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ABSTRACT

Disposal of plastic waste causes serious environmental problems, including landfills and
water bodies degradation, greenhouse gas emission, soil contamination and so on. This
study investigates the use of recycled plastic aggregate (RPA), as a partial replacement for
conventional coarse aggregates by weight in lightweight concrete production. Concrete
mixtures with different concentrations of RPA at (0, 15, 30, and 45%) were prepared and
cured for 7, 14, 28, and 56 days. Including RPA into concrete reduced both density and
compressive strength as the replacement level increased. Density decreased from 2,347
kg/m?* at 0% RPA to 1,895 kg/m?® at 45% replacement. Similarly, 28 days compressive
strength decreased from 30.43 N/mm? (control) to 19.50 N/mm? at 45% replacement,
reflecting the lower specific gravity and weaker bonding of RPA compared to traditional
coarse aggregate. Additionally, the test results showed that RPA concrete has a low water
absorption rate at 15% replacement, with 2.50% for water absorption and a 0.0235 mm//s1/2
sorptivity value compared to control samples with 2.66% for water absorption and 0.024
mm/s'/2 sorptivity value. However, concrete samples with up to 30% RPA replacement met
the minimum requirements for structural lightweight concrete. This study also used
machine learning models, including artificial neural networks (ANN), k-nearest neighbor (k-
NN), and random forest (RF), to predict the durability properties of RPA concrete. Among
these models, the k-NN model showed the best prediction accuracy with an R? value of 1.00,
a mean absolute error (MAE) and a mean square error (MSE) of 0.001 for both the train and
test data. These findings show that the use of treated RPA in concrete not only offers a
sustainable alternative to natural aggregates but also improves the durability of the
resulting structures.
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1. INTRODUCTION

The construction industry significantly impacts the environment through the use of large
amounts of materials, waste generation, and greenhouse gas emissions. It consumes natural
resources, produces large amounts of waste, and contributes to climate change by releasing
carbon dioxide (COz) and other gases. Normal weight concrete (NWC) is commonly used in
the construction of buildings, bridges, pavements, and other structures due to its strength
and durability (Watach, 2021). However, the extraction and use of natural aggregates in
construction have significant environmental concerns (Agboola et al., 2021). This practice
leads to land degradation, biodiversity loss, and soil erosion and leaching, which affects
marine ecosystems (Bosire et al., 2014). According to (Duran et al., 2018), the extraction
process alone emits between 0.005 and 0.01 kg of CO2z per kilogram of material, depending
on factors like aggregate type and machinery efficiency. Additionally, the processing stage,
which involves crushing, screening, and washing, contributes an extra 0.002 to 0.004 kg of
CO:2 per kilogram of material is released due to its energy efficiency. These environmental
challenges highlight the need for more sustainable construction practices and materials
(Kibert, 2016; Galvez-Martos et al.,, 2018; Wu et al., 2019). These issues have led
researchers to investigate the suitability of using industrial waste, such as waste plastic
bottles (Polyethylene terephthalate), in concrete production.

The incorporation of recycled plastic aggregate (RPA) into concrete can reduce water
absorption because the hydrophobic nature of the plastic reduces the penetration of water
into the concrete matrix (Muhammad and Agboola, 2025; Sathvik et al., 2024). This
shows that the use of RPA can improve the durability and water resistance of concrete
structures and provide a more sustainable way to design building materials. Also, due to the
hydrophobic nature of the RPA, increasing the content of RPA in concrete reduces
adsorption, increasing water resistance (Al Fuqaha et al, 2023). In addition,
superplasticizers help improve concrete durability by enhancing workability and flow
without increasing water content. Concrete made with superplasticizer has low water
absorption and sorptivity, improves resistance to moisture damage, and enhancing overall
durability (Du and Li, 2014). However, many studies report challenges with using RPA as a
partial replacement for conventional coarse aggregates, such as inadequate strength and
durability for structural purposes. To enhance the properties of lightweight concrete,
several studies have concentrated on surface modification techniques. Altering the
aggregate surface texture through methods such as roughening, coating, and applying
surface modifiers increases the surface area and strengthens the bond between the
aggregates and the cement matrix, thereby enhancing mechanical interlock and overall
durability. According to (Hilal, 2021), these modifications can improve strength and solve
the problem of moisture penetration. Also, (Zhang et al., 2025), reported that including
superplasticizers, particularly polycarboxylate ethers, significantly enhances workability
and reduces water content, resulting in a denser, more uniform mix with improved
mechanical properties. In addition, machine learning has been employed to address quality
control challenges in production by analyzing process data to identify patterns and
anomalies, facilitating predictive maintenance and optimization of material formulations
(Gamil, 2023).

