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ABSTRACT 

Response of cross-ply plates subjected to transient load is obtained using five variables 

refined plate theory, and four variables plate theory. Equations of motion are derived 
through the principle of virtual work. Navier series used for simply supported laminated 
plates.  The results of this work are presented for different parameters, such as the ply 
number, thickness, and modulus ratio with mechanical load (sinusoidal and step pulses), 
which are compared with those obtained using high-order shear plate theory. Five variables 
of refined plate theory give results that are considerably different from the four variables of 
refined plate theory and higher-order theory. The obtained results from the four variables 
theory have the same behavior as those given by higher order theory, but are under-
predicted with small time shifting.  
 

Keywords: Refined plate theory, Composite laminated plate, Transient vibration analysis, 
Higher-order shear deformation theory.  
 
1. INTRODUCTION 
 
Laminated composite shells and plates are the main structural components that are used in 
different applications like supersonic flight vehicles, marine, and space structures that are 
made up of fiber-reinforced plastics. Dynamic loadings are subjected to some structures that 
induce mechanical vibrations and damage; therefore, many vibration researchers have 
studied the natural frequency and responses of composite plates.  
For higher theory, exact solutions of a higher-order shear deformation plate are studied for 
the dynamic response of symmetric cross-ply laminated plates and anti-symmetric (Khdeir 
and Reddy, 1988). Also, angle-ply rectangular plates are subjected to arbitrary loading 
(Khdeir and Reddy, 1989), while various boundary conditions are investigated to obtain 
the response of cross-ply laminate composite plates. by using state variables, equations of 
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the classical, first-order, and third-order theories are converted into a single order of 
equations (Khdeir, 1995). Transient analysis of smart laminated composite plates is 
investigated using higher-order shear deformation theory, shear deformation, and degree of 
orthotropy effects on the response of the plate are considered by (Kumar et al., 2016). A 
new higher-order displacement function is used to derive an equation of motion of the thick 
and thin cross-ply composite plate and investigate transient response under different 
loadings, such as triangle, step, and sinusoidal distribution with different design parameters 
(Ali and Majeed, 2021). A new displacement function is used to solve equations under the 
combined load of laminated plates using thermal buckling and transient mechanical loads. 
The transient response of thick and thin plates is considered with different parameters 
(Sadiq and Majeed, 2024). The natural frequency and fatigue analysis of simply supported 
shells using the general third shell theory are studied by (Jweeg and Alazzawy, 2010).  

 For classical and first-order theory, (Thinh et al., 2014) investigated the natural 
frequencies and the harmonic response of cross and angle ply thick plates and computed to 
construct dynamic stiffness matrices using a new element for thick plates, which is based on 
first shear deformation theory. And general boundary of cross-ply composite laminated 
plate is presented for transient analysis using the first-order theory by reverberation ray 
matrix (Shao et al., 2016), while (Shao et al., 2019) adopted classical laminated and simple 
order theory using reverberation ray matrix method to analyze dynamic characteristic of 
composite laminated plate for boundary and coupling condition. (Majeed and Tayeh, 
2015) studied the dynamic analysis of laminated plates using classical laminated plate 
theory by the Ritz method, while (Ibrahim and Ghani, 2017) used the same method to 
study vibration analysis of a composite plate with different boundary conditions.  
For refined theory: (Ta and Noh, 2015) developed an analytical solution for the dynamic 
response under transverse loading using a new refined theory for Functionally Graded 
Material (FGM) with the state space method. Dynamic analysis using 4-variable refined plate 
theory is developed for [0/90]n  composite plate with piezoelectric composite actuator on 
the upper surface analytically and gives good agreement when using finite element analysis 
(Rouzegar et al., 2020). A refined three-dimensional trigonometric shear deformation 
theory is discussed for stability responses of [0/90]n composite plates. Transverse 
displacements of thickness and in-plane trigonometric variation are proposed for shear 
deformation (Belbachir et al., 2023). Five-variable and four-variable refined plate theories 
are investigated for the thermal buckling of simply supported laminated plates (Hashim 
and Sadiq, 2022; Yahea and Majeed, 2021). 
Transient responses and free vibration are derived analytically using the trigonometric 
zigzag theory of laminated composites and sandwich plates, the results are more accurate 
than shear theory (Chanda and Sahoo, 2021). The inverse hyperbolic zigzag theory is used 
to present the transient response of smart laminated plates analytically. Electromechanical 
load and time dependence are used to derive transient responses and compare the results 
with other theories (Sahoo and Chanda, 2021). Analytical deprived of free and forced 
vibration of sandwich and cross-ply laminated composite plates with trigonometric zigzag 
theory. This kinematic field gives results that are more accurate when compared with other 
theories (Chanda and Sahoo, 2021). Free and forced vibration of the composite plate using 
a five-variable displacement field with non-polynomial zigzag theory, the responses of 
composite plates subjected to different time-dependent loads and blast loads, which give 
more accurate results when compared with those obtained by other theories (Chanda and 
Sahoo, 2021). Evaluated transient response analytically using the trigonometric zigzag 

