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ABSTRACT 

Disposal of plastic waste causes serious environmental problems, including landfills and 

water bodies degradation, greenhouse gas emission, soil contamination and so on. This 
study investigates the use of recycled plastic aggregate (RPA), as a partial replacement for 
conventional coarse aggregates by weight in lightweight concrete production. Concrete 
mixtures with different concentrations of RPA at (0, 15, 30, and 45%) were prepared and 
cured for 7, 14, 28, and 56 days. Including RPA into concrete reduced both density and 
compressive strength as the replacement level increased. Density decreased from 2,347 
kg/m³ at 0% RPA to 1,895 kg/m³ at 45% replacement. Similarly, 28 days compressive 
strength decreased from 30.43 N/mm² (control) to 19.50 N/mm² at 45% replacement, 
reflecting the lower specific gravity and weaker bonding of RPA compared to traditional 
coarse aggregate. Additionally, the test results showed that RPA concrete has a low water 
absorption rate at 15% replacement, with 2.50% for water absorption and a 0.0235 mm/s1/2 

sorptivity value compared to control samples with 2.66% for water absorption and 0.024 
mm/s1/2 sorptivity value. However, concrete samples with up to 30% RPA replacement met 
the minimum requirements for structural lightweight concrete. This study also used 
machine learning models, including artificial neural networks (ANN), k-nearest neighbor (k-
NN), and random forest (RF), to predict the durability properties of RPA concrete. Among 
these models, the k-NN model showed the best prediction accuracy with an R² value of 1.00, 
a mean absolute error (MAE) and a mean square error (MSE) of 0.001 for both the train and 
test data. These findings show that the use of treated RPA in concrete not only offers a 
sustainable alternative to natural aggregates but also improves the durability of the 
resulting structures.  

Keywords: Artificial neural network, K-nearest neighbor, Random forest, Recycled plastic 
aggregate, Sorptivity, Water absorption. 
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1. INTRODUCTION 
 

The construction industry significantly impacts the environment through the use of large 
amounts of materials, waste generation, and greenhouse gas emissions. It consumes natural 
resources, produces large amounts of waste, and contributes to climate change by releasing 
carbon dioxide (CO2) and other gases. Normal weight concrete (NWC) is commonly used in 
the construction of buildings, bridges, pavements, and other structures due to its strength 
and durability (Wałach, 2021). However, the extraction and use of natural aggregates in 
construction have significant environmental concerns (Agboola et al., 2021). This practice 
leads to land degradation, biodiversity loss, and soil erosion and leaching, which affects 
marine ecosystems (Bosire et al., 2014). According to (Durán et al., 2018), the extraction 
process alone emits between 0.005 and 0.01 kg of CO2 per kilogram of material, depending 
on factors like aggregate type and machinery efficiency. Additionally, the processing stage, 
which involves crushing, screening, and washing, contributes an extra 0.002 to 0.004 kg of 
CO2 per kilogram of material is released due to its energy efficiency. These environmental 
challenges highlight the need for more sustainable construction practices and materials 
(Kibert, 2016; Galvez-Martos et al., 2018; Wu et al., 2019). These issues have led 
researchers to investigate the suitability of using industrial waste, such as waste plastic 
bottles (Polyethylene terephthalate), in concrete production.  
The incorporation of recycled plastic aggregate (RPA) into concrete can reduce water 
absorption because the hydrophobic nature of the plastic reduces the penetration of water 
into the concrete matrix (Muhammad and Agboola, 2025; Sathvik et al., 2024). This 
shows that the use of RPA can improve the durability and water resistance of concrete 
structures and provide a more sustainable way to design building materials. Also, due to the 
hydrophobic nature of the RPA, increasing the content of RPA in concrete reduces 
adsorption, increasing water resistance (Al Fuqaha et al., 2023). In addition, 
superplasticizers help improve concrete durability by enhancing workability and flow 
without increasing water content. Concrete made with superplasticizer has low water 
absorption and sorptivity, improves resistance to moisture damage, and enhancing overall 
durability (Du and Li, 2014). However, many studies report challenges with using RPA as a 
partial replacement for conventional coarse aggregates, such as inadequate strength and 
durability for structural purposes. To enhance the properties of lightweight concrete, 
several studies have concentrated on surface modification techniques. Altering the 
aggregate surface texture through methods such as roughening, coating, and applying 
surface modifiers increases the surface area and strengthens the bond between the 
aggregates and the cement matrix, thereby enhancing mechanical interlock and overall 
durability. According to (Hilal, 2021), these modifications can improve strength and solve 
the problem of moisture penetration. Also, (Zhang et al., 2025), reported that including 
superplasticizers, particularly polycarboxylate ethers, significantly enhances workability 
and reduces water content, resulting in a denser, more uniform mix with improved 
mechanical properties. In addition, machine learning has been employed to address quality 
control challenges in production by analyzing process data to identify patterns and 
anomalies, facilitating predictive maintenance and optimization of material formulations 
(Gamil, 2023).  
Therefore, this study seeks to consolidate the effects of modified RPA as a coarse aggregate 
supplement in the production of lightweight concrete (LWC). The purpose of the study was 
to investigate the effects of modified RPA and polycarboxylate ether (PCE) based 
superplasticizers on concrete strength and durability.  
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2. MATERIALS AND METHODS 
 

2.1 Materials  
 

Materials that were used in this work are: cement, fine aggregate, coarse aggregate, recycled 
plastic bottles aggregate (RPA), polycarboxylic acid (superplasticizer), and water, see the 
images in Fig. 1. 

 

Figure 1. Concrete Materials (a) Recycled Plastic Aggregate (b) Fine Aggregate (c) Coarse 
Aggregate (d) Polycarboxylic Acid 

2.2 Methods 
  

2.2.1 Experimental Design  
 

This study investigates the capillary absorption properties of concrete produced with RPA 
as a partial coarse aggregate replacement in lightweight concrete. First, the RPA was 
produced by crushing the waste plastic bottles into sizes ranging from 10 to 20 mm. Before 
including it in concrete mixtures, RPA was treated for 24 hours by soaking in an oxidizing 
solution. This solution was made by dissolving 500 grams of calcium hypochlorite (Ca(ClO)₂) 
in 5 liters of water. Fig. 2 shows the process of treating the used recycled plastic aggregate 
in this work. Applying this treatment changed the plastic surface texture, which 
consequently enhanced its bonding power with the cement paste when used as a partial 
replacement for traditional coarse aggregate in concrete. The treated RPA was then air dried 
to ensure no residual chemical remained on the surface.  A superplasticizer at 1.0 % of the 
weight of cement in kg/m3 was added to the mix as a chemical admixture to slow the 
hydration process and improve the workability of the RPA fresh concrete mix. Cube sizes of 
100 x 100 x 100 mm were produced to study the physical, mechanical, and durability 
properties of the samples.  