Therefore, this study seeks to consolidate the effects of modified RPA as a coarse aggregate
supplement in the production of lightweight concrete (LWC). The purpose of the study was
to investigate the effects of modified RPA and polycarboxylate ether (PCE) based
superplasticizers on concrete strength and durability.
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2. MATERIALS AND METHODS
2.1 Materials

Materials that were used in this work are: cement, fine aggregate, coarse aggregate, recycled
plastic bottles aggregate (RPA), polycarboxylic acid (superplasticizer), and water, see the
images in Fig. 1.

Figure 1. Concrete Materials (a) Recycled Plastic Aggregate (b) Fine Aggregate (c) Coarse
Aggregate (d) Polycarboxylic Acid

2.2 Methods
2.2.1 Experimental Design

This study investigates the capillary absorption properties of concrete produced with RPA
as a partial coarse aggregate replacement in lightweight concrete. First, the RPA was
produced by crushing the waste plastic bottles into sizes ranging from 10 to 20 mm. Before
including it in concrete mixtures, RPA was treated for 24 hours by soaking in an oxidizing
solution. This solution was made by dissolving 500 grams of calcium hypochlorite (Ca(Cl0),)
in 5 liters of water. Fig. 2 shows the process of treating the used recycled plastic aggregate
in this work. Applying this treatment changed the plastic surface texture, which
consequently enhanced its bonding power with the cement paste when used as a partial
replacement for traditional coarse aggregate in concrete. The treated RPA was then air dried
to ensure no residual chemical remained on the surface. A superplasticizer at 1.0 % of the
weight of cement in kg/m3 was added to the mix as a chemical admixture to slow the
hydration process and improve the workability of the RPA fresh concrete mix. Cube sizes of
100 x 100 x 100 mm were produced to study the physical, mechanical, and durability
properties of the samples.
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Figure 2. Process of Treating Recycled Plastic Aggregate (a) Recycled Plastic Aggregate
Sample (b) Dissolving Ca(ClO)z in Water (c) Soaking RPA in Solution

All samples were cured for a period of (7, 14, 28 and 56 days). Four mixes were prepared:
the control (0%), the remaining three mixes included RPA replacing 15, 30 and 45% of the
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volume of conventional coarse aggregate with an equivalent volume of RPA. The concrete
curing process was carried out following (BS EN 1992-1-1, 2004).

2.2.2 Mixing Procedure and Sample Preparation

The mixing process consisted of mixing the cement and sand by hand for three minutes,
followed by the addition of crushed granite and RPA for another three minutes following the
guidelines for hand mixing provided in (BS 5328-3, 1990). After dry mixing, the water and
superplasticizer were added and the mixture was further mixed for three minutes before
casting the fresh RPA concrete into 100 x 100 x 100mm plastic molds in three layers, with
eachlayer manually compacted using a tamping rod with 25 strokes per layer following the
guidelines for hand compaction provided in (BS EN 12390-2, 2019). The samples were
covered with plastic bags and placed in the laboratory 24 hours before curing. Post
remolding, specimens were cured in a curing tank according to (BS 8110-1, 1997) before
being subjected to physical, mechanical and durability tests. In total, four concrete mixes
containing various percentages of RPA and a control sample with conventional materials
were examined in this study. The mix design of normal weight and lightweight concrete was
carried outaccording to (ACI 211. 2, 1998) to design a 30 N/mm? concrete grade at 28 days.
The compositions of the concrete mixtures are detailed in Table 1. The mix design
procedure adhered to (ACI 211.2, 1998) standard.

