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                                                                           ABSTRACT 

This study used a spray pyrolysis approach to create thin films from SnO2 doped with 2% 

Co on a heated glass substrate at 400°C and investigated how the structural and optical 
characteristics are affected by non-thermal plasma. X-ray diffraction analysis was initially 
employed to look into the structural characteristics, and the results indicate that the SnO2 
and SnO2:Co thin film are polycrystalline and have tetragonal structure, peak formation has 
occurred in (110), (101), and (211), which correlate to the subsequent diffraction angles, 
respectively (26.55⁰), (33.90⁰), and (51.55⁰). A peak associated with Co was also observed 
at (311), which is equivalent to the (36.78⁰) diffraction angle. According to AFM analysis, the 
grain size decreases from 64.01 nm to 59.10 nm after doping. Roughness and root mean 
square also appears to increase after doping, according to the UV-VIS spectrometer analysis, 
the transmittance increases with doping and decreases with non-thermal plasma exposure, 
the energy gap value increases during Non-thermal plasma exposure and its decrease after 
doping. Additionally, the absorbance, absorbance coefficient, refractive index and extinction 
coefficient rise following Cold plasma exposure.               
        
Keywords: SnO2:Co, Spray pyrolysis, Non-thermal plasma, Structure properties, Optical 
properties. 
 
1. INTRODUCTION  

 

Beyond the well-known solid, liquid, and gas states, plasma is recognized as the fourth state of 

matter. There are two primary categories of plasma based on temperature: low-temperature and 

high-temperature plasma, also known as gas discharges, are present in a high-temperature plasma 

where all of its particle species—including electrons, ions, and neutral particles are in thermal 

equilibrium (𝑇e ≈ 𝑇i ≈ 𝑇n). Additionally, low temperature plasma is separated into two sub-

sections: The components of thermal plasma are in a condition of local equilibrium, while the 
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electrons in non-thermal plasma, also known as cold plasma, has a temperature that is significantly 

greater than that of the other components: (𝑇e ≫ 𝑇i ≈ 𝑇n). (Abdalameer, 2017). Dielectric 
barrier discharge (DBD), with its huge volume plasma feature, provides one of the most 
efficient non-thermal plasma sources at atmospheric pressure. Additionally, because the 
equipment is simple to use, requires no costly vacuum system, and has cheap operating and 
maintenance costs. (Abdullah et al., 2012; Brandenburg, 2017).   The SnO2: Co thin films 
were subjected to non-thermal plasma (FE-DBS), which is composed of a 150 mm copper 
cylinder with a 2 mm spindle diameter, the spindle's opposite end is attached to a High 
Voltage (HV) connector and its ends are connected to a floating base with a 20 mm 
diameter.(SnO2) thin films are one of the semiconducting oxide nanostructures, It is 
receiving a lot of attention due to their Chemical and Physical characteristics, It is well 
known that n-type semiconductors (Mazloom, 2013;  Bendjedidi  et al., 2015) have a wide 
range of uses and have a large band gap of 3.6–3.8 eV (Saadeddin et al., 2007; Mohammed, 
2012), including as transparent conducting electrodes, heat reflectors in solar cells, 
different gas sensors (Abdullah et al., 2012; Bahade et al., 2017; Chen  et al., 2024). 
Numerous benefits of thin film technology for the photovoltaic industry include cheap cost, 
minimal material and energy usage, and ease of access. It has the highest sensitivity and 
selectivity behavior, making it one of the best options for gas sensor applications, strong 
chemical bonds, great oxidizing power, non-toxicity, and special transport qualities (Gupta  
and Rathore, 2020). Numerous methods have been employed to deposit tin oxide (SnO2) 
thin films, among them RF-Sputtering (Enoki et al., 1992; Ma et al., 2005). sol-gel 
(Guendouz, et al.,  2018; Labreche et al.,  2018). Chemical vapor deposition (Shi et al., 
2010; Yang et al., 2014).  and spray pyrolysis (Serin et al., 2006; Benhaoua et al., 2015; 
Abdelkrim et al., 2016). Spray pyrolysis is one of these methods that has been shown to be 
easy to use, affordable, and repeatable (Sawant et al., 2021; Vossen and Poliniak, 1972).  
This research aims to manufacture thin films of SnO2 material doped with 2% Co by using 
the spray pyrolysis technique (SPT) on the glass substrate heated to 400 ⁰ C, after exposure 
to non-thermal plasma for different exposure times (3,5,7 sec), and study the structure and 
optical properties  
 