 
Figure 2. Process of Treating Recycled Plastic Aggregate (a) Recycled Plastic Aggregate 

Sample (b) Dissolving Ca(ClO)2 in Water (c) Soaking RPA in Solution 

All samples were cured for a period of (7, 14, 28 and 56 days). Four mixes were prepared: 
the control (0%), the remaining three mixes included RPA replacing 15, 30 and 45% of the 
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volume of conventional coarse aggregate with an equivalent volume of RPA. The concrete 
curing process was carried out following (BS EN 1992-1-1, 2004). 
 
2.2.2 Mixing Procedure and Sample Preparation 
 

The mixing process consisted of mixing the cement and sand by hand for three minutes, 
followed by the addition of crushed granite and RPA for another three minutes following the 
guidelines for hand mixing provided in (BS 5328-3, 1990). After dry mixing, the water and 
superplasticizer were added and the mixture was further mixed for three minutes before 
casting the fresh RPA concrete into 100 x 100 x 100mm plastic molds in three layers, with 
eachlayer manually compacted using a tamping rod with 25 strokes per layer following the 
guidelines for hand compaction provided in (BS EN 12390-2, 2019). The samples were 
covered with plastic bags and placed in the laboratory 24 hours before curing. Post 
remolding, specimens were cured in a curing tank according to (BS 8110-1, 1997) before 
being subjected to physical, mechanical and durability tests. In total, four concrete mixes 
containing various percentages of RPA and a control sample with conventional materials 
were examined in this study. The mix design of normal weight and lightweight concrete was 
carried out according to (ACI 211. 2, 1998) to design a 30 N/mm2 concrete grade at 28 days. 
The compositions of the concrete mixtures are detailed in Table 1. The mix design 
procedure adhered to (ACI 211.2, 1998) standard.  

Table 1. Mix Proportion of RPA Concrete 

Parameters 0% RPA 15% RPA 30% RPA 45% RPA 
W/C ratio 0.52 0.40 0.40 0.40 

3Water content (kg/m 181 139 139 139 
)3Cement content (kg/m 348 348 348 348 

)3Sand content (kg/m 627 627 627 627 
)3Coarse agg.  (kg/m 1226 1042 858 674 

)3RPA (kg/m 0 36 72 108 
)3SP at 1% of cement (kg/m 0 3.48 3.48 3.48 

)3Target Density (kg/m 2382 2195 2047 1899 

 
3. Experimental Work 
 

3.1 Slump Test 
 

The slump test is an empirical test that measures the workability of fresh concrete and was 
done in accordance with (BS EN 12350- 2, 2009). The test was carried out using a metal 
cone filled up with concrete in three different layers, with each layer tamped with a metal 
rod 25 times. The cone was then lifted, and the slump was measured as the distance from 
the top of the slump concrete to the top of the inverted cone. Fig. 3 shows the slump test. 
 

 
Figure 3. Slump test. 
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3.2 Density Test 
  

The density test is of interest to the study because of numerous reasons, including its effect 
on durability, strength, and resistance to permeability. The test was carried out according to 
(BS EN 12390-7, 2019). The concrete density test was carried out on 7, 14, 28 and 56 days. 
The densities of the concrete are expected to reduce over time because the specimens were 
subjected to air drying at room temperature after curing until the day of testing. 

3.3 Mechanical Property 
 

Mechanical property tests are usually conducted to determine the hardened properties of 
the concrete samples. In this study, a compressive strength test was conducted. 
 
3.3.1 Compressive Strength Test 
 

The compressive strength test was carried out using universal crushing machines that 
conform to (BS EN 12390-3, 2009). The compressive strength test was carried out on 7, 14, 
28 and 56 days, respectively. The average value of three samples was used as the 
compressive strength result. Fig. 4 shows the compressive strength test. 

 

Figure 4. Compressive strength test. 
 
3.4 Durability Properties 
 

The durability test was conducted on 28, and 56 days for the water absorption test, while 
sorptivity tests were carried out after 5, 10, 15, 30, 45 and 60 minutes, respectively after 
28 days of curing.  
 
3.4.1 Water Absorption Test 
 

The water absorption test was carried out in accordance with (BS EN 13755, 2008). The 
amount of water absorbed by concrete is termed as concrete water absorption, which is the 
weight of the absorbed water by the concrete to the dry weight of the concrete. The water 
absorption test was conducted using concrete cube samples of 100x100x100mm. Fig. 5 
shows the water absorption test conducted. 
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Figure 5. Water Absorption Test (a) Immersion in Water (b) Removal from Water (c) 
Weighing air dried Samples 

3.4.2 Sorptivity Test 
 

The sorptivity test was conducted according to (BS EN 480-5, 2005). The cylinder 
dimensions are 100 mmØ x 50 mm long. After a 24 hour casting period, the samples were 
placed in water and cured for 28 days, then air-dried for a week till they reached a constant 
mass after completing the curing process. The specimens were immersed in water with a 
water level not more than 5 mm above the base of the samples. Then the samples were 
removed at the end of 5, 10, 15, 30, 45, and 60 minutes of the test mechanism and weighed 
at an accuracy of 0.01 g. The surface water on the sample was wiped off with a dampened 
tissue to remove excess water and each weighting operation was completed within 30 
seconds. This test was used to determine the rate of absorption (Sorptivity) of water by 
measuring the increase in the mass of a sample resulting from absorption of water as a 
function of time when only one surface of the sample is exposed to water ingress of 
unsaturated concrete by capillary suction during initial contact with water. Fig. 6 shows the 
Sorptivity test. 
 

 
Figure 6. Sorptivity Test Process (a) Weighing Air-dried Sample (b)Sorptivity Test (c) Rate 

of Water Rise 

3.3 Machine Learning Method 
 

3.3.1 Artificial Neural Networks (ANN) 
 

An Artificial Neural Network (ANN) is a computational model designed to mimic how the 
human brain processes information. ANNs are made up of interconnected units called 
neurons, which are arranged in layers: an input layer, one or more hidden layers, and an 
output layer. Each connection between neurons has a weight that is adjusted during training 
to reduce the difference between the predicted output and the actual output. In concrete 
technology, ANNs are used to predict the properties and performance of concrete mixtures, 
optimize mix proportions, and model complex relationships between concrete ingredients 
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and their resulting properties (Develi and Kabalci, 2016). For example, ANNs can predict 
the compressive strength, workability, and durability of concrete based on input factors such 
as cement content, water-cement ratio, and aggregate properties (Netam and Palanisamy, 
2022; Li et al., 2010). These predictive abilities assist in enhancing concrete mix designs 
and ensuring consistent quality in concrete production. 
 