Table 1. Mix Proportion of RPA Concrete

Parameters 0% RPA 15% RPA 30% RPA 45% RPA
W/C ratio 0.52 0.40 0.40 0.40
Water content (kg/m3 181 139 139 139
Cement content (kg/m3) 348 348 348 348
Sand content (kg/m3) 627 627 627 627
Coarse agg. (kg/m3) 1226 1042 858 674
RPA (kg/m3) 0 36 72 108
SP at 1% of cement (kg/m3) 0 3.48 3.48 3.48
Target Density (kg/m3) 2382 2195 2047 1899

3. Experimental Work
3.1 Slump Test

The slump test is an empirical test that measures the workability of fresh concrete and was
done in accordance with (BS EN 12350- 2, 2009). The test was carried out using a metal
cone filled up with concrete in three different layers, with each layer tamped with a metal
rod 25 times. The cone was then lifted, and the slump was measured as the distance from
the top of the slump concrete to the top of the inverted cone. Fig. 3 shows the slump test.

Figure 3. Slump test.
4
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3.2 Density Test

The density test is of interest to the study because of numerous reasons, including its effect
on durability, strength, and resistance to permeability. The test was carried out according to
(BSEN 12390-7,2019). The concrete density test was carried out on 7, 14, 28 and 56 days.
The densities of the concrete are expected to reduce over time because the specimens were
subjected to air drying at room temperature after curing until the day of testing.

3.3 Mechanical Property

Mechanical property tests are usually conducted to determine the hardened properties of
the concrete samples. In this study, a compressive strength test was conducted.

3.3.1 Compressive Strength Test

The compressive strength test was carried out using universal crushing machines that
conform to (BS EN 12390-3, 2009). The compressive strength test was carried out on 7, 14,
28 and 56 days, respectively. The average value of three samples was used as the
compressive strength result. Fig. 4 shows the compressive strength test.

Figure 4. Compressive strength test.

3.4 Durability Properties

The durability test was conducted on 28, and 56 days for the water absorption test, while
sorptivity tests were carried out after 5, 10, 15, 30, 45 and 60 minutes, respectively after
28 days of curing.

3.4.1 Water Absorption Test

The water absorption test was carried out in accordance with (BS EN 13755, 2008). The
amount of water absorbed by concrete is termed as concrete water absorption, which is the
weight of the absorbed water by the concrete to the dry weight of the concrete. The water
absorption test was conducted using concrete cube samples of 100x100x100mm. Fig. 5
shows the water absorption test conducted.
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Figure 5. Water Absorption Test (a) Immersion in Water (b) Removal from Water (c)
Weighing air dried Samples

3.4.2 Sorptivity Test

The sorptivity test was conducted according to (BS EN 480-5, 2005). The cylinder
dimensions are 100 mm@ x 50 mm long. After a 24 hour casting period, the samples were
placed in water and cured for 28 days, then air-dried for a week till they reached a constant
mass after completing the curing process. The specimens were immersed in water with a
water level not more than 5 mm above the base of the samples. Then the samples were
removed at the end of 5, 10, 15, 30, 45, and 60 minutes of the test mechanism and weighed
at an accuracy of 0.01 g. The surface water on the sample was wiped off with a dampened
tissue to remove excess water and each weighting operation was completed within 30
seconds. This test was used to determine the rate of absorption (Sorptivity) of water by
measuring the increase in the mass of a sample resulting from absorption of water as a
function of time when only one surface of the sample is exposed to water ingress of
unsaturated concrete by capillary suction during initial contact with water. Fig. 6 shows the
Sorptivity test.