https://www.sciencedirect.com/topics/materials-science/laminated-composite
https://www.sciencedirect.com/topics/physics-and-astronomy/transient-response
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theory of smart laminated plate coupled with piezoelectric actuators and sensors. The 
dynamic behavior of plates under different electromechanical excitations with different 
geometries and materials is considered (Chanda and Sahoo, 2021). 
 (Kant et al., 1992) used different loads to determine the transient dynamic response of 
composite and sandwich plates using refined theory and superposition technique. The 
dynamic response is developed using the Jaeobi method with a subspace iteration technique, 
and then the mode shapes, while (Khante et al., 2007) developed a higher-order shear 
deformation theory using a finite element model to investigate the damped transient 
dynamic elastoplastic analysis of a plate. The finite element method is proposed to study 
static and dynamic analyses of shells. Numerical solutions of laminated composite shell 
response compared with that developed by first-order shear deformation theory are studied 
by (Pham et al., 2018). Isoperimetric elements with five degrees of freedom are used to 
model the plate and study the displacement for composite plates subjected to different time-
dependent loads and blast loads, which gives more accurate results when compared with 
other theories (Saha and Mandal, 2021).  
In the present work analytical solutions for the transient response of cross play plates are 
studied using different plate theories, a higher-order theory which gives results that closer 
to three dimensions elasticity theory, five variables refined plate theory, and four variables 
plate theory, which gives results closest to those obtained from higher order shear 
deformation theory. Many design parameters have been investigated, such as thickness 
ratio, modulus ratio, and number of layers. 
 

2. DISPLACEMENT FIELD 
 

Five and four variables Refined Plate Theory (RPT) were used to investigate the response of 
a simply supported rectangular plate of total thickness (h) of (n) orthotropic layers as shown in 

Fig. 1. Three components of displacement are extension. wa, bending wb, and shear ws which 
are functions of x, y, and t, represent total transverse displacement (w). (Matsunaga, 2001). 
Based on the RPT assumption, the displacement field is expressed as (Kim et al., 2009):  
 

 
 

Figure1. Coordinate system of laminated plates 
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w(x‚y‚z‚t) = wa(x‚y‚t) + wb(x‚y‚t) + ws(x‚y‚t)                                                                             (1-c)                    
 
 
For small strains, the relation of strain-displacement (Reddy, 2003): 
 

𝜀𝑥 =
𝜕𝑢𝑜

𝜕𝑥
− 𝑧

𝜕2𝑤𝑏

𝜕𝑥2
+ 𝑧 [

1

4
−
5

3
(
𝑧

ℎ
)
2

] 
𝜕2𝑤𝑠

𝜕𝑥2
                                                                            (2-a) 

 𝜀𝑦 = 
𝜕𝑣𝑜

𝜕𝑦
− 𝑧

𝜕2𝑤𝑏
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The strain field is: 
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3. PRINCIPLE OF VIRTUAL WORK 
 

Hamilton's principle is used to derive equations of motion, which depend on refined plate 
theory. (Reddy, 2003). 

 

0 = ∫ δU + δV − δT 
t

0
              

                                                 (5)           
The virtual strain energy  δU is: 
 

δU = [∫ (∫ [σxδεx
k + σyδεy

k + σxyδγxy
k + σyzγyz

k + σxzγxz
k  

k

Ω
] ∂x ∂y) ∂z]

−
h

2
h

2

= 0                            (6)                                         

 
Substituting Eq. (4) into Eq. (6) gives: 
 
δU = ∫ {Nxδεx

0 + Nyδεy
0 + Nxyδγxy

0 +Mx
bδkx

b +My
bδky

b +Mxy
b δkxy

b +Mx
sδkx

s +My
sδky

s +

Mxy
s δkxy

s + Qyz
a δγyz

a + Qxz
a δγxz

a + Qyz
s δγyz 

s  + Qxz
s δγxz

s } ∂x ∂y=0                                                   (7)                                                                 

 
Where: 
 

(Nx‚ Ny ‚Nxy) = ∫ (σx ‚ σy‚ σxy)dz 
h/2

−h/2
= ∑ ∫ (σx ‚ σy‚ σxy)dz

zk+1
zk

N
k=1                                          (8-a) 

(Mx
b ‚ My

b ‚ Mxy
b ) = ∫ (σx ‚ σy‚ σxy)z dz 

h/2

−h/2
= ∑ ∫ (σx ‚ σy‚ σxy)z dz

zk+1
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N
k=1                                (8-b) 

(Mx
s ‚ My

s  ‚ Mxy
s ) = ∫ (σx ‚ σy‚ σxy)f dz 

h/2

−h/2
= ∑ ∫ (σx ‚ σy‚ σxy)f dz

zk+1
zk

N
k=1                                  (8-c) 