 2. EXPERIMENTAL WORK                                                                                                                                      
 
Using the chemical spray pyrolysis method, pure and doped Co in SnO2 thin films were 
created. A  solution of tin chloride salts (SnCl4.5H2O)(Loba Chemie, India) was used to create 
tin oxides, a white solid with a molecular weight of 350.58 g/mole, which was made in 0.1 
M, In 100 ml of pure water (Enoki et al., 1992; Dangi et al., 2023), the (3.5058) g of tin 
chloride was dissolved. In order to guarantee the total dissolving of the material, a magnetic 
stirrer was used to agitate this mixture for 30 minutes, yielding a uniformly white solution. 
Glass bases were cleaned and allowed to dry. Additionally, they measured (2.5⨯2.5) cm, 
Afterwards, the mixture was sprayed onto glass bases that had been heated to 400°C. A tin 
oxide layer was placed on the base using the spray pyrolysis method, using cobaltous 
chloride (CoCl2 .6H2O) as a source of cobalt oxide to create the solution. Cobalt oxide is a solid 
with a pink hue and a molecular weight of 237.93 g/mole, was added to the prior tin oxide 
solution, and the mixture was then magnetically stirred for (30 minutes) to produce a well-
homogenous mixture, after that, the glass was heated to 400⁰C and then the solution was 
sprayed on it. The doped sample was then exposed to the non-thermal plasma for 3, 5, and 
7 seconds.                                                                                           
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3. RESULTS AND DISCUSSION                                                                                                                          
 
3.1 (X-ray) Diffraction                                                                                                                                     
 
The thin films of SnO2 and SnO2: Co were created by the spray pyrolysis technique are shown 
in Fig. 1 and Fig. 2 the polycrystalline structure of tetragonal rutile structure was shown by 
(XRD) analysis of both the pure SnO2 film and SnO2: Co (Bendjedidi et al., 2015; Paneru, 
2019;  Soumya and Xavier, 2022). For the pure samples, The peaks to SnO2 correspond to 
(110),(101),(111),(211),(002),(301),and(321)when2θ(26.55⁰),(33.82⁰),(38.93⁰),(51.70⁰), 
(57.7⁰), respectively. Bragg reflections are observed with peaks of (110), (211) at 2𝜃 
=(26.55⁰),(51.55⁰), the peak of  2 % Co corresponds to (111) when 2𝜃= (45.91⁰)  Because of 
the self-composition phenomena, reflectance values show a strong degree of crystallinity, 
with a noticeable crest that is mostly found in the directionality of (110), Table 1, show all 
Structural parameters .   

Figure 1. the XRD for a SnO2 thin film made using the spray pyrolysis 

 
Figure 2. The XRD of SnO2: Co thin film made using the spray pyrolysis method 
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Table 1. Structure parameters for pure SnO2 and SnO2: Co  thin films prepared by spray          
pyrolysis 

                                                                                                                                  
The study shown that deformation with Co caused the granular size to rise, indicating 
enhanced crystallization in line with research findings (Mohsin et al., 2022; AL-Jawad et 
al., 2016) Full width at half maximum (FWHM) shows that the width of the curve decreases 
in the center of the apex after doping by Co deformation, indicating a rise in grain size since, 
as Scherer's Equation shows.       
 
 
 
                                                                             
 

Card No. hkl Phase dhkl 

Std.(A°) 

Av. G. s G.s(nm) dhkl 

Exp.(A°) 

FWHM 

(°) 

2θ° Sample 

01-077-
0450 

110 Tetragonal 3.355  

39.264 

43.189 3.357 0.188 26.556  

SnO2 

01-077-
0450 

101 Tetragonal 2.649 37.525 2.649 0.221 33.826 

01-077-
0450 

111 Tetragonal 2.313 39.399 2.313 0.213 38.935 

01-077-
0450 

211 Tetragonal 1.767 38.266 1.767 0.230 51.705 

01-077-
0450 

002 Tetragonal 1.596 33.751 1.596 0.268 57.727 

01-077-
0450 

310 Tetragonal 1.500 33.132 1.501 0.279 61.796 

01-077-
0450 

301 Tetragonal 1.417 41.408 1.417 0.228 65.854 

01-077-
0450 

321 Tetragonal 1.216 47.444 1.217 0.216 78.563 

01-077-
0450 

110 Tetragonal 3.355  

42.674 

46.454 2.352 0.175 26.556  

SnO2 : 

