University of Baghdad
College of Engineering

Journal of Engineering
JEI/ journal homepage: www.jcoeng.edu.iq
A_dA\

JOURNAL OF ENGINEERING

Volume 31 Number 5 May 2025

Transient Response Investigation of Cross-Ply Plates Using Refined
Theory

Ibtehal Abbas Sadiq *, Widad Ibraheem Majeed

Department of Mechanical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq

ABSTRACT

Response of cross-ply plates subjected to transient load is obtained using five variables
refined plate theory, and four variables plate theory. Equations of motion are derived
through the principle of virtual work. Navier series used for simply supported laminated
plates. The results of this work are presented for different parameters, such as the ply
number, thickness, and modulus ratio with mechanical load (sinusoidal and step pulses),
which are compared with those obtained using high-order shear plate theory. Five variables
of refined plate theory give results that are considerably different from the four variables of
refined plate theory and higher-order theory. The obtained results from the four variables
theory have the same behavior as those given by higher order theory, but are under-
predicted with small time shifting.

Keywords: Refined plate theory, Composite laminated plate, Transient vibration analysis,
Higher-order shear deformation theory.

1. INTRODUCTION

Laminated composite shells and plates are the main structural components that are used in
different applications like supersonic flight vehicles, marine, and space structures that are
made up of fiber-reinforced plastics. Dynamic loadings are subjected to some structures that
induce mechanical vibrations and damage; therefore, many vibration researchers have
studied the natural frequency and responses of composite plates.

For higher theory, exact solutions of a higher-order shear deformation plate are studied for
the dynamic response of symmetric cross-ply laminated plates and anti-symmetric (Khdeir
and Reddy, 1988). Also, angle-ply rectangular plates are subjected to arbitrary loading
(Khdeir and Reddy, 1989), while various boundary conditions are investigated to obtain
the response of cross-ply laminate composite plates. by using state variables, equations of
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the classical, first-order, and third-order theories are converted into a single order of
equations (Khdeir, 1995). Transient analysis of smart laminated composite plates is
investigated using higher-order shear deformation theory, shear deformation, and degree of
orthotropy effects on the response of the plate are considered by (Kumar et al., 2016). A
new higher-order displacement function is used to derive an equation of motion of the thick
and thin cross-ply composite plate and investigate transient response under different
loadings, such as triangle, step, and sinusoidal distribution with different design parameters
(Ali and Majeed, 2021). A new displacement function is used to solve equations under the
combined load of laminated plates using thermal buckling and transient mechanical loads.
The transient response of thick and thin plates is considered with different parameters
(Sadiq and Majeed, 2024). The natural frequency and fatigue analysis of simply supported
shells using the general third shell theory are studied by (Jweeg and Alazzawy, 2010).

For classical and first-order theory, (Thinh et al., 2014) investigated the natural
frequencies and the harmonic response of cross and angle ply thick plates and computed to
construct dynamic stiffness matrices using a new element for thick plates, which is based on
first shear deformation theory. And general boundary of cross-ply composite laminated
plate is presented for transient analysis using the first-order theory by reverberation ray
matrix (Shao etal., 2016), while (Shao et al., 2019) adopted classical laminated and simple
order theory using reverberation ray matrix method to analyze dynamic characteristic of
composite laminated plate for boundary and coupling condition. (Majeed and Tayeh,
2015) studied the dynamic analysis of laminated plates using classical laminated plate
theory by the Ritz method, while (Ibrahim and Ghani, 2017) used the same method to
study vibration analysis of a composite plate with different boundary conditions.

For refined theory: (Ta and Noh, 2015) developed an analytical solution for the dynamic
response under transverse loading using a new refined theory for Functionally Graded
Material (FGM) with the state space method. Dynamic analysis using 4-variable refined plate
theory is developed for [0/90]n composite plate with piezoelectric composite actuator on
the upper surface analytically and gives good agreement when using finite element analysis
(Rouzegar et al., 2020). A refined three-dimensional trigonometric shear deformation
theory is discussed for stability responses of [0/90]n composite plates. Transverse
displacements of thickness and in-plane trigonometric variation are proposed for shear
deformation (Belbachir et al., 2023). Five-variable and four-variable refined plate theories
are investigated for the thermal buckling of simply supported laminated plates (Hashim
and Sadiq, 2022; Yahea and Majeed, 2021).