(Qxz
a ‚ Qyz

a  ‚Qyz
s ‚Qxz

s ) = ∫ (σxz ‚ σyz ‚gσxz ‚ gσyz) dz 
h

2

−
h

2

= ∑ ∫  (σxz ‚ σyz ‚gσxz ‚ gσyz) dz
zk+1
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N
k=1                                      

                                                                                                                                                                      (8-d) 
Substituting the virtual strain in terms of virtual displacement, Eq. (4) in Eq. (7) and 
integrating, gives:  
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𝜕𝑁𝑥
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I5
∂ẇb

∂y
+ I6

∂ẇs

∂y
)
δ∂ẇs

∂y
+ (ẇa + ẇb + ẇs)δẇa + (ẇa + ẇb + ẇs)δẇb + (ẇa + ẇb +

ẇs)δẇs] dx dy                                                                                                               (11-b) 

 

Where: 

(I1 ‚I2 ‚I3 ‚I4 ‚I5 ‚ I6 ) = ∫ ρ
h

2

−
h

2

(1‚ z‚ z2‚ f(z)‚ zf(z)‚ [f(z)]2 ) dz                                                     (11-c) 

 
4. EQUATIONS OF MOTION  
 
When substituting Eq. (7) into Eq. (11) into Eq. (5), the Euler-Lagrange equation is obtained. 
The equations of motion are calculated by setting the coefficient of (δu, δv, δwa‚δwb‚ δws) of 
Eq. (6) to zero. 
 

δu ∶  
∂Nx

∂x
+ 

∂Nxy

∂y
= I1ü                                             (12-a) 

 δv ∶  
∂Nxy

∂x
+
∂Ny

∂y
= I1v̈                                                           (12-b) 
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∂x∂y
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∂y2
)        (12-c) 
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∂2

∂t2
(
∂2ws

∂x2
+

∂2ws

∂y2
)                                  (12-d) 

δwa ∶   
∂Qxz

a

∂x
+ 

∂Qyz
a

∂y
+ q ∗ wa = I1(ẅa + ẅb + ẅs)                                                                       (12-e)                                      

 
The forces and moments results are given by: (Reddy, 2003). 

{

Nx
Ny
Nxy

} = ∑ ∫ {

σx 
σy 
σxy 

} dz
zk+1
zk

N
k=1                     (13-a) 

{

Mx
b

My
b

Mxy
b

} = ∑ ∫ {

σx 
σy 
σxy 

} z dz
zk+1
zk

N
k=1                                      (13-b) 

{

Mx
s

My
s

Mxy
s
} = ∑ ∫ {

σx 
σy 
σxy 

} f dz 
zk+1
zk

N
k=1                              (13-c) 

{
Qxz
a

Qyz
a } = ∑ ∫ {

σxz 
σyz 

}  dz
zk+1
zk

N
k=1                                  (13-d) 

{
Qxz
s

Qyz
s } = ∑ ∫ {

σxz 
σyz 

}  g dz
zk+1
zk

N
k=1                                (13-e)                                                            

  
The plane stress stiffness Qij are: 

 

Q11 =
E1

1−v12v21
  ‚  Q21 =

v12E2

1−v12v21
   

 Q22 =
E2

1−v12v21
   , Q66 = G12 ‚   
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Q44 = G23  ‚  Q55 = G13 
 
From the constitutive relation of kth layer lamina, the transformed stress-strain relation is: 

{
 
 

 
 
σx
σy
σxy
σyz
σxz}

 
 

 
 

=

[
 
 
 
 
Q11   Q12   0     0      0
Q21   Q22   0     0      0
   0     0     Q66  0      0
   0     0      0   Q44     0
   0     0      0      0  Q55]

 
 
 
 

{
 
 

 
 
εx
εy
γxy
γyz
γxz}
 
 

 
 

                      (14) 

The forces and moments results are related to the strains by relations: 

{

Nx
Ny
 Nxy

} = [

A11 A12 A16
A12 A22 A26
A16 A26 A66

] {

εx
0

εy 
0

 γxy
0

}+[
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B16 B26 B66
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s B22
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s B26
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s
] {
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s
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s

 kxy
s
}                                       

 (15-a) 

{

Mx
b

My
b

 Mxy
b

} = [
B11 B12 B16
B12 B22 B26
B16 B26 B66

] {

εx
0

εy 
0

 γxy
0
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D12 D22 D26
D16 D26 D66

] {

kx
b
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b

 kxy
b

}  + [

D11
s D12

s D16
s

D12
s D22

s D26
s
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s D66
s
] {
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s

ky
s

 kxy
s
}                                         

                                                                                                                                                                  (15-b) 

{

Mx
s

My
s

 Mxy
s
} = [
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s
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s B22
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s
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s B26
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s
] {
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0
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 γxy
0

} + [

D11
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s D16
s
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s
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b
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s H12
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s
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s
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s
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kx
s

ky
s

 kxy
s
}   

                                     (15-c) 