(b) ()
Figure 6. Sorptivity Test Process (a) Weighing Air-dried Sample (b)Sorptivity Test (c) Rate
of Water Rise

3.3 Machine Learning Method
3.3.1 Artificial Neural Networks (ANN)

An Artificial Neural Network (ANN) is a computational model designed to mimic how the
human brain processes information. ANNs are made up of interconnected units called
neurons, which are arranged in layers: an input layer, one or more hidden layers, and an
output layer. Each connection between neurons has a weight that is adjusted during training
to reduce the difference between the predicted output and the actual output. In concrete
technology, ANNs are used to predict the properties and performance of concrete mixtures,
optimize mix proportions, and model complex relationships between concrete ingredients
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and their resulting properties (Develi and Kabalci, 2016). For example, ANNs can predict
the compressive strength, workability, and durability of concrete based on input factors such
as cement content, water-cement ratio, and aggregate properties (Netam and Palanisamy,
2022; Li et al., 2010). These predictive abilities assist in enhancing concrete mix designs
and ensuring consistent quality in concrete production.

3.3.2 K-Nearest Neighbors (k-NN)

The k-nearest neighbors (k-NN) algorithm is a straightforward, non-parametric method
used in machine learning for classification and regression. It sorts data by considering the
class of its nearest neighbors. The algorithm works by finding the k nearest neighbors to the
problem using a distance measure such as Euclidean distance and assigning the problem to
a general class of these neighbors. In concrete technology, k-NN is used to predict properties
such as compressive strength, workability, and durability based on historical data.
Researchers have used k-NN to predict concrete mix properties by analyzing past
experimental results, optimizing mix design, and improving material performance
(Migallon et al., 2023). This application helps reduce material costs and increase the
efficiency of construction processes.

3.3.3 Random Forests

The Random Forest algorithm, developed by Breiman in 2001, is a machine learning method
that creates multiple decision trees during training. For classification tasks, it uses the
majority vote from these trees, while for regression tasks, it calculates the average of their
predictions. The algorithm increases the accuracy and reliability by selecting different types
of features and models to build an unrelated tree (Liaw and Wiener, 2018). In concrete
technology, Random Forest is used to predict concrete properties like compressive strength
and durability by analyzing various factors such as mix proportions, curing conditions, and
material properties. Research has shown that it effectively optimizes concrete mix designs
for better performance and sustainability by evaluating data from numerous experiments to
find the best ingredient combinations and conditions (Huang et al., 2025). As a result,
Random Forest is a valuable tool for advancing concrete technology through data driven
insights and innovation.

3.3.4 Predictive Models Evaluation

To evaluate the effectiveness of the prediction model, three indicators were used: coefficient
of determination (R?), mean absolute error (MAE), and mean squared error (MSE).

3.3.4.1 Coefficient of Determination (R?)

The R? measures the proportion of the variance of the dependent variable predicted by the
independent variables, ranging from 0 to 1, where 1 indicates perfect prediction as shown
in Eq. (1).

2_1_RSS
R?2=1 s (D
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3.3.4.2 Mean Absolute Error (MAE)

MAE evaluates the average magnitude of errors in predictions without considering their
direction, providing insight into how far predictions are from actual outcomes on average as
shown in Eq. (2).

1 ~
MAE = —¥i1y; — 3l (2)

3.3.4.3 Mean Squared Error (MSE)

The MSE, which is sensitive to outliers, calculates the average squared error, gives more
weight to larger errors, and measures the magnitude of the error. These measures provide a
unique perspective on the accuracy and reliability of the model, as shown in Eq. (3).