Transient responses and free vibration are derived analytically using the trigonometric
zigzag theory of laminated composites and sandwich plates, the results are more accurate
than shear theory (Chanda and Sahoo, 2021). The inverse hyperbolic zigzag theory is used
to present the transient response of smart laminated plates analytically. Electromechanical
load and time dependence are used to derive transient responses and compare the results
with other theories (Sahoo and Chanda, 2021). Analytical deprived of free and forced
vibration of sandwich and cross-ply laminated composite plates with trigonometric zigzag
theory. This kinematic field gives results that are more accurate when compared with other
theories (Chanda and Sahoo, 2021). Free and forced vibration of the composite plate using
a five-variable displacement field with non-polynomial zigzag theory, the responses of
composite plates subjected to different time-dependent loads and blast loads, which give
more accurate results when compared with those obtained by other theories (Chanda and
Sahoo, 2021). Evaluated transient response analytically using the trigonometric zigzag
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theory of smart laminated plate coupled with piezoelectric actuators and sensors. The
dynamic behavior of plates under different electromechanical excitations with different
geometries and materials is considered (Chanda and Sahoo, 2021).

(Kant et al., 1992) used different loads to determine the transient dynamic response of
composite and sandwich plates using refined theory and superposition technique. The
dynamic response is developed using the Jaeobi method with a subspace iteration technique,
and then the mode shapes, while (Khante et al., 2007) developed a higher-order shear
deformation theory using a finite element model to investigate the damped transient
dynamic elastoplastic analysis of a plate. The finite element method is proposed to study
static and dynamic analyses of shells. Numerical solutions of laminated composite shell
response compared with that developed by first-order shear deformation theory are studied
by (Pham et al., 2018). [soperimetric elements with five degrees of freedom are used to
model the plate and study the displacement for composite plates subjected to different time-
dependent loads and blast loads, which gives more accurate results when compared with
other theories (Saha and Mandal, 2021).

In the present work analytical solutions for the transient response of cross play plates are
studied using different plate theories, a higher-order theory which gives results that closer
to three dimensions elasticity theory, five variables refined plate theory, and four variables
plate theory, which gives results closest to those obtained from higher order shear
deformation theory. Many design parameters have been investigated, such as thickness
ratio, modulus ratio, and number of layers.

2. DISPLACEMENT FIELD

Five and four variables Refined Plate Theory (RPT) were used to investigate the response of
a simply supported rectangular plate of total thickness (h) of (n) orthotropic layers as shown in
Fig. 1. Three components of displacement are extension. w,, bending wy,, and shear wg which
are functions of x, y, and t, represent total transverse displacement (w). (Matsunaga, 2001).
Based on the RPT assumption, the displacement field is expressed as (Kim et al., 2009):

[Sf=3

[S]}=2

A

Figurel. Coordinate system of laminated plates

) 5 (z\2] aws

uCeyat) =uCoyt) = 2 (52) +2 ;=5 () |52 (1-2
F) 2] aw,

v(xy,zt) = v,(xyt) — z (alyb) +z E —g(%) ]% (1-b)
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w(x,y,z,t) = wa(xy,t) + wp(x,y,t) + ws(x,y,t) (1-0)

For small strains, the relation of strain-displacement (Reddy, 2003):