{
Qyz
a

Qxz
a } = [

A44 A45
A45 A55

] {
γyz
a

γxz
a } + [

A44
a A45

a

A45
a A55

a ] {
γyz 
s

γxz
s }          (15-d) 

{
Qyz
s

Qxz
s } = [

A44
a A45

a

A45
a A55

a ] {
γyz
a

γxz
a } + [

A44
s A45

s

A45
s A55

s ] {
γyz 
s

γxz
s }                                             (15-e)  

                                           
Where:                                       

(A ij ‚ B ij ‚ D ij ‚ B ij 
s ‚ D ij 

s ‚ H ij
s

 
) = ∫ Q̅ij

h

2

−
h

2

(1‚  z ‚ z2‚ f(z)‚ z f(z)‚ [f(z)]2 ) dz                           (15-h) 

Equations of motion are solved using Navier’s series, which satisfy simply supported 
boundary conditions are given as (Reddy, 2003): 
u = ∑ ∑ Umn 

∞
n=1

∞
m=1  cos αx sin βy                                            (16-a) 

v = ∑ ∑ Vmn sin αx cos βy
∞
n=1

∞
m=1                                              (16-b) 

wb = ∑  ∑ Wbmn sin αx
∞
n=1

∞
m=1  sin βy                        (16-c)                                    

ws = ∑  ∑ Wsmn sin αx
∞
n=1

∞
m=1  sin βy                        (16-d) 

wa = ∑  ∑ Wamn sin αx
∞
n=1

∞
m=1  sin βy                         (16-e) 

 

where: α =
mπ

a
 , β =

nπ

b
  and (Umn Vmn Wbmn Wsmn Wamn ) are arbitrary constants. 

Substituting the above equations in equations of motion, the following dynamic equations 
are found in matrix form: 
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[
 
 
 
 
s11 s12 s13
s12 s22 s23
s13 s23 s33

    
s14 0
s24 0
s34 0

s14 s24 s34
0 0 0

    
s44 s45
s45 s55]

 
 
 
 

{
 
 

 
 
Umn 

Vmn 

Wbmn 

Wsmn 

Wamn }
 
 

 
 

  +

[
 
 
 
 
m11    0 0
0     m22 0
0         0 m33

     
0 0
0 0
m34 m35

0          0  m34

0         0  m11
     
m44 m45

m11 m55]
 
 
 
 

  

{
 
 

 
 
Ümn
V̈mn
Ẅbmn

Ẅsmn

Ẅamn}
 
 

 
 

=

{
 
 

 
 
0
0
q(t)
q(t)
q(t)}

 
 

 
 

     (17) 

 
5. TRANSIENT SOLUTION   
 
Plate transient displacement calculated by principal mode method with orthogonality 
condition of modes (Khdeir and Reddy, 1989): 

(ωmn
2 −ωsr

2 ) ∫ . ∫ {[I1Umn]Usr + [I1Vmn]Vsr + [I1Wamn + I1Wbmn + I1Wsmn + I3   (α
2 +

b

0

a

0

β2)Wbmn]Wbsr + [I1Wamn + I1Wbmn + I1Wsmn + I6   (α
2 + β2)Wsmn]Wssr + [I1Wamn +

I1Wbmn + I1Wsmn]Wasr} dx dy = 0                                                   (18) 
 
Generalized forces by orthogonality condition are: 

fmn(t) =
∫ .∫ (q∗Wmn)dxdy

b
0

a
0

Nmn
                                                  (19) 

Where: 

Nmn = ∫ . ∫ {I1[Umn
2 + Vmn

2 + 2(WamnWbmn +WamnWsmn +WbmnWsmn)+(Wamn
2 +Wbmn

2 +
b

0

a

0

Wsmn
2 )] + I3[(α

2 + β2)Wbmn
2 ] + I6[I3[(α

2 + β2)Wsmn
2 ]]} dx dy ui(x,y) =

∑ Uimn(x,y)
∞
m=n=1 Timn(t)                                                         (20) 

 
Where (Uimn ) are the plate mode for i = 1 to 5, while the unknown time function is Tmn(t). 

T̈mn +ωmn
2 Tmn = fmn                                                  (21) 

 
For zero initial conditions, the solution (Gutierrez and Reddy, 2017): 

 

Tmn(t) =
1

ωmn
∫ fmn(τ) sinωmn(k)(t − τ) dτ
t

0
                               (22) 

 
Response of plate under a load  q(x,y,t) = q0f3(x,y)F(t) , (m=n=1), can be presented as: 

{
 
 

 
 
u
v
wb
ws
wa}
 
 

 
 

= ∑
q0

Jmn(k)ωmn(k)

{
 
 

 
 

Umn(k)
Vmn(k)
f3

Wsmn(k)

Wamn mn(k)}
 
 

 
 

5
k=1 ∫ F(τ)

t

0
sinωmn(k)(t − τ) dτ                                   (23) 