1 . ~
MAE = -3, (yi — 91)° (3)

Where, RSS is the sum of squares of residuals, },(yi — yi )?
TSS is the total sum of squares, ¥ (yi — y )?

yi are the actual values

yi are the predicted values

y is the mean of the actual values.

n is the number of observations

4. RESULTS AND DISCUSSIONS
4.1 Properties of Materials

Table 2 summarizes the material properties used in this research. The specific gravity of
fine aggregate was 2.59. This falls within the specified range specified by (BS EN 1097-6,
2013) of specific gravities of fine aggregate, as 2.4 to 2.9. The crushed granite had a specific
gravity of 2.71, which falls within the range of 2.5 to 2.9 as specified for coarse aggregates in
(BS EN 1097-6, 2013). While RPA had a specific gravity of 0.53, confirming its lightweight
nature for reducing structural loads in lightweight concrete applications. The compacted and
uncompacted bulk densities of fine aggregate were 1525 kg/m*® and 1340 kg/m?3,
respectively. The compacted and uncompacted bulk densities of crushed stone were 1,727
kg/m? and 1,398 kg/m?, respectively, both of which fall within the range of 1,200 to 1,750
kg/m?* as specified in (BS EN 1097-3, 1998). RPA's compacted and uncompacted bulk
densities were 337 and 212 kg/m?, respectively. The water absorption of the crushed stones
used in the study was found to be 2.21%, which meets the requirement of (BS EN 1097-6,
2013), specifying a maximum allowable value of 10% for all types of coarse aggregates and
the RPA showed a water retention rate of 0.50%, suggesting low surface porosity. This helps
limit water uptake in the concrete mix, leading to better durability and overall concrete
performance. The aggregate impact values for crushed stone and RPA were 5.2% and 2.0%,
respectively, which fall within the acceptable limit of 35% specified by (BS EN 1097-6,
2013) for aggregates suitable for structural concrete. The aggregate crushing values were
6.6% for crushed stone and 3.2% for RPA, both of which fall within the acceptable limit of
25% specified by (BS EN 1097-2, 2010), indicating their suitability for structural concrete.
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Table 2. Physical Properties of Material

Materials Bulk Density(Kg/m3) Specific Water Impact | Crushing
Compacted | Uncompacted | Gravity (g) |Absorption (%) | Value (%) Value (%)
Sand 1525 1340 2.59 - - -
Crushed 1727 1398 2.71 221 5.2 6.6
Stone
RPA 337 212 0.53 0.5 2 3.2

4.2 Effect of RPA as Partial Replacement of Coarse Aggregate in LWC
4.2.1 Slump Test

The workability of concrete mixes was assessed using the slump test, targeting a slump value
between 75 and 100 mm. Fig. 7 shows that workability initially improves with a 15% RPA
mix but decreases as RPA content increases. This trend is attributed to RPA irregular shape
which increases water demand and reduces workability, as noted by (Huang et al., 2024).
The highest slump value of 30 mm was observed with the 15% RPA mix, where a
superplasticizer was used to enhance particle dispersion and lower water demand, as
supported by (Huang et al., 2025). Therefore, higher RPA percentages require more water
to maintain adequate workability.

35
30 -
~ 25
£ 20
E 20
(=%
g 15 1
= 10
2 10
5 _ L
0 .
®0% MPA ® 5% MPA @30% MPA ®45% MPA

Figure 7. Slump result of concrete containing RPA.