_ du, 2%°wy, 1 5/(2\%, 82wq
€ = 5y "2 ow +Z[r5(z)1 o7 (2-2)
_ v _ 0wy 1_5(z\% 22ws ]
& T 5y T 7oy tzl 3(h) ] 2y? (2-b)
du, . v, 2wy, 1 5/(z\2%, 8%ws
YXY dy + ax 0x dy +22 [Z_E(H) ] dx oy (Z-C)
owg 5 z45 0wg
a 5 2.9
Ve = 5ot G50 5 (2-€)
The strain field is:
Ex EX kX k)S(
{Sy}= ey etz ky p K (3-2)
Yxy ng k)lgy k)S(y
sz} {Yﬁz} { Y;S(z}
= + 3-b
{YYZ Y?Iz & Y;Z ) ( )
Where:
(o
8,? dx
o _ 9o
& =94 o (4-a)
%?y 0uo | 9vo
\By ox
(_9°wp
kg 0x2
bl _) _2w
ky =4~ %2 [ (4-b)
kgy _ azwb
\ ox dy/
[ 9%wyg )
kS 0x?
kS 0%ws
ye=193 — ay2 ; (4-c)
k)S(y _ aZWS
\ 6X0yj
a 0wy s owg
Yxz] _ ) ox Yxz | _ ) ox
o) = o {vsef = om (4-d)
dy ) ady X
1 5 Z 5 Z
f=—jz+32(3) L g=5-5(7) (4-¢)
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3. PRINCIPLE OF VIRTUAL WORK

Hamilton's principle is used to derive equations of motion, which depend on refined plate
theory. (Reddy, 2003).

0= [ 8U+68V—6T

(5)
The virtual strain energy 68U is:
L
oU = [fE 2 (fﬂ [0X8£§§ + 0y8£1§ + ny6yl)§y + O'YZYI;Z + zey§Z ] 0x 6y) 0z] =0 (6)
2
Substituting Eq. (4) into Eq. (6) gives:
8U = J {Nx8ed + Ny8e9 + Ny, 8y9y + MPSkE + MPSk] + MPy 8kEy, + M§SkS + MSSkS +
M3y SkSy + Q528Y5, + Qke8v3z + Q528Y5, + Q38Y.} 9xy=0 (7)
Where:
h/2
(NX’ N xy) f h/Z(O-X ) Gyr ny)dz = lej=1 J‘ZZkk+1 (O'X , O'y, O'Xy)dZ (8'3)
h/2
(M2, Mb MP ) [ h/Z(O'X, oy, ny)z dz = ¥N_, fzzkk“(ox, Oy, ny)z dz (8-b)
h/2
(Mg, M5, MS,) = [ h/z(ox, Oy, Oxy)fdz = YR_; fzzkk“(cx, Oy, Oyy)f dz (8-0)
h

(Qa, vz ,Q§2.Q§Z) = ffh(oxz, Oyz €0xz » goyz) dz = lelefzzkk“ (0xz, Oyz /80xz gcyz) dz
2

(8-d)
Substituting the virtual strain in terms of virtual displacement, Eq. (4) in Eq. (7) and
integrating, gives:

AN, oN ON, ON, 92MP a’M
O=f[—5uog—v06—yy— UO#—6 y_Sbax Sba -
a2m2, 92MS a%M; 92 Mxy 20%, 204, 005,
20w, T A oz Swg 37 2 Swy xay ~ Wa 5, ~ Sw, o Sw 3y
swy 222 gxdy (9)
N :I{q * (W, +W,+ W, ) dxdy (10)
Q
h
- B aﬂ W [es sawb saws oW, c0Ws|[e
8T—ffhp{[uo z—+f HSuo z +f ]+[V0 Zay+f0y][8V°
”Wb + fS"WS] + [, + Wy, + W] [Sw, + 8y, + aws]} dv (11-a)
8T = f [(Iluo — LT, av}i) 8, + ( R 15 aaWS)S‘;fb + (L, — 1522+
g 8w awb W B ow, | dws) 8w -
6 ot) 2 +(11v0 Lo+ 1, ) 890+ (—12v0 + 15 1 ay)—ay + (Luvo
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I a;;b + 1 a;:f) 80w (W, + Wy, + We)8w, + (W, + Wy, + W)8wy, + (W, + Wy, +
ws)aws] dx dy (11-b)
Where:
h
(11 3 P PR PR P ) = f_zhp (1, z, 22, f(2), zf(2), [f(2)]* ) dz (11-¢)
2