3.3.2 K-Nearest Neighbors (k-NN) 
 

The k-nearest neighbors (k-NN) algorithm is a straightforward, non-parametric method 
used in machine learning for classification and regression. It sorts data by considering the 
class of its nearest neighbors. The algorithm works by finding the k nearest neighbors to the 
problem using a distance measure such as Euclidean distance and assigning the problem to 
a general class of these neighbors. In concrete technology, k-NN is used to predict properties 
such as compressive strength, workability, and durability based on historical data. 
Researchers have used k-NN to predict concrete mix properties by analyzing past 
experimental results, optimizing mix design, and improving material performance 
(Migallón et al., 2023). This application helps reduce material costs and increase the 
efficiency of construction processes. 
 
3.3.3 Random Forests  
 

The Random Forest algorithm, developed by Breiman in 2001, is a machine learning method 
that creates multiple decision trees during training. For classification tasks, it uses the 
majority vote from these trees, while for regression tasks, it calculates the average of their 
predictions. The algorithm increases the accuracy and reliability by selecting different types 
of features and models to build an unrelated tree (Liaw and Wiener, 2018). In concrete 
technology, Random Forest is used to predict concrete properties like compressive strength 
and durability by analyzing various factors such as mix proportions, curing conditions, and 
material properties. Research has shown that it effectively optimizes concrete mix designs 
for better performance and sustainability by evaluating data from numerous experiments to 
find the best ingredient combinations and conditions (Huang et al., 2025). As a result, 
Random Forest is a valuable tool for advancing concrete technology through data driven 
insights and innovation. 

3.3.4 Predictive Models Evaluation 
 

To evaluate the effectiveness of the prediction model, three indicators were used: coefficient 
of determination (R²), mean absolute error (MAE), and mean squared error (MSE). 
  
3.3.4.1 Coefficient of Determination (R²) 
 

The R² measures the proportion of the variance of the dependent variable predicted by the 
independent variables, ranging from 0 to 1, where 1 indicates perfect prediction as shown 
in Eq. (1). 
 

R2 = 1 – 
𝑅𝑆𝑆

 𝑇𝑆𝑆
                                                                                                                                                     (1) 
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3.3.4.2 Mean Absolute Error (MAE) 
 

MAE evaluates the average magnitude of errors in predictions without considering their 
direction, providing insight into how far predictions are from actual outcomes on average as 
shown in Eq. (2).     
 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛
𝑖=1                                                                                                                                (2) 

 
3.3.4.3 Mean Squared Error (MSE) 
 

The MSE, which is sensitive to outliers, calculates the average squared error, gives more 
weight to larger errors, and measures the magnitude of the error. These measures provide a 
unique perspective on the accuracy and reliability of the model, as shown in Eq. (3). 
 

𝑀𝐴𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1                                                                                                                                  (3) 

 
Where, RSS is the sum of squares of residuals, ∑(yi − ŷi )2 
TSS is the total sum of squares, ∑(yi − ȳ )2 
yi are the actual values 
ŷi are the predicted values     
ȳ is the mean of the actual values. 
n is the number of observations 

4. RESULTS AND DISCUSSIONS 
 

4.1 Properties of Materials 
 

Table 2 summarizes the material properties used in this research. The specific gravity of 
fine aggregate was 2.59. This falls within the specified range specified by (BS EN 1097-6, 
2013) of specific gravities of fine aggregate, as 2.4 to 2.9. The crushed granite had a specific 
gravity of 2.71, which falls within the range of 2.5 to 2.9 as specified for coarse aggregates in 
(BS EN 1097-6, 2013). While RPA had a specific gravity of 0.53, confirming its lightweight 
nature for reducing structural loads in lightweight concrete applications. The compacted and 
uncompacted bulk densities of fine aggregate were 1525 kg/m³ and 1340 kg/m³, 
respectively. The compacted and uncompacted bulk densities of crushed stone were 1,727 
kg/m³ and 1,398 kg/m³, respectively, both of which fall within the range of 1,200 to 1,750 
kg/m³ as specified in (BS EN 1097-3, 1998). RPA's compacted and uncompacted bulk 
densities were 337 and 212 kg/m³, respectively. The water absorption of the crushed stones 
used in the study was found to be 2.21%, which meets the requirement of (BS EN 1097-6, 
2013), specifying a maximum allowable value of 10% for all types of coarse aggregates and 
the RPA showed a water retention rate of 0.50%, suggesting low surface porosity. This helps 
limit water uptake in the concrete mix, leading to better durability and overall concrete 
performance. The aggregate impact values for crushed stone and RPA were 5.2% and 2.0%, 
respectively, which fall within the acceptable limit of 35% specified by (BS EN 1097-6, 
2013) for aggregates suitable for structural concrete. The aggregate crushing values were 
6.6% for crushed stone and 3.2% for RPA, both of which fall within the acceptable limit of 
25% specified by (BS EN 1097-2, 2010), indicating their suitability for structural concrete. 
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Table 2. Physical Properties of Material 

Materials 
Bulk Density(Kg/m3) Specific 

Gravity (g) 
Water 

Absorption (%) 
Impact 

Value (%) 
Crushing 

Value (%) Compacted Uncompacted 
Sand 1525 1340 2.59 - - - 

Crushed 
Stone 

1727 1398 2.71 2.21 5.2 6.6 

RPA 337 212 0.53 0.5 2 3.2 
 

4.2 Effect of RPA as Partial Replacement of Coarse Aggregate in LWC 
 

4.2.1 Slump Test 
 

The workability of concrete mixes was assessed using the slump test, targeting a slump value 
between 75 and 100 mm. Fig. 7 shows that workability initially improves with a 15% RPA 
mix but decreases as RPA content increases. This trend is attributed to RPA irregular shape 
which increases water demand and reduces workability, as noted by (Huang et al., 2024). 
The highest slump value of 30 mm was observed with the 15% RPA mix, where a 
superplasticizer was used to enhance particle dispersion and lower water demand, as 
supported by (Huang et al., 2025). Therefore, higher RPA percentages require more water 
to maintain adequate workability. 

 
Figure 7. Slump result of concrete containing RPA. 