 
For the sin pulse and step pulse, F (t)  is (Khdeir and Reddy, 1989): 

F(t) = {
sin (πt t1⁄

)             0 ≤ t ≤ t1

0                          t > t1
} 

F(t) = {
1                  0 ≤ t ≤ t1
0                          t > t1

} 
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6. RESULTS AND DISCUSSION  
 

The transverse response of cross-ply laminated plates is analyzed by solving equations of 
motion using MATLAB R2014a programming for material properties used for all figures 
shown in Table 1 (1(in) = 2.54 cm): 
 

Table 1. Material properties (Ali and Majeed, 2021) 

 
E1 172.369 GPa 

G12 = G13 3.448 GPa 

12 0.25 

E2 6.895 GPa 
G23 1.379 GPa 

 1603.03 kg/m3 

a/h 5 
qo 68.9476 MPa 

   
6.1 Comparison Study 

 
Many plate theories are used to investigate the response of a cross simply supported plate, 
refined plate theory with five variables, refined plate theory with four variables, and higher 
order shear deformation theory.  The transient displacement results of laminated plates are 
compared with higher-order shear deformation theory (Ali and Majeed, 2021) of a cross-ply 
(0°/90°/ 0°) square plate (a = b). The response of laminated plates under transient loading 
(sine pulse and step pulse) obtained from four refined theories is closer than that obtained 
from five refined theories when compared to those given from high-order theory, as shown 
in Fig. 2 and Table 2. Therefore, the present study focused on the four-variable refined plate 
theory. Central deflection and non-dimensional normal stress σ1 under both step and sine 
pulses are shown in Figs. 3 and 4, respectively. Which results obtained from the four 
variables theory have the same behavior as those given by higher order theory, but are 
under-predicted with small time shifting.  

    
       a- Sine pulse                b- Step Pulse 

 
Figure 2. Center displacement as a function of time, for different plate theories and pulses. 

(a) sine; (b) step; (HSDT; 4 variable RPT; 5 variable RPT). 
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Table 2. Discrepancy between higher-order and refined plate theory 
 

W in (time) 

Sin pulse 

HSDT 4RPT 5RPT Discrepancy of 

4RTP 

Discrepancy of 

5RTP 

0.608(0.0025s) 0.407(0.0024s) 4.06(0.0032s) 33.059% 567.763% 

W in (time) 

Step pulse 

HSDT 4RPT 5RPT Discrepancy of 

4RTP 

Discrepancy of 

5RTP 

1.08(0.0006s) 0.573(0.0006s) 4.65(0.0005s) 46.944% 330.555% 

  
       a-     Sine pulse    b- Step Pulse 

 
Figure 3. Center displacement as a function of time, for different pulses. (a) sine; (b) 

step; (4 variable RPT).  
 

  
a- Stress1 under sin pulse    b- Stress1 under step pulse 

 
Figure 4. Nondimensional normal stress σ1 as a function of time, for different 

pulses. (a) sine; (b) step; ( 4 variable RPT). 
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6.2 Design Parameters  
 
The thickness ratio, modulus ratio, and number of layers are investigated as design 
parameters of cross-ply plates. It is observed that increasing the modulus ratio leads to a 
decrease in the response of the plate under sine and step pulse, as shown in Fig. 5, because 
stiffness increases. However, Fig. 6 shows that central deflection increases when (a/H) 
decreases; also, the response of several ply (2, 4, and 6) layers illustrated in Fig. 7, having 
the same trend, displacement decreases.  Increase and decrease of displacement due to an 
increase and decrease in stiffness for the same material properties. 

   
a- Sine pulse     b- Step pulse 

Figure 5. Center displacement as a function of time, for different pulses and (E1/E2). (a) 
sine; (b) step; ( 4 variable RPT).[0/90]2 

   
a- Sine pulse     b- Step pulse 

Figure 6. Center displacement as a function of time, for different pulses and (a/H). (a) sine; 
(b) step; (4 variable RPT). [0/90]2 

 
a- Sine pulse     b- Step pulse 

Figure 7. Variation of the center deflection as a function of time, for various pulses and no. 
of layers. (a) sine; (b) step; (4 var. RPT). 
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7. CONCLUSIONS  
   

In the present work, different plate theories are investigated to obtain the dynamic response 
of a simply supported plate, from which the following points are concluded: 
 
1. Dynamic response of laminated cross-ply plates using analytical solutions studied using 

different plate theories, higher-order theory, five variables refined plate theory, and four 
variables plate theory. To compare the obtained results under different loadings, the five 
variables of refined plate theory give results that are considerably different from the four 
variables of refined plate theory and higher-order theory. 

2. The transient response of a plate using four-variable refined theory has similarity with 
classical plate theory, but it describes transverse shear stresses and shear strains closer 
to those obtained from higher-order theory. 

3. Four-variable reined theory is easy to use when compared with higher-order theory. 
4. Changing design parameters using the four-variable refined theory gives the same 

behavior compared with other theories  
Some recommendations for future work are: 
1. Transient response investigation of angel-ply plates using refined theory. 