4.2.2 Density

Fig. 8 shows the average density of concrete samples after 28 days for all mixes. According
to (BS EN 12390-7, 2019), the density of structural lightweight concrete typically ranges
between 1,300 and 2000 kg/m?, which serves as the standard limit for classifying concrete
as lightweight for structural applications. Concrete density is significantly influenced by the
specific gravity of aggregates, with higher specific gravity leading to denser concrete
(Dehwah et al., 2015). The RPA used in this research has a lower bulk density compared to
conventional coarse aggregate, resulting in reduced density for concrete mixes with RPA. At
28 days, the control samples had a density of 2347 kg/m?3, while the 15%, 30%, and 45%
RPA mixes had densities of 2135 kg/m?, 1996 kg/m? and 1895 kg/m? respectively, reflecting
reductions of approximately 9.03, 14.96 and 19.26% compared to the control. However, only
the 30 and 45% RPA mixes fall within the structural lightweight concrete density range
specified by (BS EN 12390-7, 2019) and are therefore suitable for structural use.
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Figure 8. Density of concrete containing RPA at 28 days

4.2.3 Compressive Strength

Fig. 9 shows compressive strength tests for lightweight concrete with RPA replacing 15, 30
and 45% of conventional coarse aggregate. The replacement resulted in reduced
compressive strength, which may likely be due to the different characteristics of the RPA
such as size, shape and quality, causing inconsistent performance (Qasim and Jassam,
2022). The control sample achieved the highest compressive strength of strength of 32.59
N/mm? at 56 days, exceeding the target design strength of 30 N/mm? specified for 28 days.
RPA concrete samples showed a linear reduction in compressive strength with decreases of
9.33,16.14 and 22.40% for 15, 30 and 45% RPA content, respectively. Both control and RPA
samples reached about 90% of their 28 day compressive strength. However, higher RPA
content led to lower compressive strength likely due to reduced workability and increased
porosity at 30 and 45% RPA levels (Jayasinghe et al,, 2023). Despite this, all RPA concrete
samples met the (BS EN 206, 2000) minimum requirement of 17 N/mm? for 28 days
compressive strength of structural lightweight concrete. Therefore, RPA can replace up to
45% of conventional aggregates without significantly affecting compressive strength.

35
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£ 25.29
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E _ 25 A
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7days 14days 28days S6days
CuringPeriods

Figure 9. Decrease in compressive strength of concrete containing RPA
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4.2.4 Water Absorption

Water absorption refers to the ability of a material to absorb water, which affects its
durability and performance. According to (BS EN 13755, 2008), the maximum water
absorption for a material should be less than 10% of its dry weight. The average water
absorption at 7, 14, 28 and 56 days for concrete mixes with 0, 15, 30 and 45% RPA
replacement was recorded and presented. The 28 days water absorption for the 15% RPA
mix was 2.50%, while the control was 2.66%. Including 30 and 45% RPA increased water
absorption to 3.37 and 7.58%, respectively as shown in Fig. 10. This indicates that higher
RPA content increases water absorption due to the porous nature of the samples (Zhong et
al,, 2024). Higher porosity leads to increased void spaces, allowing more water to penetrate
as noted by (Wang et al., 2022).

[u=y
(=)}

S 14 0% RPA
&
= 12 —=— 15% RPA
',g 10 —4—30% RPA
)
5 g —%—45% RPA
7]
= 6
St
3 4
<
= 2

0

7 14 28 56
Curing Period (Days)

Figure 10. Water absorption of concrete containing RPA

4.2.5 Sorptivity

Sorptivity measures the absorption of water through tiny pores in concrete, indicating its
microstructure and durability. According to (BS EN 480-5, 2005), the sorptivity of concrete
should not exceed 0.55 mm/s'/2, Low sorptivity indicates better resistance to water
penetration, enhancing concrete durability. From the experimental results in Fig. 11, the
sorptivity index for the control sample varied from 0.040 to 0.024 mm/s'/2, measured from
5 to 60 minutes. The 15% RPA mix showed a decrease from 0.038 to 0.0235 mm//s?/2.

25

0% RPA

2 2 —=— 15% RPA
= - —a—30% RPA
g'hm 15 —%— 45% RPA
v o
2 E 1o
FE
) 5
N

0

5 10 15 30 45 60

Testing Period (Minutes)

Figure 11. Sorption of concrete containing RPA at 60 minutes
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However, inculding 30% and 45% RPA increased sorptivity due to void formation, as
established by (Zhong et al., 2024). High percentages of RPA can weaken the interfacial
bond between RPA and the cement matrix there by increasing water ingress (Soares et al.,
2025). Despite this, all tested samples fell within the acceptable limits set by (BS EN 12390-
8, 2009), making them suitable for structural lightweight concrete applications.