 
4.2.2 Density 
 

Fig. 8 shows the average density of concrete samples after 28 days for all mixes. According 
to (BS EN 12390-7, 2019), the density of structural lightweight concrete typically ranges 
between 1,300 and 2000 kg/m³, which serves as the standard limit for classifying concrete 
as lightweight for structural applications. Concrete density is significantly influenced by the 
specific gravity of aggregates, with higher specific gravity leading to denser concrete 
(Dehwah et al., 2015). The RPA used in this research has a lower bulk density compared to 
conventional coarse aggregate, resulting in reduced density for concrete mixes with RPA. At 
28 days, the control samples had a density of 2347 kg/m³, while the 15%, 30%, and 45% 
RPA mixes had densities of 2135 kg/m³, 1996 kg/m³ and 1895 kg/m³ respectively, reflecting 
reductions of approximately 9.03, 14.96 and 19.26% compared to the control. However, only 
the 30 and 45% RPA mixes fall within the structural lightweight concrete density range 
specified by (BS EN 12390-7, 2019) and are therefore suitable for structural use. 
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Figure 8. Density of concrete containing RPA at 28 days 

4.2.3 Compressive Strength 
 

Fig. 9 shows compressive strength tests for lightweight concrete with RPA replacing 15, 30 
and 45% of conventional coarse aggregate. The replacement resulted in reduced 
compressive strength, which may likely be due to the different characteristics of the RPA 
such as size, shape and quality, causing inconsistent performance (Qasim and Jassam, 
2022). The control sample achieved the highest compressive strength of strength of 32.59 
N/mm² at 56 days, exceeding the target design strength of 30 N/mm² specified for 28 days. 
RPA concrete samples showed a linear reduction in compressive strength with decreases of 
9.33, 16.14 and 22.40% for 15, 30 and 45% RPA content, respectively. Both control and RPA 
samples reached about 90% of their 28 day compressive strength. However, higher RPA 
content led to lower compressive strength likely due to reduced workability and increased 
porosity at 30 and 45% RPA levels (Jayasinghe et al., 2023). Despite this, all RPA concrete 
samples met the (BS EN 206, 2000) minimum requirement of 17 N/mm² for 28 days 
compressive strength of structural lightweight concrete. Therefore, RPA can replace up to 
45% of conventional aggregates without significantly affecting compressive strength. 

 
Figure 9. Decrease in compressive strength of concrete containing RPA 

 
 
 
 

2347 2335

1996 1895

0

500

1000

1500

2000

2500

3000

2
8

 D
a

y
s 

D
en

si
ty

 (
K

g
/m

3
)

0% RPA 15% RPA 30% RPA 45% RPA

18.50

24.00

30.43
32.59

15.40

22.14

24.10

29.55

14.05

19.75

23.13

27.33

12.09

16.88

19.50

25.29

0

5

10

15

20

25

30

35

7days 14days 28days 56days

C
o

m
p

re
ss

iv
e 

st
re

n
g

th

(N
/m

m
2
)

CuringPeriods

0% MPA

15% MPA

30% MPA

45% MPA



Journal of Engineering, 2025, 31(10) 
 

M. F. Umar et al. 

 

11 

4.2.4 Water Absorption 
 

Water absorption refers to the ability of a material to absorb water, which affects its 
durability and performance. According to (BS EN 13755, 2008), the maximum water 
absorption for a material should be less than 10% of its dry weight. The average water 
absorption at 7, 14, 28 and 56 days for concrete mixes with 0, 15, 30 and 45% RPA 
replacement was recorded and presented. The 28 days water absorption for the 15% RPA 
mix was 2.50%, while the control was 2.66%. Including 30 and 45% RPA increased water 
absorption to 3.37 and 7.58%, respectively as shown in Fig. 10. This indicates that higher 
RPA content increases water absorption due to the porous nature of the samples (Zhong et 
al., 2024). Higher porosity leads to increased void spaces, allowing more water to penetrate 
as noted by (Wang et al., 2022). 

 
Figure 10. Water absorption of concrete containing RPA 

 
4.2.5 Sorptivity 
 

Sorptivity measures the absorption of water through tiny pores in concrete, indicating its 
microstructure and durability. According to (BS EN 480-5, 2005), the sorptivity of concrete 
should not exceed 0.55 mm/s1/2. Low sorptivity indicates better resistance to water 
penetration, enhancing concrete durability. From the experimental results in Fig. 11, the 
sorptivity index for the control sample varied from 0.040 to 0.024 mm/s1/2, measured from 
5 to 60 minutes. The 15% RPA mix showed a decrease from 0.038 to 0.0235 mm/s1/2.  

 
Figure 11. Sorption of concrete containing RPA at 60 minutes 
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However, inculding 30% and 45% RPA increased sorptivity due to void formation, as 
established by (Zhong et al., 2024). High percentages of RPA can weaken the interfacial 
bond between RPA and the cement matrix there by increasing water ingress (Soares et al., 
2025).  Despite this, all tested samples fell within the acceptable limits set by (BS EN 12390-
8, 2009), making them suitable for structural lightweight concrete applications.  
 
4.3 Relationship between Sorptivity and Water Absorption 
 

Fig. 12 shows the relationship between sorptivity and water absorption in RPA lightweight 
concrete. Higher sorptivity is associated with increased water absorption, reflecting a more 
porous and interconnected pore structure that facilitates faster water penetration. 
In contrast, materials with lower sorptivity generally exhibit lower water absorption due to 
their denser microstructure. Sorptivity and water absorption decrease with longer curing 
periods, although factors such as pore size distribution and environmental conditions can 
independently influence these properties. The inclusion of RPA into concrete showed 
reduced sorptivity and water uptake at 15% replacement but increased levels at 30 and 45% 
replacement. Linear regression analysis showed a strong correlation between these 
properties, suggesting that sorptivity values can be use to predict water absorption reliably, 
and vice versa, which is confirmed by the high R² values. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Relationship between sorptivity and water absorption 
 

S = 0.0041 WA + 0.0132  (R2 = 0.9992) 
Where, S = Sorptivity (mm/s1/2); WA = 28 Days water absorption (%) 
 
4.4 Development of Predictive Models 
 

This section shows the predicted durability properties of RPA concrete, where RPA partially 
replaced by conventional coarse aggregate in lightweight concrete at 0, 15, 30 and 45%. 
Durability predictions were performed using ANN, KNN, and RF models. Due to the need for 
large datasets for effective machine learning, the experimental datatset was augmented with 
synthetic data generated using CTGAN, a machine learning library use for generating 
complex datasets. 
 

4.4.1 Simulation and Analysis Results 
 

The study evaluated the durability properties of RPA concrete using computational 
intelligence techniques. A dataset of 500 entries, combining experimental and augmented 
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data, was created using the CTGAN library in Python. The dataset includes parameters such 
as cement content (C), water content (W), superplasticizer (SP), coarse aggregate (CA), fine 
aggregate (FA), RPA, test age (A), slump value (S), density (D), and compressive strength 
(CS). The data were divided into a training set (70%, 350 samples) and testing set (30%, 150 
samples). The training set was used to develop robust predictive models, while the test set 
evaluated the models accuracy in predicting durability properties. 
As shown in Tables 3 and 4, the statistical analysis of the dataset revealed key variables such 
as the maximum, minimum, mean, and standard deviation for the input and output variables. 
Differences were handled by replacing them with median values, maintaining data integrit
y and consistent distribution. This process ensured that no attribute had more than 5% 
outliers, as shown in Table 5. 
 