4. EQUATIONS OF MOTION

When substituting Eq. (7) into Eq. (11) into Eq. (5), the Euler-Lagrange equation is obtained.
The equations of motion are calculated by setting the coefficient of (6u, 6v, Sw,,dwy, Swg) of
Eq. (6) to zero.

du : o = 4 oy = [Lu (12-a)

My Ny o _
ov : ~ T oy [,V (12-b)

82MP a*Mb,  92MP . . . 02 92wy , 0%wyp
8Wbe: Ox2 + 2 axayy + dy Zy + q*wp = Il(wa + Wp + WS) — 13 ﬁ( Ox2 ?) (12-C)
aZMS GRS OZMS 0QS,  0Q5; 9%wg
Swsh : ="+ 2 y+62+ + ay +q* Wy = 1 (W, + Wy + W) — 166t2(0x2+
azws) (12-d)
dy?
a 0Q3,

Sw, : 0% | 0% q* wy = [, (W, + Wy, + W) (12-e)

0x dy
The forces and moments results are given by: (Reddy, 2003).
NX GX
Ny =yN_, fzzkk“ { Oy }dz (13-a)

Oxy

Oxy

O-X
MS = Y=y fzzkkﬂ { Oy Ifdz (13-c)

O'Xy

} L "} dz (13-d)
} i g "} gaz (13-¢)

M,‘Q Oy
My + =¥, fzzkk+1 { % }Z dz (13-b)

The plane stress stiffness Q;; are:

Q E Q V12E2
11 = 21 —
1- V12V21 1-vy2V2g
= =G
QZZ 1-v45Va Q66 12
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Qa4 = Ga3 , Q55 = Gy3

From the constitutive relation of k™ layer lamina, the transformed stress-strain relation is:

Ox Qi1 Q2 0 0 O07(%&
Oy Q21 Q22 0 0 0] gy
0'Xy = 0 O Q66 0 0 ny (14)
GyZ 0 0 0 Q44 0 sz
Oxz 0 0 0 0 Qsgsd\yxs
The forces and moments results are related to the strains by relations:
0 b -
Ny A1r A Agg Eg Bi1 Biz Big k’é Bil Biz Bie k)z
Ny + =[A1z Az Ax|{ & +|Biz Baz Bas|{ ky #+|Bi, B3, B3s[{ ky
Nyy Ae Az A Yy Bis B2s Bes kgy Bf¢ B3¢ Biel | kzy
) (15-a)
M’E Bi1 Biz Big sg (D117 D1z Dyg] k,E\ Di; Di, Dis k)Z(
My & =(Bi; By, Bys|{ & p+|Diz Dz Dyl ky ¢ +|Di, D3, D3¢|4 Ky
M}(’y [Bis Bas  Bee Yy D1 D26 Deel \kgy} Di¢ D3¢ Dge] | kzy
(15-b)
- 0 - 1 1.5
M) B Bf Bi](®) [Dh D DiJ(K) [HL ML H)(K
My b =|Bi, B3, B3[: & p+|[Dj, D3, D3g|q ky p+|H5, H3, H3|{ ky
My Ble B3s Bgel ng [Dic D3¢ Dl kng) His H3e Hge] | Kxy
15-c
Qy- Asr Aus](Vyz A%s Als](VYyz ( )
(- 2B S
Qé(z ;15 355 y§z ;15 S55 Y;(Z
- I 0
sz 45 554 (Yxz 45 551 \Yxz
Where:
h
(A4, By, Dy, By, DY HY ) = [2Qy (1, 2,22 £(2), 2 £(2), [f(2)]? ) dz (15-h)
2

Equations of motion are solved using Navier’s series, which satisfy simply supported
boundary conditions are given as (Reddy, 2003):

u=)r_12n Upnn cosaxsinBy (16-a)
V= 1201 Vi sin ax cos By (16-b)
Wh = Xm=1 2in=1 Womn Sin ax sin By (16-c)
Ws = 21?;:1 Z?lozlwsmn sin ax sin By (16-d)
Wa = Xm=1 2n=1 Wamn Sinax sin By (16-e)

mTt n
where:a = —,3 = —
a ’B b

T

and (Ui Vinn Womn Wsmn Wamn ) are arbitrary constants.