4.3 Relationship between Sorptivity and Water Absorption

Fig. 12 shows the relationship between sorptivity and water absorption in RPA lightweight
concrete. Higher sorptivity is associated with increased water absorption, reflecting a more
porous and interconnected pore structure that facilitates faster water penetration.
In contrast, materials with lower sorptivity generally exhibit lower water absorption due to
their denser microstructure. Sorptivity and water absorption decrease with longer curing
periods, although factors such as pore size distribution and environmental conditions can
independently influence these properties. The inclusion of RPA into concrete showed
reduced sorptivity and water uptake at 15% replacement but increased levels at 30 and 45%
replacement. Linear regression analysis showed a strong correlation between these
properties, suggesting that sorptivity values can be use to predict water absorption reliably,
and vice versa, which is confirmed by the high R? values.

B 0045
Zg _ 004 | Y=0.0041X + 0.0132
&S 0.035 R%2=0.9992 o
S <L 03
2 E 0.025
S =~ 0.02
R 0015

0.01 ® Data points

0.005 Linear (Data points)

0
0 1 2 3 4 5 6 7 8

28 Days Water Absorption (%)

Figure 12. Relationship between sorptivity and water absorption

S=0.0041 WA + 0.0132 (R2=0.9992)
Where, S = Sorptivity (mm/s1/2); WA = 28 Days water absorption (%)

4.4 Development of Predictive Models

This section shows the predicted durability properties of RPA concrete, where RPA partially
replaced by conventional coarse aggregate in lightweight concrete at 0, 15, 30 and 45%.
Durability predictions were performed using ANN, KNN, and RF models. Due to the need for
large datasets for effective machine learning, the experimental datatset was augmented with
synthetic data generated using CTGAN, a machine learning library use for generating
complex datasets.

4.4.1 Simulation and Analysis Results

The study evaluated the durability properties of RPA concrete using computational
intelligence techniques. A dataset of 500 entries, combining experimental and augmented

12
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data, was created using the CTGAN library in Python. The dataset includes parameters such
as cement content (C), water content (W), superplasticizer (SP), coarse aggregate (CA), fine
aggregate (FA), RPA, test age (A), slump value (S), density (D), and compressive strength
(CS). The data were divided into a training set (70%, 350 samples) and testing set (30%, 150
samples). The training set was used to develop robust predictive models, while the test set
evaluated the models accuracy in predicting durability properties.

As shown in Tables 3 and 4, the statistical analysis of the dataset revealed key variables such
as the maximum, minimum, mean, and standard deviation for the input and output variables.
Differences were handled by replacing them with median values, maintaining data integrit
y and consistent distribution. This process ensured that no attribute had more than 5%
outliers, as shown in Table 5.

Table 3. The Statistical Parameters of Water Absorption Model.