2.  Static and dynamic analysis of laminated plates with different boundary conditions 

based on refined theory. 

3. Transient response investigation of laminated plates using refined theory in thermal 

environment. 

 
NOMENCLATURE 
 

Symbol Description Symbol Description 
a Plate dimension in x-direction (m) Tmn                       Time function 
b Plate dimension in y-direction (m) t    time (s) 
h Plate thickness x, y, z                    Cartesian Coordinate system 
fmn                      Applied load (N) 𝑤𝑎 , 𝑤𝑏, 𝑤𝑠          Displacement in extension, 

ending, and shear, respectively 
Aij ‚ Bij ‚ Dij ‚ 

 Bij 
s ‚ Dij 

s ‚ Hij
s

 
  

Extension, bending, extension 
coupling (N/m) 

𝑢𝑠, 
𝑣𝑠                        

  Displacement  in x and y direction 
due to shear, respectively 

E1, E2, E3 Elastic modulus components (GPa) εx, εy, εz            Strain components (m/m) 

G12, G23, G13 Shear modulus components (GPa) γxz, γyz        Transverse shear strain (m/m) 

n                          Total number of plate layers                      v12  v21               Poisson's ratio 
Nx‚ Ny ‚Nxy          In-plan force per unit length (N/m) ωmn  natural frequency (rad/s) 

Mx
s ‚ My

s  ‚ Mxy
s  Force per unit length due to shear 

moment (N/m) 
σx  σy  σxy 

σyz σxz        

Stress components (Gpa) 

Qxz
a ‚ Qyz

a    

Qyz
s ‚Qxz

s   

Transverse shear force (N) 

 
STEPS OF THE ALGORITHM 
 

1. Input geometrical and mode specifications a, b, h, N, m, n 
2. Input  material properties, E1(T), E2(T), ρ, υ12(T), υ13, υ23, G12(T), G13(T), G23(T) 

3. Calculate transformed stiffness 
k

ij
Q  



Journal of Engineering, 2025, 31(5) 
 

I. A. Sadiq and W. I. Majeed 

 

125 

4. Calculate stiffness Aij, Bij, Dij, Eij, Fij, Hij 
5. Calculate mass matrix & stiffness matrix 
6. Calculate mode shapes and their frequencies 
7. Input period, load amplitude, load function 
8. Solution 
 
Credit Authorship Contribution Statement  
 

Ibtehal Abbas Sadiq: Writing – review & editing, Writing – original draft, Validation, 
Software, Methodology, data collection. Widad Ibraheem Majeed: review & editing, 
Validation.  
 
Declaration of Competing Interest  
 

The authors declare that they have no known competing financial interests or personal 
relationships that could have appeared to influence the work reported in this paper.    
 
REFERENCES  
 

Ali, A.H. and Majeed, W.I., 2021. February. Transient analysis of laminated composite plate using new 
higher-order shear deformation theory. In IOP Conference Series: Materials Science and Engineering 
(Vol. 1094, No. 1, p. 012040). IOP Publishing. https://doi.org/10.1088/1757-899X/1094/1/012040 

Belbachir, N., Bourada, F., Bousahla, A.A., Tounsi, A., Al-Osta, M.A., Ghazwani, M.H., Alnujaie, A. and 
Tounsi, A., 2023. A refined quasi-3D theory for stability and dynamic investigation of cross-ply 
laminated composite plates on Winkler-Pasternak foundation. Structural Engineering and Mechanics, 
An Int'l Journal, 85(4), pp.433-443. 
https://www.dbpia.co.kr/Journal/articleDetail?nodeId=NODE11606411 

Chanda, A. and Sahoo, R., 2021a. Trigonometric zigzag theory for free vibration and transient 
responses of cross-ply laminated composite plates. Mechanics of Materials, 155, p.103732. 
https://doi.org/10.1016/j.mechmat.2020.103732 

Chanda, A. and Sahoo, R., 2021b. February. Static and dynamic responses of simply supported 
sandwich plates using non-polynomial zigzag theory. In Structures (Vol. 29, pp. 1911-1933). 
https://doi.org/10.1016/j.istruc.2020.11.062 

Chanda, A. and Sahoo, R., 2021c. Forced vibration responses of smart composite plates using 
trigonometric zigzag theory. International Journal of Structural Stability and Dynamics, 21(05), 
p.2150067. https://doi.org/10.1142/S021945542150067X 

Gutierrez Rivera, M. and Reddy, J.N., 2017. Nonlinear transient and thermal analysis of functionally 
graded shells using a seven-parameter shell finite element. Journal of Modeling in Mechanics and 
Materials, 1(2), p.20170003. https://doi.org/10.1515/jmmm-2017-0003 