Table 3. The Statistical Parameters of Water Absorption Model. 
 

Variables Count Mean Standard deviation Minimum Maximum 
Water 500 150.68 19.42 128 207 

Cement 500 348 0 348 348 
Fine 500 745 0 745 745 

Coarse 500 836.6 210.92 338 1391 
SP 500 1.99 1.64 0 4.48 

RPA 500 75.56 42.32 0 174 
Age 500 50.24 23.31 7 92 

Slump 500 17.1 8.15 0 38 
Density 500 1951.08 223.68 1393.35 2624.47 
Strength 500 29.61 7.86 5.58 44.38 
WA (%) 500 4.88 5.17 0 20.78 

 
Table 4. The Statistical Parameters of the Sorptivity Model. 

 

Variables Count Mean Standard deviation Minimum Maximum 
Water 500 155.15 20.02 130 201 

Cement 500 348 0 348 348 

Fine 500 745 0 745 745 

Coarse 500 855.39 216.17 343 1400 

SP 500 2.58 3.39 0 4.33 

RPA 500 70.95 43.59 0 175 

Age 500 28 28 28 28 

Time 500 37.25 25.22 0 96 

S (mm/s1/2) 500 0.036 0.014 0.006 0.074 

 
Table 5. Analysis of the Outliers for all the Variables. 

 

Water absorption 

Variables W C F C SP RPA Age S D CS WA (%) 
Outliers 0 0 0 0 0 0 0 0 0 0 7 

Sorptivity 
Variables W C F C SP RPA Age T S (mm/s1/2) 
Outliers 0 0 0 0 0 0 0 0 0 
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4.4.2 Prediction of Water Absorption Properties of Concrete RPA 
 

Water absorption is a key durability property that indicates the resistance of concrete to 
moisture penetration and possible degradation. High water absorption can weaken 
concrete, reduce compressive strength and increase the risk of deterioration. Table 6 shows 
the training and testing results for ANN, KNN and RF models predicting the water absorption 
of RPA concrete at different ages. 

Table 6. Performance Evaluation of Water Absorption Models. 

Models name 
Training results 
R2 MAE MSE 

ANN 0.9997 0.0555 0.0077 
KNN 1.00 0.0010 0.0010 
RF 0.8515 1.4717 3.6896 
  Testing results 
ANN 0.9989 0.0945 0.0299 
KNN 1.00 0.0010 0.0010 
RF 0.8118 1.8479 5.6642 

Figs. 13 and 14 show that both ANN and KNN models accurately predicted the measured 
water absorption values of RPA concrete. The R², MAE and MSE values of the ANN model 
were 0.9997, 0.0555 and 0.0077, respectively. On the training data and 0.9989, 0.0945 and 
0.0229, respectively in the testing data.  The KNN model performed very well with R², MAE 
and MSE values of 1.0, 0.001 and 0.001 for the training and test sets, respectively. The R², 
MAE and MSE values obtained by the RF model on the test set are 0.8118, 1.8479 and 5.6642, 
respectively as shown in Table 6. Fig. 15 shows the residual plot of the R2 train and test 
results of water absorption for the RF model. These results are consistent with the findings 
of (Deng et al., 2018), who reported R² values of 0.95 when predicting water absorption in 
concrete pavements using KNN models. The high value of R² indicates that KNN can reliably 
predict the water absorption of RPA concrete. 

 
Figure 13. Residual plot of the train and test R2 score of water absorption for ANN model. 
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Figure 14. Residual plot of the train and test R2 score of water absorption for the KNN model. 

 
Figure 15. Residual plot of the train and test R2 score of water absorption for RF model. 

4.4.3 Predicting RPA Concrete Sorptivity Properties Using Machine Learning 
 

Sorptivity, a critical durability property, measures the ability of concrete to absorb liquid or 
gas through capillary action under a hydraulic gradient. High sorptivity levels increase the 
risk of chemical deterioration and alkali silica reaction (ASR). This phase of the study 
evaluates the predicted sorptivity properties of RPA concrete using ANN, KNN and RF 
models. Table 7 shows the performance evaluation for the training and testing datasets. The 
ANN model showed that the predictions closely match the measured sorptivity values. The 
R², MAE and MSE values of the experimental dataset obtained by the ANN model are 0.9998, 
0.0117 and 0.0002 respectively. The KNN model performed very well with R², MAE and MSE 
values of 1.0, 0.001 and 0.001 for the training and test datasets. The R², MAE and MSE values 
of the experimental data obtained by the RF model are 0.8189, 0.3303 and 0.1755, 
respectively as shown in Table 7. These results are consistent with those of (Duan, 2024), 
who reported R² values ranging from 0.90 to 0.95 when predicting sorptivity in concrete 
pavements using KNN models. 
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Table 7. Performance Evaluation of Sorptivity Models. 

Models name 
Training results 

R2 MAE MSE 

ANN 0.9994 0.0138 0.0005 
KNN 1 0.001 0.001 
RF 0.8147 0.3058 0.1507 

 Testing results 
ANN 0.9998 0.0117 0.0002 
KNN 1 0.001 0.001 
RF 0.8189 0.3303 0.1755 

Figs. 16 to 18 illustrate the residual plot of the train and test R2 score of ANN, KNN, and RF 
models for sorptivity values of RPA concrete. 

 
Figure 16. Residual plot of the train and test R2 score of sorptivity for ANN model. 
 

 
Figure 17. Residual plot of the train and test R2 score of sorptivity for KNN model. 
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Figure 18. Residual plot of the train and test R2 score of sorptivity for RF model. 