Substituting the above equations in equations of motion, the following dynamic equations
are found in matrix form:
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S11 S12 S13 S14 O Umn my4 0 0 0 0 ['J‘mn 0

S12 S22 S23 Spy O Vinn 0 m,, O 0 0 Vinn 0

S13 S23 S33 S34 0 |{Whmn ¢ +]0 0 m33 mg mas| Wy =190 (17)
S14 Sza S3a Saa  Sas| | Wsmn 0 0 mgy Mag Mys| |y q(t

0 0 0 Si5 Sssd \Wamp 0 0 my; my; Mgy Wamn q(t)

5. TRANSIENT SOLUTION

Plate transient displacement calculated by principal mode method with orthogonality
condition of modes (Khdeir and Reddy, 1989):

b
((Urznn - (‘)gr) foa- fo {[IlUmn]Usr + [Ilvmn]vsr + [Ilwamn + I1Wbmn + I1Vvsmn + I3 (az +
BZ)Wbmn]Wbsr + [Ilwamn + I1Wbmn + I1Wsmn + I6 (az + BZ)Wsmn]Wssr + [Ilwamn +

[;Womn + I1Wsmn]Wasr} dxdy = 0 (18)
Generalized forces by orthogonality condition are:

2 [°(q*Winn) dx d
N (19)
Where:

b
Nmn = foa- fo {11 [Urznn + VI%ln + 2(Wamnvvbmn + WamnWsmn + Wbmnwsmn)‘l'(we%mn + ngn +
Wenn)] + 13[(a® + BH)Winal + L[ 13[(a® + B*)Winn [} dx dy uicey) =
Z?ﬁ:n:l Uimn(x,y) Timn(t) (20)

Where (Ujny, ) are the plate mode for i = 1 to 5, while the unknown time function is Ty ).
Tmn + (*)IznnTmn = fmn (21)

For zero initial conditions, the solution (Gutierrez and Reddy, 2017):
1t :
Tmn(t) = (D_mn fO fmn(‘l:) SIN Wmn (k) (t - T) dt (22)

Response of plate under aload qyy) = qof3xy)F (v, (m=n=1), can be presented as:

u Unn(i)

v Vinn) .
Wy p = 215(21 ](k?—(z(k) f3 fO F(T) sin (")mn(k) (t - T) dt (23)
Ws e e Wsmn(k)
Wa Wamn mn(k)

For the sin pulse and step pulse, F (t) is (Khdeir and Reddy, 1989):

o (T
Fio = {sm( /t1) 0<t< tl}

0 t>t,
. _{1 OStStl}
® =0 t>t,
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6. RESULTS AND DISCUSSION

The transverse response of cross-ply laminated plates is analyzed by solving equations of
motion using MATLAB R2014a programming for material properties used for all figures
shown in Table 1 (1(in) = 2.54 cm):

Table 1. Material properties (Ali and Majeed, 2021)

E1 172.369 GPa
G12 =G13 3.448 GPa

V12 0.25

E; 6.895 GPa

Gz3 1.379 GPa

5 1603.03 kg/m?
a/h 5
9o 68.9476 MPa

6.1 Comparison Study

Many plate theories are used to investigate the response of a cross simply supported plate,
refined plate theory with five variables, refined plate theory with four variables, and higher
order shear deformation theory. The transient displacement results of laminated plates are
compared with higher-order shear deformation theory (Ali and Majeed, 2021) of a cross-ply
(0°/90°/ 0°) square plate (a = b). The response of laminated plates under transient loading
(sine pulse and step pulse) obtained from four refined theories is closer than that obtained
from five refined theories when compared to those given from high-order theory, as shown
in Fig. 2 and Table 2. Therefore, the present study focused on the four-variable refined plate
theory. Central deflection and non-dimensional normal stress o1 under both step and sine
pulses are shown in Figs. 3 and 4, respectively. Which results obtained from the four
variables theory have the same behavior as those given by higher order theory, but are
under-predicted with small time shifting.