Co 01-077-
0450 

101 Tetragonal 2.649 35.741 1.675 0.232 33.826 

01-077-
0450 

111 Tetragonal 2.313 34.328 3.344 0.245 38.935 

01-077-
0450 

211 Tetragonal 1.767 37.728 2.023 0.233 51.705 

01-088-
2325 

111 Cubic 1.974  67.643 1.978 0.1323 45.912 

01-077-
0450 

310 Tetragonal 1.500  36.946 1.543 0.245 57.727 

01-077-
0450 

301 Tetragonal 1.417  39.821 1.557 0.232 61.796 

01-077-
0450 

321 Tetragonal 1.216  37.039 1.321 0.255 65.854 

01-077-
0450 

110 Tetragonal 1.332  48.365 1.417 0.212 78.563 
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3.2 Atomic Force Microscope (AFM) 
 
It was employed to investigate the topology of the (SnO2) film's surface as well as the impact 
of (Co) Deformation., The pure sample has both nanostructured and uniformly distributed, 
with an average diameter of approximately 64.01 nm, RMS roughness of approximately 
31.26 nm, and roughness of 24.37 nm, according to the results of the AFM investigation. After 
doping, the grains decrease in size which is equal to (59.10 nm) and the roughness and 
(RMS) increase after doping, equal to (31.41nm) and (41.08 nm) respectively, which causes 
the reactivity of gases to the sensor surface to grow.   

 
                 Figure 3. The AFM for SnO2 Thin Films 

 
                             Figure 4.  The AFM of a thin sheet of SnO2: Co Thin Films 

 
3.3 The Measurement of Thin Film Thickness      
                                                                             
3.3.1 AFM Thickness Measurement  
 
Since it affects the film's physical properties, thickness is an important consideration. There 
are two ways to determine the film's thickness, there are distinct ways to measure the 
specimen cross section: AFM and TEM, (Bhatt et al., 2020). 
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(A)                                                       (B)                                                 

        Figure 5. AFM thickness measurement of (A)SnO2 and (B)SnO2: Co thin film 

 
 3.3.2 Optical Method   
                                                                                                                           
The thickness of SnO2: Co and pure SnO2 was calculated using the following formula and the 
interference photic method with He-Ne at a wavelength of 632.8 nm and an angle of 450.    
   

t= 
Δx

x
 
λ

2
                                                                                                                                                                (1)    

                                                                                                                                   
The values of X and t represent the dazzling fringe width and thickness, respectively, in 
nanometers. 𝜟X is the opaque fringe width in nanometers. λ is the incident laser beam's 
wavelength in nanometers. The thicknesses of SnO2 and SnO2: Co thin films, measured using 
AFM and optical methods were equal to 127.2 and 142.15 nm, respectively.                                                                                                                                                        
 
3.4 OPTICAL PROPERTIES                                                                                                                                 
 
3.4.1Transmittance  
 
It was found that the transmittance of the thin films made from pure SnO2 is equivalent to 
77.80 % in the visible field. Fig. 6 shows the impact of wavelength on the transmittance in 
the 300-900 nm region for both pure and doped 2 % SnO2:CO While the transmittance of the 
doped thin film SnO2:Co reduces to 64.70% in the visible spectrum and near-infrared region, 
this decrease in transmittance occurs after doping due to the deformation of the cobalt 
particles, which causes the tin oxide particles to fill in these spaces between them, and also 
because the thickness increase after doping this lead to reduce the transmittance, this result 
identical with the research (Bouabdalli et al., 2021). The transmittance spectrum is 
affected by non-thermal plasma, as seen in Fig. 8 where the transmittance of the film 
decreases with longer exposure times to non-thermal plasma, particularly at time (7 sec).              
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Figure 6. Illustration of the transmission of SnO2 and SnO2: Co thin films. 