5. CONCLUSIONS 
 

After extensive laboratory testing, observations, analysis, and discussion on the effect of RPA 
on concrete properties and the potential of predictive models to predict durability, the 
following conclusions were reached: 
• The determination of properties for both conventional crushed stone and recycled plastic 
aggregate (RPA) revealed distinct differences in their physical properties. The RPA exhibited 
a notably lower density and a water retention value of 0.50%, indicating reduced mass and 
low surface porosity compared to crushed stone. Despite these differences, both aggregate 
types met the requirements for compacted and uncompacted bulk density as specified in BS 
EN 1097-3, confirming their suitability for use in concrete production. Furthermore, the 
aggregates demonstrated excellent mechanical performance, with aggregate impact and 
crushing values of 5.20 and 6.60% for crushed stone, and 2.00 and 3.20% for RPA, all falling 
well within the permissible limits defined by BS EN 1097-6 and BS EN 1097-2. These results 
indicate that both materials possess sufficient mechanical strength to be considered for 
structural concrete applications. 
• The 15% RPA replacement fresh concrete showed better workability than the control  
mix, while the 45% replacement concrete showed the lowest slump value, likely due to the 
irregular shape of the RPA and the rough surface structure that affected the flow of water. 
The inclusion of RPA reduced the density of the concrete compared to traditional aggregates, 
reflecting its lighter nature. 
• The compressive strength of RPA concrete decreases with increasing replacement 
percentage due to the lower rigidity of RPA compared to traditional coarse aggregate, 
showing an inverse relationship between replacement percentage and strength properties.  
• At 28 days of curing, the compressive strength of RPA concrete decreased with higher 
replacement percentages, attributed to its lower rigidity compared to traditional coarse 
aggregates, with reductions of 10.94, 14.65 and 15.69% for 15, 30 and 45% RPA 
replacement, likely due to reduced rigidity and increased void content which disrupt the 
bond between the aggregate and cement paste, reducing cohesion and strength. 
• Water absorption and sorptivity decreased with 15% RPA replacement but increased at 
higher percentages compared to the control. This increase is due to the void space in the 
interfacial transition zone, which allows easy water penetration. 
• Prediction models using K-Nearest Neighbors (KNN) consistently provide the most 
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accurate predictions of water absorption and sorptivity property of RPA concrete. KNN 
shows the best performance with the lowest error and the highest R² score of 0.001 and 1.00 
in all evaluations. Artificial neural networks (ANN) also show strong predictive capabilities, 
serving as a reliable alternative to KNN. In contrast, Random Forest (RF) shows inaccurate 
predictions, indicating the need for further optimization to improve its performance in 
predicting the properties of these materials. 
 

Credit Authorship Contribution Statement 
 

Muhammad Fuad Umar: Writing-original draft, Formal analysis, Investigation, Jamilu Yau: 
Supervision, Agboola Shamsudeen Abdulazeez: Validation, Methodology, Review & editing, 
Shabi Moshood Olawale: Validation, Software, Aliyu Bukar: Review & editing. 
 
Declaration of Competing Interest 
 

The authors declare that they have no known competing financial interests or personal 
relationships that could have appeared to influence the work reported in this paper. 

REFERENCES 
 

Al Fuqaha, A., Ayyash, A., and Qabaha, R. 2023. Compressive strengths and water absorption of recycled 
plastic–based concrete [Conference presentation]. DSpace Repository. 
https://hdl.handle.net/20.500.11888/18297  

Agboola S.A., Mamman A.I., Amina O.S., Simdima G.G., and Solomon W.P., 2021. Suitability assessment 
of Sabon Kaura pit gravel as coarse aggregate in concrete production. International Journal of Latest 
Technology in Engineering, Management & Applied Science (IJLTEMAS), 10 (1), pp. 5-21. 
https:///doi.org/10.51583/IJLTEMAS.2021.10902. 

American Concrete Institute. 1998. ACI 211.2-98: Standard practice for selecting proportions for 
structural lightweight concrete. ACI. 

Bampanis, I., and Vasilatos, C. 2023. Recycling concrete to aggregates: Implications on CO₂ 
footprint.Materials Proceedings, 15(1), P. 28. https://doi.org/10.3390/materproc2023015028 

Bosire, J. O., Kaino, J. J., Olagoke, A. O., Mwihaki, L. M., Ogendi, G. M., Kairo, J. G., Berger, U., and 
Macharia, D. 2014. Mangroves in peril: Unprecedented degradation rates of peri-urban mangroves 
in Kenya. Biogeosciences, 11(10), pp. 2623–2634. https://doi.org/10.5194/bg-11-2623-2014 

Breiman, L., 2001. Random Forests. Machine Learning, 45(1), pp. 5-32. 

Bonifazi G., Capobianco G., and Serranti S., 2015. Imaging spectroscopy-based strategies for PET 
perform production monitoring. Journal of Cleaner Production, 108, pp. 785-794. 
https://doi.org/10.1016/j.jclepro.2015.08.080. 

BS EN 1992-1-1, 2004. Eurocode 2: Design of concrete structures – Part 1-1: General rules and rules for 
buildings. BSI Standards Publication. British Standards Institution 

BS EN 12390-2, 2019. Testing hardened concrete – Part 2: Making and curing specimens for strength 
tests. BSI Standards Publication. British Standards Institution.  

BS 8110-1, 1997. Structural use of concrete – Part 1: Code of practice for design and construction. BSI 
Standards Publication. British Standards Institution.  

https://hdl.handle.net/20.500.11888/18297?utm_source=chatgpt.com
https://doi.org/10.51583/IJLTEMAS.2021.10902
https://doi.org/10.3390/materproc2023015028?utm_source=chatgpt.com
https://doi.org/10.5194/bg-11-2623-2014?utm_source=chatgpt.com
https://doi.org/10.1016/j.jclepro.2015.08.080


Journal of Engineering, 2025, 31(10) 
 

M. F. Umar et al. 

 

19 

BS EN 12350-2, 2009. Testing fresh concrete – Part 2: Slump test. BSI Standards Publication. British 
Standards Institution. 

BS EN 12390-7, 2019. Testing hardened concrete – Part 7: Density of hardened concrete. BSI Standards 
Publication. British Standards Institution. 

BS EN 12390-3, 2009. Testing hardened concrete – Part 3: Compressive strength of test specimens. BSI 
Standards Publication. British Standards Institution.  

BS EN 13755, 2008. Natural stone test methods – Determination of water absorption at atmospheric 
pressure. BSI Standards Publication. British Standards Institution.  

BS EN 480-5, 2005. Admixtures for concrete, mortar and grout — Test methods — Part 5: 
Determination of capillary absorption. BSI Standards Publication. British Standards Institution. 

BS EN 1097-6, 2013. Tests for mechanical and physical properties of aggregates – Part 6: 
Determination of particle density and water absorption. BSI Standards Publication. British Standards 
Institution.  

BS EN 1097-3, 1998. Tests for mechanical and physical properties of aggregates – Part 3: 
Determination of loose bulk density and voids. BSI Standards Publication. British Standards 
Institution. 

BS EN 1097-2, 2010. Tests for mechanical and physical properties of aggregates – Part 2: 
Determination of resistance to crushing. BSI Standards Publication. British Standards Institution. 

BS EN 206, 2000. Concrete – Specification, performance, production and conformity. BSI Standards 
Publication. British Standards Institution.  