5 6
— © —HSDT +
— % — Present RPT without wa 5¢ T nooF
— — 3 +.
4 +7Fm*+ + —Present RPT with wa TT Mo T* oo T | X\f ‘(
# % af M [ [ I
iy i I [ |
+ [ LUy [ I
_ 3 g 5 e
=z = | | I + o +
£ 7 ¥ - I A B A B A S
£, £ + E | Jy + JY g I [
g n * I R O T A
= + + 3 ooy [ N
B 7 i Fall o8 ugm ) e\ lge N1
a 7 % a DT 5 VA f
A X N S A S o el Vo
# R o
odst Bt ki pefeet]
- [
HSDT l/
Ak 4 — Present RPT without wa +
— + —Present RPT with wa
4 . ‘ ‘ ‘ ‘ ‘ 5 ‘ ‘ ‘
) 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Ttime (s) %1073 Time (s) x107%
a- Sine pulse b- Step Pulse

Figure 2. Center displacement as a function of time, for different plate theories and pulses.
(a) sine; (b) step; (HSDT; 4 variable RPT; 5 variable RPT).
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Table 2. Discrepancy between higher-order and refined plate theory

W in (time)
Sin pulse
HSDT 4RPT 5RPT Discrepancy of Discrepancy of
4RTP 5RTP
0.608(0.0025s) | 0.407(0.0024s) | 4.06(0.0032s) 33.059% 567.763%
W in (time)
Step pulse
HSDT 4RPT 5RPT Discrepancy of Discrepancy of
4RTP 5RTP
1.08(0.0006s) 0.573(0.0006s) | 4.65(0.0005s) 46.944% 330.555%
! - ; —H D’]“ v ' ' B q" 7;07HSDT'
ﬁ% S T N A i
g ' ] STTE ALY Sl g ]
VA * / |
- ngw*% ‘\D\Q - 06 05/:*;‘ / % % \\ j \\; % J \%‘, ] \\ ! | ]
< é%ii; % o Soary Q* // ‘o ;e,/*\ i é** L% “: f’ Y1
% 03 }ﬁ 2 ”’%H@% E 0.24& \ 6 \*X P X %0\ / <13 ,‘* \\ waHﬁé\_
£ P A H $ ch/ by Ml Wl !
Forf o %% £ ! VA
[} *& 0.2 | ‘* | 4
01} & ! 1
i oaf « A
oe&g é?};};/ﬁ%r f? sl ¥ L <1>/
Q iy \m/
* 1 2 3 4 s 6 7 - 8 % 1 2 3 . s 6 7 8
Time (s) 107 Time (s) 1073
a- Sine pulse b- Step Pulse

Figure 3. Center displacement as a function of time, for different pulses. (a) sine; (b)

step; (4 variable RPT).

16 . . . ‘ . .
40 ‘ ‘ ‘
5 S * —Present RT @9 Q C{ (ace — % —Present RT
12 i >% or \ @/ b ?/ ] ! |
% S Pl % R
S0l s w0l 1 Fil e $ VR ko I /o |
= 2 A Lo * \ Lok Ty 6 |
2 ? b & VAN A T AN LV ¢
% s 9 % e - I T . VS 4 W]
K] o a8 S 10F ¥ Vb, N Lot L 29
E ol ¥ * b N A ]
s 6 x H P - & Lo
z ¢ }{ g |2 ol V6 APy \
g, f * £ od R © ¢ 17 (f) i
E b E E | (\P% | \
L , = /
24 ;%f dﬁ Z10¢ LA ;
oe&¢ &{i e ;gs *i**/ \ %
QQC;?% ek 20 - o)
-2 -
Y
u . ‘ ‘ ‘ ‘ 30 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Time (s) «103 Time (s) %1073

a- Stress1 under sin pulse

b- Stress1 under step pulse

Figure 4. Nondimensional normal stress o1 as a function of time, for different
pulses. (a) sine; (b) step; ( 4 variable RPT).
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6.2 Design Parameters

The thickness ratio, modulus ratio, and number of layers are investigated as design
parameters of cross-ply plates. It is observed that increasing the modulus ratio leads to a
decrease in the response of the plate under sine and step pulse, as shown in Fig. 5, because
stiffness increases. However, Fig. 6 shows that central deflection increases when (a/H)
decreases; also, the response of several ply (2, 4, and 6) layers illustrated in Fig. 7, having
the same trend, displacement decreases. Increase and decrease of displacement due to an
increase and decrease in stiffness for the same material properties.