Hashim, H.A. and Sadiq, I.A., 2022. A five-variable refined plate theory for thermal buckling analysis 
of uniform and nonuniform cross-ply laminated plates. Journal of Engineering, 28(1), pp.86-107.  
https://doi.org/10.31026/j.eng.2022.01.07 

Ibrahim, W.M. and Ghani, R.A., 2017. Free vibration analysis of laminated composite plates with 
general elastic boundary supports. Journal of Engineering, 23(4), pp.100-124. 
https://www.iasj.net/iasj/download/82742ed2ac7e3679 

https://doi.org/10.1088/1757-899X/1094/1/012040
https://doi.org/10.1088/1757-899X/1094/1/012040
https://www.dbpia.co.kr/Journal/articleDetail?nodeId=NODE11606411
https://doi.org/10.1016/j.mechmat.2020.103732
https://doi.org/10.1016/j.istruc.2020.11.062
https://doi.org/10.1142/S021945542150067X
https://doi.org/10.1515/jmmm-2017-0003
https://doi.org/10.31026/j.eng.2022.01.07
https://www.iasj.net/iasj/download/82742ed2ac7e3679


Journal of Engineering, 2025, 31(5) 
 

I. A. Sadiq and W. I. Majeed 

 

126 

Jweeg, M.J. and Alazzawy, W.I., 2010. A study of free vibration and fatigue for cross-ply closed 
cylindrical shells using General Third Shell Theory (GTT). Journal of Engineering, 16(02), pp. 5170-
5184.  

Kant, T., Arora, C.P. and Varaiya, J.H., 1992. Finite element transient analysis of composite and 
sandwich plates based on a refined theory and a mode superposition method. Composite structures, 
22(2), pp.109-120. https://doi.org/10.1016/0263-8223(92)90071-J 

Khante, S.N., Rode, V. and Kant, T., 2007. Nonlinear transient dynamic response of damped plates 
using a higher-order shear deformation theory. Nonlinear Dynamics, 47, pp.389-403. 
https://doi.org/10.1007/s11071-006-9038-8 

Khdeir, A.A. and Reddy, J.N., 1989. Exact solutions for the transient response of symmetric cross-ply 
laminates using a higher-order plate theory. Composites Science and Technology, 34(3), pp.205-224. 
https://doi.org/10.1016/0266-3538(89)90029-8 

Khdeir, A.A. and Reddy, J.N., 1988. Dynamic response of antisymmetric angle-ply laminated plates 
subjected to arbitrary loading. Journal of Sound and Vibration, 126(3), pp.437-445. 
https://doi.org/10.1016/0022-460X(88)90222-2 

Khdeir, A.A., 1995. Transient response of refined cross‐ply laminated plates for various boundary 
conditions. The Journal of the Acoustical Society of America, 97(3), pp.1664-1669.  
https://doi.org/10.1121/1.412043 

Kim, S.E., Thai, H.T. and Lee, J., 2009. A two-variable refined plate theory for laminated composite 
plates. Composite Structures, 89(2), pp.197-205. https://doi.org/10.1016/j.compstruct.2008.07.017 

Kumar, P.V.S., Reddy, D.B.C. and Reddy, K.V.K., 2016. Transient analysis of smart composite laminate 
plates using higher-order theory. IJMET, 7, pp.166-174.  

Majeed, W.I. and Tayeh, F.H., 2015. Stability and dynamic analysis of laminated composite plates. 
Journal of Engineering, 21(08), pp.139-159. 
https://www.iasj.net/iasj/download/a7df27e9ba33864b 

Matsunaga, H., 2001. Vibration and stability of angle-ply laminated composite plates subjected to in-
plane stresses. International journal of mechanical sciences, 43(8), pp.1925-1944. 
https://doi.org/10.1016/S0020-7403(01)00002-9 

Pham-Tien, D., Pham-Quoc, H., Tran-The, V., Vu-Khac, T. and Nguyen-Van, N., 2018. Transient analysis 
of laminated composite shells using an edge-based smoothed finite element method. In Proceedings 
of the International Conference on Advances in Computational Mechanics 2017: ACOME 2017, 2 to 4 
August 2017, Phu Quoc Island, Vietnam (pp. 1075-1094). Springer Singapore. 
https://doi.org/10.1007/978-981-10-7149-2_75 

Reddy, J.N., 2003. Mechanics of laminated composite plates and shells: theory and analysis. CRC 
Press.  