 
Figure 7. The non-thermal plasma effects on SnO2: Co thin films at (3,5,7 sec) 

 
4.3.2 Absorbance                                                                                                                          
 
Many elements, including the kind of material, thickness, and incident beam wavelength, 
have an impact on absorbance materials, Fig. 8 illustrates how absorbance changes with 
wavelength for all substances under study within the range of 300-900 nm, Because the 
energy gap will narrow with increased doping, it was discovered that the absorbance 
increased following doping. Additionally, it was discovered that the absorbance decreased 
with increasing wavelength for all manufactured thin films. Fig. 9 shows the effect of non-
thermal plasma on the absorbance and it was found the absorbance increases with an 
increases in the exposure time of plasma, this is due to the inverse relationship between 
absorbance and transmittance, where transmittance and absorbance are related to the 
following relationship.       
                                                                    
   T= e-2.303 A                                                                                                                                                    (2)                                                                                                                                               
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Figure 8. the absorbance for SnO2 and SnO2: Co thin films as a function of wavelength 

 

 
Figure 9. illustrates how non-thermal plasma effects on SnO2: Co thin films absorbance 

 
3.4.3 Absorption Coefficient                                                                             
 
The absorption coefficient was computed by.                                                   
 

   α = 
2.303×A

t
                                                                                                                                                    (3)                                                        

                                                                         
where thickness is represented by t and absorbance by A. It was observed that Co-doping 

causes the absorption constant to increase. The absorption coefficient also shows behaviour 

that is opposite to the transmittance pattern; Fig. 10 illustrates how short wavelengths 

cause the absorption coefficient to rise to a greater value before drastically declining with 

increasing wavelength. After being exposed to non-thermal plasma for (3, 5, 7) seconds, the 

absorption coefficient of SnO2: Co films was calculated as a function of wavelength, as shown 

in Fig. 11 It was observed that the absorption coefficient increased with longer exposure 

times.      
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Figure 10. the SnO2 and SnO2: Co thin films absorption coefficients as a function of 

wavelength 
 

 
 

Figure 11. the effect of non-thermal plasma on the absorption coefficient of SnO2: Co thin 
films 

 
3.4.4 Optical Band Gap (Eg)                                                                                                            
 
This is the absorption coefficient based on Tauc's relation (Doyan et al., 2021) 
 
𝛼hυ = 𝐵(hυ − 𝐸𝑔)m                                                                                                                                      (4) 
in which the photon energy is represented by hυ, the energy gap by Eg, and the constant m, 
for direct allowed transmission for semiconductors, has a value of 1/2. In relation to the 
transitions, B is value fluctuates and remains constant, Graphing (𝛼hυ)2 versus photon 
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energy hυ yields the intersection point, which represents the energy gap, when the straight 
component of the resulting curve is stretched to cut the hυ axis at point (𝛼hυ)2 = 0 (Bu et al., 
2023).  Doping influence on the energy gap, as demonstrated by Fig .12 shows that doping 
changes the energy gap from (3.95 to 3.90) The formation of Charge Transfer Complexes 
(CTCs) in the host lattice with the introduction of modest amounts of dopants may explain 
the decrease in optical band gap and activation energy observed upon doping. The effect of 
non-thermal plasma on the energy gap is depicted in Fig. 13 where it was found that the 
energy gap increases with the duration of the non-thermal plasma's exposure. Where are the 
energy gap values after exposure for (3, 5, 7) sec similar to (4.10, 4.05, 400 ev) 
correspondingly, especially on 3 sec exposure time.  

                                                                                    
Figure 12. the energy gap of SnO2 and SO2: Co thin film 

                        

         
Figure 13. the effect of non-thermal plasma on the energy band gap 
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3.4.5 Extinction Coefficient                                                                                                                            
 
The extinction coefficient could be calculated by using the following equation: 

 
Ko = 

αλ

4π
                 (5) 

                                                                                                                                      
Fig. 14 shows the extinction coefficient decreases with increase in the wavelength for all 
pure and doped thin film and also the figure shows the extinction coefficient increases after 
doping This conduct is explained by, the increase of carrier density behavior confirming the 
increase in the absorption coefficient. the plasma causes the extinction coefficient to rise as 
exposure time increases. As a result, doping with cobalt increases the extinction coefficient. 
The effect of non-thermal plasma on the extinction coefficient is depicted in Fig. 15, where 
longer exposure times cause the plasma to increase the extinction coefficient 
 

Figure 14.  the SnO2 and SnO2: Co thin films Extinction coefficient as a function of 
wavelength 

Figure 15.  effect of non-thermal plasma on the SnO2: Co thin-film extinguishing 
coefficient. 
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3.4.6 Refractive Index (n)                                                                                                             
 