1r T T T T T T T 1 2

me%; — e —(E1/E2)=5 — & —(E1/E2)=5
g % — % —(E1/E2)=10 R *Q — % —(E1/E2)=10 b
08t i 5 — + — (E1/E2)=20] 15 7 I ® 9 — + — (E1/E2)=20] |
[ I sk 18 g\ o
\ * TN Y b ! |
1’6%2'# bt #9)}; I d \ 1K "( 1
- 1 T ) % \ I/ RS ﬁ";.f?@%’ L
E=2 = i b
PR Ty I VAT I S
: E g W YT S AP
H] 2 of ¥ BT AT
g 2 A Lo X
a a \Qj\l *qu)\ |
0.5 KNI
[t
1
Al 1
ozl . . . . . . . ] s
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Time (s) %103 Time (s) «1073
a- Sine pulse b- Step pulse

Figure 5. Center displacement as a function of time, for different pulses and (E1/E2). (a)
sine; (b) step; ( 4 variable RPT).[0/90]2

12 T T 2 r r r : T T
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7. CONCLUSIONS

In the present work, different plate theories are investigated to obtain the dynamic response
of a simply supported plate, from which the following points are concluded:

1.

3.
4.

Dynamic response of laminated cross-ply plates using analytical solutions studied using
different plate theories, higher-order theory, five variables refined plate theory, and four
variables plate theory. To compare the obtained results under different loadings, the five
variables of refined plate theory give results that are considerably different from the four
variables of refined plate theory and higher-order theory.

The transient response of a plate using four-variable refined theory has similarity with
classical plate theory, but it describes transverse shear stresses and shear strains closer
to those obtained from higher-order theory.

Four-variable reined theory is easy to use when compared with higher-order theory.
Changing design parameters using the four-variable refined theory gives the same
behavior compared with other theories

Some recommendations for future work are:

1. Transient response investigation of angel-ply plates using refined theory.
2. Static and dynamic analysis of laminated plates with different boundary conditions
based on refined theory.
3. Transient response investigation of laminated plates using refined theory in thermal
environment.
NOMENCLATURE
Symbol Description Symbol Description
a Plate dimension in x-direction (m) | Tmn Time function
b Plate dimension in y-direction (m) |t time (s)
h Plate thickness X,V,Z Cartesian Coordinate system
fnn Applied load (N) W, , Wp, W | Displacement in extension,
ending, and shear, respectively
Ajj, Bjj, Dyj, |Extension, bending, extension Us, Displacement in x and y direction
B, D3, Hf coupling (N/m) Vg lue to shear, respectively
E1, E2, E3 Elastic modulus components (GPa) | &, &y, &, Strain components (m/m)
G12, G23, Gy3 [Shear modulus components (GPa) | v, Yy, Transverse shear strain (m/m)
n Total number of plate layers Vip Vaq Poisson's ratio
Ny, Ny ,Nyy  [In-plan force per unit length (N/m) | wmn natural frequency (rad/s)
Mg, My, Mgy | Force per unit length due to shear | oy oy oy, | Stress components (Gpa)
moment (N/m) Oyz Oxz
%2 Q52 Transverse shear force (N)
Qy2Qxz
STEPS OF THE ALGORITHM

1. Input geometrical and mode specifications a, b, h, N, m, n

2. Input material properties, E1(T), E2(T), p, v12(T), v13, vz3, G12(T), G13(T), G23(T)
3. Calculate transformed stiffness Q:
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4. Calculate stiffness Aij, Bij, Dij, Eij, Fij, Hij

5. Calculate mass matrix & stiffness matrix

6. Calculate mode shapes and their frequencies
7. Input period, load amplitude, load function
8. Solution
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