BS EN 13755, 2008. Natural stone test methods – Determination of water absorption at atmospheric 
pressure. BSI Standards Publication. British Standards Institution. 

BS EN 12390-8, 2009. Testing hardened concrete – Part 8: Depth of penetration of water under 
pressure. BSI Standards Publication. British Standards Institution.  

Develi, I., and Kabalci, Y. 2016. A comparative simulation study on the performance of LDPC coded 
communication systems over Weibull fading channels. Journal of Applied Research and Technology, 
14(2), pp. 125–132. https://doi.org/10.1016/j.jart.2016.04.001 

Deng, F., He, Y., Zhou, S., Yu, Y., Cheng, H., and Wu, X. 2018. Compressive strength prediction of 
recycled concrete based on deep learning. Construction and Building Materials, 175, pp. 562–569. 
https://doi.org/10.1016/j.conbuildmat.2018.04.169 

Dehwah, H. A., and Al-Ghamdi, S. G. 2015. Influence of specific gravity on weight of proportions of 
concrete. International Journal of Engineering Research & Technology, 4(2), pp. 317–322.  

Duan, M. 2024. Innovative compressive strength prediction for recycled aggregate/concrete using K-
nearest neighbors and meta-heuristic optimization approaches. Journal of Engineering and Applied 
Science, 71, P. 15. https://doi.org/10.1186/s44147-023-00348-9 

Du, C. W., and Li, G. Z. 2014. Effect and action mechanism of superplasticizer on foamed cement. 
Applied Mechanics and Materials, 548–549, pp. 1659–1662. 
https://doi.org/10.4028/www.scientific.net/AMM.548-549.1659 

https://doi.org/10.1016/j.jart.2016.04.001?utm_source=chatgpt.com
https://doi.org/10.1016/j.conbuildmat.2018.04.169?utm_source=chatgpt.com
https://doi.org/10.1186/s44147-023-00348-9?utm_source=chatgpt.com
https://doi.org/10.4028/www.scientific.net/AMM.548-549.1659?utm_source=chatgpt.com


Journal of Engineering, 2025, 31(10) 
 

M. F. Umar et al. 

 

20 

Gamil, Y. 2023. Machine learning in concrete technology: A review of current researches, trends, and 
applications. Frontiers in Built Environment, 9, P. 1145591. 
https://doi.org/10.3389/fbuil.2023.1145591 

Galvez-Martos J.L., Styles D., Schoenberger H., and Zeschmar-Lahl B., 2018. Construction and 
demolition waste best management practice in Europe. Resources, Conservation and Recycling, P. 136,  

Hilal, A. A. 2021. Effect of aggregate roughness on strength and permeation characteristics of 
lightweight aggregate concrete. Journal of Engineering, 2021, pp. 1–11. 
https://doi.org/10.1155/2021/9505625 

Huang, D., Han, G., and Tang, Z. 2025. Optimizing concrete strength: How nanomaterials and AI 
redefine mix design. Case Studies in Construction Materials, 22, P. e04838. 
https://doi.org/10.1016/j.cscm.2025.e04838 

Huang, R., Xu, L., Xu, Z., Zhang, Q., and Wang, J. 2024. A review on concrete superplasticizers and their 
potential applications for enhancing the performance of thermally activated recycled cement. 
Materials, 17(17), P. 4170. https://doi.org/10.3390/ma17174170 

Jayasinghe, R. R., Herath, G. P., Abeyrathna, W. P., Hendawitharana, M. P., Liyanage, C., Williams, K., 
and Halwatura, R. U. 2023. Strength properties of recycled waste plastic and quarry dust as substitute 
to coarse aggregates: An experimental methodology. Materials Circular Economy, 5(1), P. 5. 
https://doi.org/10.1007/s42824-023-00077-7 

Ji Y., Mezhov A., Wang S., and Stephan D., 2024. Influence of polycarboxylate superplasticizers with 
different molecular structures on rheological properties of glass bead suspension at different resting 
times. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 688, P. 133583. 
https://doi.org/10.1016/j.colsurfa.2024.133583 

Kibert, C.J. 2016. Sustainable Construction: Green Building Design and Delivery (4th ed.). Wiley. 

Liaw, A., and Wiener, M. 2002. Classification and regression by randomForest. R News, 2(3), pp. 18–
22. https://cran.r-project.org/doc/Rnews/Rnews_2002-3.pdf 

Luo, H., Aguiar, J., Wan, X., Wang, Y., Cunha, S., and Jia, Z. 2024. Application of aggregates from 
construction and demolition wastes in concrete: Review. Sustainability, 16(10), P. 4277. 
https://doi.org/10.3390/su16104277 

Li, F. X., Yu, Q. J., Wei, J. X., and Li, J. X. 2010. Predicting the workability of self-compacting concrete 
using artificial neural network. Advanced Materials Research, 168–170, pp. 1730–1734. 
https://doi.org/10.4028/www.scientific.net/AMR.168-170.1730 

Migallón, V., Penadés, H., Penadés, J., and Tenza-Abril, A. J. 2023. A machine learning approach to 
prediction of the compressive strength of segregated lightweight aggregate concretes using 
ultrasonic pulse velocity. Applied Sciences, 13(3), P. 1953. https://doi.org/10.3390/app13031953 

Muhammad, F. U., and Agboola, S. A., 2025. Prediction of Concrete Strength with Modified Plastic 
Waste Aggregate as Partial Replacement for Coarse Aggregate. Academy Journal of Science and 
Engineering AJSE, 19 (3) pp. 19-38. 

Netam, N., and Palanisamy, T. 2022. Prediction of compressive strength and workability 
characteristics of self-compacting concrete containing fly ash using artificial neural network. In 
Proceedings of SECON’22: International Conference on Structural Engineering and Construction 
Management, pp. 55–65.  https://doi.org/10.1007/978-981-99-2444-8_6 

https://doi.org/10.3389/fbuil.2023.1145591?utm_source=chatgpt.com
https://doi.org/10.1155/2021/9505625?utm_source=chatgpt.com
https://doi.org/10.1016/j.cscm.2025.e04838?utm_source=chatgpt.com
https://doi.org/10.3390/ma17174170
https://doi.org/10.1007/s42824-023-00077-7
https://doi.org/10.1016/j.colsurfa.2024.133583
https://cran.r-project.org/doc/Rnews/Rnews_2002-3.pdf
https://doi.org/10.3390/su16104277?utm_source=chatgpt.com
https://doi.org/10.4028/www.scientific.net/AMR.168-170.1730?utm_source=chatgpt.com
https://doi.org/10.3390/app13031953?utm_source=chatgpt.com
https://doi.org/10.1007/978-981-99-2444-8_6


Journal of Engineering, 2025, 31(10) 
 

