o
). 
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Figure 5. Thermal boundary layer thickness vs. x-direction for the model of heated upward 

rectangle flat plate without perforation (m=0) for a range of wall temperature. 
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Figure 6. Thermal boundary layer thickness vs. x-direction for the model of heated upward rectangle 

flat plate with central perforation of dimensions (16mm×32mm) (m=0.13) for a range of wall 

temperature. 
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Figure 7. Thermal boundary layer thickness vs. x-direction for the model of heated upward 

rectangle flat plate without perforation (m=0) for a range of inclination angles. 
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Figure 8. Thermal boundary layer thickness vs. x-direction for the model of heated upward 

rectangle flat plate with central perforation of dimensions (16mm×32mm) (m=0.13) for a range of 

inclination angles. 
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Figure 9. Dimensionless wall temperatures gradient vs. y-direction for the all studied models of 

heated upward rectangle flat plate. 
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Figure 10. Local heat transfer coefficients vs. x-direction for the model of heated upward rectangle 

flat plate without perforation (m=0) for a range of wall temperature at horizontal position (θ=0
o
). 
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Figure 11. Local heat transfer coefficients vs. x-direction for the model of heated upward rectangle 

flat plate with central perforation of dimensions (16mm×32mm) (m=0.13) for a range of wall 

temperature at horizontal position (θ=0
o
). 

 

0

2

4

6

8

10

12

14

16

18

20

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

x (mm)

m=0.5

m=0.25

m=0.13

m=0.06

m=0.03

m=0

 
Figure 12. Comparison the distribution local Nusselt number vs. x-direction for all studied models 

of heated upward rectangle flat plate angle of inclination (0
o
). 
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Figure 13. Comparison the distribution the local Nusselt number vs. Raleigh number for all studied 

models of heated upward rectangle flat plate for horizontal position at angle of inclination (0
o
) 
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Figure 14. Comparison the distribution the local Nusselt number vs. Raleigh number for all studied 

models of heated upward rectangle flat plate for horizontal position at angle of inclination (30
o
). 
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Figure 15. Comparison of the distributions of the logarithm Nusselt number vs. Raleigh number 

without perforation (m=0) heated upward rectangle flat plate for horizontal position at angle of 

inclination (0
o
). 
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Figure 16. Comparison of the distribution of the local Nusselt number vs. Raleigh number with 

perforation (m=0.5) heated upward rectangle flat plate for horizontal position at angle of inclination 

(30
o
). 
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