Rouzegar, J., Koohpeima, R. and Abad, F., 2020. Dynamic analysis of laminated composite plate 
integrated with a piezoelectric actuator using four-variable refined plate theory. Iranian Journal of 
Science and Technology, Transactions of Mechanical Engineering, 44, pp.557-570. 
https://doi.org/10.1007/s40997-019-00284-1 

Sadiq, I.A. and Majeed, W.I., 2024. Transient analysis of laminated plates in thermal environment. 
Journal of Applied Engineering Science, 22(1), pp.19-28. https://doi.org/10.5937/jaes0-43714 

https://doi.org/10.1016/0263-8223(92)90071-J
https://doi.org/10.1007/s11071-006-9038-8
https://doi.org/10.1016/0266-3538(89)90029-8
https://doi.org/10.1016/0022-460X(88)90222-2
https://doi.org/10.1121/1.412043
https://doi.org/10.1016/j.compstruct.2008.07.017
https://www.iasj.net/iasj/download/a7df27e9ba33864b
https://doi.org/10.1016/S0020-7403(01)00002-9
https://doi.org/10.1007/978-981-10-7149-2_75
https://doi.org/10.1007/s40997-019-00284-1
https://doi.org/10.5937/jaes0-43714


Journal of Engineering, 2025, 31(5) 
 

I. A. Sadiq and W. I. Majeed 

 

127 

Shao, D., Hu, F., Wang, Q., Pang, F. and Hu, S., 2016. Transient response analysis of cross-ply composite 
laminated rectangular plates with general boundary restraints by the method of reverberation ray 
matrix. Composite Structures, 152, pp.168-182. https://doi.org/10.1016/j.compstruct.2016.05.035 

Shao, D., Wang, Q., Shuai, C. and Gu, J., 2019. Investigation of dynamic performances of a set of 
composite laminated plate systems under the influences of boundary and coupling conditions. 
Mechanical Systems and Signal Processing, 132, pp.721-747. 
https://doi.org/10.1016/j.ymssp.2019.07.026 

Saha, P. and Mandal, K.K., 2021. Transient responses of laminated composite plates. Asian Journal of 
Civil Engineering, 22, pp.137-157. https://doi.org/10.1007/s42107-020-00304-5 

Sahoo, R. and Chanda, A., 2021. Transient analysis of smart composite laminate. The Journal of Strain 
Analysis for Engineering Design, 56(4), pp.225-248. https://doi/abs/10.1177/0309324720957815 

Ta, H.D. and Noh, H.C., 2015. Analytical solution for the dynamic response of functionally graded 
rectangular plates resting on an elastic foundation using a refined plate theory. Applied Mathematical 
Modelling, 39(20), pp.6243-6257. https://doi.org/10.1016/j.apm.2015.01.062 

Thinh, T.I., Nguyen, M.C. and Ninh, D.G., 2014. Dynamic stiffness formulation for vibration analysis of 
thick composite plates resting on non-homogeneous foundations. Composite Structures, 108, pp.684-
695. https://doi.org/10.1016/j.compstruct.2013.10.022 

Yahea, H.T. and Majeed, W.I., 2021. Thermal Buckling of Laminated Composite Plates Using a Simple 
Four-Variable Plate Theory. Journal of Engineering, 27(9), pp.1-19. 
https://doi.org/10.31026/j.eng.2021.09.01 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1016/j.compstruct.2016.05.035
https://doi.org/10.1016/j.ymssp.2019.07.026
https://doi.org/10.1007/s42107-020-00304-5
https://doi/abs/10.1177/0309324720957815
https://doi.org/10.1016/j.apm.2015.01.062
https://doi.org/10.1016/j.compstruct.2013.10.022
https://doi.org/10.31026/j.eng.2021.09.01


Journal of Engineering, 2025, 31(5) 
 

I. A. Sadiq and W. I. Majeed 

 

128 

 دراسة الاستجابة العابرة للصفائح المتعددة الطبقات باستخدام النظرية المحسنة
 

 وداد ابراهيم مجيد *، بتهال عباس صادق ا

  
 ، كلية الهندسة، جامعة بغداد، بغداد، العراق يةالميكانيكالهندسة قسم   

 

 الخلاصة
خمسة ية ذات الالياف المتعامدة والمعرضة الى حمل عابر باستخدام نظرية محسنة بقتم الحصول على استجابة الصفائح الطب

الافتراضي وتم استخدام سلسلة نافير للصفائح الطبقية  أربع متغيرات. تم اشتقاق معادلات الحركة والتي تعتمد على مبدأ الشغل  و 
ذات المساند البسيطة. تم تقديم نتائج هذا العمل لعوامل مختلفة مثل عدد الطبقات ونسبة السمك ومعامل المرونة وبتأثير احمال 

متغيرات اعطت   خمسةنظرية محسنة ب  ميكانيكية ذات النبضة الجيبية والمتدرجة، وتم مقارنة النتائج مع نظرية ذات الرتبة العالية.
باربع متغيرات لها   نتائج النظرية المحسنة  .مع نظرية ذات الرتبة العالية   باربع متغيرات و  النظرية المحسنةنتائج مختلفة عن  

  ولكن بقيم اقل مع ازاحة بسيطة للفترة الزمنية. نظرية ذات الرتبة العاليةنفس التصرف لتل التي تم احصول عليها من ال

 
 نظرية القص ذات الرتبة العالية. نظرية الصفائح المحسنة،  الصفائح الطبقية المركبة، تحليل الاهتزاز العابر،الكلمات المفتاحية:  

 