M. F. Umar et al. 

 

21 

Qasim, O. A., and Jassam, S. H. 2022. Experimental investigation of plastic waste effect on concrete 
mechanical and durability properties. International Review of Civil Engineering, 13(3), P. 190. 
https://doi.org/10.15866/irece.v13i3.20871 

Sathvik, S., Pathapati Rohithkumar, P., Pshtiwan Shakor, Shahaji, Tantri, A., V. R. Prasath Kumar, and 
Singh, A. K. 2024. Enhancing urban sustainability: A study on lightweight and pervious concrete 
incorporating recycled plastic. Discover Sustainability, 5, Article 421. 
https://doi.org/10.1007/s43621-024-00644-1 

Soares, N. P., Marques, M. G., Mesquita, L. C., Azevedo, A. R. G., and Marvila, M. T. 2025. Recycled plastic 
waste as aggregates in lightweight concrete: A study of saturation effects. Journal of Sustainability, 
1(1), P. 1. https://doi.org/10.55845/jos-2025-1114 

Wałach, D. 2021. Analysis of factors affecting the environmental impact of concrete structures. 
Sustainability, 13(1), P. 204. https://doi.org/10.3390/su13010204 

Wang, Y., Li, L., An, M., Sun, Y., Yu, Z., and Huang, H. 2022. Factors influencing the capillary water 
absorption characteristics of concrete and their relationship to pore structure. Applied Sciences, 
12(4), P. 2211. https://doi.org/10.3390/app12042211 

Wu, S., Hoff, I., Amirkhanian, S., and Xiao, Y. 2019. Special issue of environment-friendly construction 
materials. Materials, 12(7), P. 1101. https://doi.org/10.3390/ma12071101 

Zhang, P., Wu, J., Wei, X., Zhang, C., and Gao, Z. 2025. Effects of polycarboxylate superplasticizer on 
the rheological properties of cement-based composites. Journal of Civil and Hydraulic Engineering, 
3(2), pp. 77–90. https://doi.org/10.56578/jche030202 

Zhong, C., Lu, W., Mao, W., Xin, S., Chen, J., Zhou, J., and Shi, C. 2024. Research on capillary water 
absorption characteristics of modified recycled concrete under different freeze–thaw environments. 
Applied Sciences, 14(3), P. 1247. https://doi.org/10.3390/app14031247 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://doi.org/10.15866/irece.v13i3.20871
https://doi.org/10.1007/s43621-024-00644-1
https://doi.org/10.55845/jos-2025-1114?utm_source=chatgpt.com
https://doi.org/10.3390/su13010204?utm_source=chatgpt.com
https://doi.org/10.3390/app12042211?utm_source=chatgpt.com
https://doi.org/10.3390/ma12071101
https://doi.org/10.56578/jche030202?utm_source=chatgpt.com
https://doi.org/10.3390/app14031247?utm_source=chatgpt.com


Journal of Engineering, 2025, 31(10) 
 

M. F. Umar et al. 

 

22 

التنبؤ بخصائص المتانة للخرسانة باستخدام الركام البلاستيكي المعاد تدويره كبديل جزئي  
 للركام الخشن 

 
 *²، شابي أولوالِه مشود²، بوكر عليو²، موسى عبدالحكيم كولاولي²، أغبولا شامس الدين عبدالعزيز¹، جميلو ياعو¹محمد فؤاد عمر

 
 قسم البناء، كلية العلوم البيئية، جامعة أبو بكر تفاوة باليوا، باوتشي، نيجيريا  1

 قسم البناء وحصر الكميات، كلية العلوم البيئية، جامعة أبوجا، إقليم العاصمة الفيدرالية، نيجيريا  2
 

 الخلاصة
يتسبب التخلص من النفايات البلاستيكية في مشكلات بيئية خطيرة، منها تدهور الأراضي والمسطحات المائية، وانبعاث الغازات 

كبديل جزئي   (RPA) الدفيئة، وتلوث التربة، وغيرها. تهدف هذه الدراسة إلى فحص استخدام الركام البلاستيكي المعاد تدويره
 للركام الخشن التقليدي في الخرسانة خفيفة الوزن من حيث الوزن. تم إعداد خلطات خرسانية تحتوي على نسب مختلفة من

RPA (0  ،%15  ،%30 وتمت معالجتها لمدة  45%، و ،)%يومًا. أظهرت النتائج أن إدخال  56، و28،  14،  7 RPA   في
  ³كجم/م  2,347فضت الكثافة من  الخرسانة أدى إلى انخفاض في الكثافة ومقاومة الانضغاط كلما زادت نسبة الاستبدال. انخ

  30.43يومًا من    28%. وبالمثل، انخفضت مقاومة الانضغاط بعد  45عند نسبة استبدال    ³كجم/م  1,895إلى   RPA %0عند  
%، مما يعكس الكثافة النوعية المنخفضة وضعف  45عند نسبة استبدال    ²نيوتن/مم  19.50)العيّنة المرجعية( إلى    ²نيوتن/مم

أظهرت   RPA % من15أظهرت النتائج أيضًا أن الخرسانة المحتوية على   .مقارنةً بالركام الخشن التقليدي RPA التماسك في
، مقارنة بالعينات  ¹/²مم/ثانية  0.0235مقدارها   (sorptivity) % وقيمة امتصاصية2.50معدل امتصاص منخفض للماء بلغ  

. ومع ذلك، أظهرت العينات التي  ¹/²مم/ثانية  0.024تصاصية  % وقيمة ام2.66المرجعية التي أظهرت امتصاصًا للماء بنسبة  
كما استخدمت   .نتائج تفي بالحد الأدنى لمتطلبات الخرسانة الهيكلية خفيفة الوزن  RPA % من30تحتوي على ما يصل إلى  

الاصطناعية العصبية  الشبكات  ذلك  في  بما  الآلة،  تعلم  نماذج  الجيران(ANN) الدراسة  وأقرب   ، (k-NN)  القرارات ، وغابة 
أعلى   k-NN من بين هذه النماذج، أظهر نموذج .RPA ، للتنبؤ بخصائص المتانة للخرسانة المحتوية على(RF) العشوائية

التحديد قيمة معامل  بلغت  التنبؤ، حيث  التربيعي (MAE) ، مع متوسط خطأ مطلقR² = 1.00 دقة في  الخطأ   ومتوسط 
(MSE)   تشير هذه النتائج إلى أن استخدام .ب والاختبارلكل من بيانات التدري  0.001قدره RPA   المعالج في الخرسانة لا يوفر

 .بديلًا مستدامًا للركام الطبيعي فحسب، بل يساهم أيضًا في تحسين متانة الهياكل الخرسانية الناتجة
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