Fig. 16 shows the relation between the reflective index and wavelength, the reflective index 
increase with a decrease, wavelength which means an increase with increased energy the 
behavior of the reflective index is the same with reflection, also that the reflective index 
increases after doping 2% Co from (2.580) to (3.475), Fig. 17 show the effect of non-thermal 
plasma on the reflective index, we observed the reflective index increase with an increased 
exposure time of plasma (3, 5, 7) which is equal to (3.115), (4.549), (5.016)  respectively.  
The reflective index and reflection increase after doping and exposure to plasma specifically 
in 7 sec, where the reflective index increased from (2.580 to 5.015) after doping and 
exposure to 7 sec of plasma.                                                                                                                                                                 

 
Figure 16 displays SnO2 and SnO2: Co reflective index as a function of wavelength 

           
Figure 17.  the effect of non-thermal plasma on the refractive in (3, 5, 7sec) of SnO2: Co 

thin films 
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Table 3. the parameter of SnO2 and SnO2: Co thin film 
 

Sample A α (cm-1) K n εr εi Eg (eV) 

SnO2 0.11 12551 0.055 2.580 6.652 0.284 3.95 

SnO2:Co 0.19 21763 0.095 3.473 12.052 0.662 3.90 

 
Table 4. The effect of non-thermal plasma for (3, 5, 7) sec 

 

Time (s) A α (cm-1) K n εr εi Eg (eV) 

3 0.16 18079 0.050 3.115 9.701 0.314 4.10 

5 0.28 32703 0.091 4.549 20.686 0.829 4.05 

7 0.33 37424 0.104 5.016 25.154 1.046 4.00 

 
4. CONCLUSIONS                                                                     
 
The Thin-film manufactured from SnO2 and SnO2: Co by using spray pyrolysis technique 
showed that they belong to a tetragonal-shaped polycrystalline. also, the AFM shows the 
roughness and root mean square increase after doping. The transmittance decreases when 
exposed to non-thermal plasma, as seen in the UV, and the optical energy gap increases after 
exposure to non-thermal plasma, also the absorption, absorption coefficient, refractive index 
and extinction coefficient increase with increased plasma exposure time.                                                                     
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دراسة تاثير البلازما غير الحرارية على الخواص التركيبية و البصلاية للاغشية الرقيقة  
 بطريقة الرش الحراري  Co2SnO :المصنوعة من مادة  

 
 

 رامز احمد الانصاري  *، رنده محمد عبدالله 

 
 كلية العلوم للبنات, قسم الفيزياء, بغداد, العراق  جامعة بغداد, 

 

 الخلاصة                                                                                       
  Co 2SnO%2 :و كذلك     SnO 2في هذه الدراسة تم استخدام طريقة الرش الحراري لتصنيع اغشية رقيقة من مادة القصدير النقي  

حيث تم فحص الخواص التركيبة و البصرية لهذه الاغشية      400⁰و التي تم ترسيبها على قواعد زجاجية مسخنة بدرجة حرارة  
البلازما الباردة على   تأثيرثانية ( من اجل دراسة    3,5,7مختلفة )  بأزمانهذه الاغشية الرقيقة للبلازما    تعريضالرقيقة, ثم تم  

و تملك شكل   التبلورمتعددة    Co 2SnO:ان هذه الاغشية      XRDالخواص التركيبية و البصرية لهذه الاغشية, اظهر فحص  
( و 33.90⁰( ,)26.55⁰( و التي تقابل زاويا الحيود التالية )211( و )101(, )110رباعي, كانت القمم لهذه الاغشية هي )

(. من خلال فحص ال  36.78⁰التي تقابل الزاوية )( و  311هذه القمة هي  )   Co(, كذلك ظهرت قمة تعود الى  51.55⁰)
AFM 64.01ان الحجم الحبيبي قل من    توضحnm 59.10 الىnm    بعد التشويب كذلك لوحظ أيضا ان الخشونة و متوسط

تبين ان النفاذية قد زادت بعد التشويب و قلت بعد تعريضها     UVو من خلال فحص ال    التشويب،مربع الخشونة زادت بعد  
ميعها قد زادت جالباردة لوحظ ان قيمة فجوة الطاقة و الامتصاصية و الثوابت البصرية    للبلازماللبلازما الباردة, بعد تعرض  

 ثانية (.  3,5,7قيمتها بعد التعريض للبلازما بفترات زمنية مختلفة )
 

 التركيبية , الخواص البصرية  الغير حرارية , الخواص   االبلازم, الرش الحراري, Co2SnO: الكلمات المفتاحية:
 