Variables Count Mean |Standard deviation | Minimum | Maximum
Water 500 150.68 19.42 128 207
Cement 500 348 0 348 348
Fine 500 745 0 745 745
Coarse 500 836.6 210.92 338 1391
SP 500 1.99 1.64 0 4.48
RPA 500 75.56 42.32 0 174
Age 500 50.24 23.31 7 92
Slump 500 17.1 8.15 0 38
Density 500 1951.08 223.68 1393.35 2624.47
Strength 500 29.61 7.86 5.58 44.38
WA (%) 500 4.88 5.17 0 20.78
Table 4. The Statistical Parameters of the Sorptivity Model.
Variables Count Mean Standard deviation| Minimum | Maximum
Water 500 155.15 20.02 130 201
Cement 500 348 0 348 348
Fine 500 745 0 745 745
Coarse 500 855.39 216.17 343 1400
SP 500 2.58 3.39 0 4.33
RPA 500 70.95 43.59 0 175
Age 500 28 28 28 28
Time 500 37.25 25.22 0 96
S (mm/s1/2) 500 0.036 0.014 0.006 0.074
Table 5. Analysis of the Outliers for all the Variables.
Water absorption
Variables | W| C | F| C | SP |RPA| Age | S D | CS | WA (%)
Outliers | 0 0 0] 0 0 0 0 0 0 0 7
Sorptivity
Variables | W| C | F | C SP |RPA|Age | T S (mm/s1/2)
Outliers | 0 0 0] 0 0 0 0 0 0
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4.4.2 Prediction of Water Absorption Properties of Concrete RPA

Water absorption is a key durability property that indicates the resistance of concrete to
moisture penetration and possible degradation. High water absorption can weaken
concrete, reduce compressive strength and increase the risk of deterioration. Table 6 shows
the training and testing results for ANN, KNN and RF models predicting the water absorption
of RPA concrete at different ages.

Table 6. Performance Evaluation of Water Absorption Models.

Models name Training results
R2 MAE MSE
ANN 0.9997 | 0.0555 | 0.0077
KNN 1.00 0.0010 | 0.0010
RF 0.8515 | 1.4717 | 3.6896
Testing results
ANN 0.9989 | 0.0945 | 0.0299
KNN 1.00 0.0010 | 0.0010
RF 0.8118 | 1.8479 | 5.6642

Figs. 13 and 14 show that both ANN and KNN models accurately predicted the measured
water absorption values of RPA concrete. The R%, MAE and MSE values of the ANN model
were 0.9997, 0.0555 and 0.0077, respectively. On the training data and 0.9989, 0.0945 and
0.0229, respectively in the testing data. The KNN model performed very well with R?, MAE
and MSE values of 1.0, 0.001 and 0.001 for the training and test sets, respectively. The R?,
MAE and MSE values obtained by the RF model on the test setare 0.8118, 1.8479 and 5.6642,
respectively as shown in Table 6. Fig. 15 shows the residual plot of the R? train and test
results of water absorption for the RF model. These results are consistent with the findings
of (Deng et al., 2018), who reported R? values of 0.95 when predicting water absorption in
concrete pavements using KNN models. The high value of R? indicates that KNN can reliably
predict the water absorption of RPA concrete.
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Figure 13. Residual plot of the train and test R% score of water absorption for ANN model.
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Figure 14. Residual plot of the train and test R? score of water absorption for the KNN model.
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Figure 15. Residual plot of the train and test R% score of water absorption for RF model.

4.4.3 Predicting RPA Concrete Sorptivity Properties Using Machine Learning

Sorptivity, a critical durability property, measures the ability of concrete to absorb liquid or
gas through capillary action under a hydraulic gradient. High sorptivity levels increase the
risk of chemical deterioration and alkali silica reaction (ASR). This phase of the study
evaluates the predicted sorptivity properties of RPA concrete using ANN, KNN and RF
models. Table 7 shows the performance evaluation for the training and testing datasets. The
ANN model showed that the predictions closely match the measured sorptivity values. The
R?, MAE and MSE values of the experimental dataset obtained by the ANN model are 0.9998,
0.0117 and 0.0002 respectively. The KNN model performed very well with R%, MAE and MSE
values of 1.0, 0.001 and 0.001 for the training and test datasets. The R?, MAE and MSE values
of the experimental data obtained by the RF model are 0.8189, 0.3303 and 0.1755,
respectively as shown in Table 7. These results are consistent with those of (Duan, 2024),
who reported R? values ranging from 0.90 to 0.95 when predicting sorptivity in concrete
pavements using KNN models.
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Table 7. Performance Evaluation of Sorptivity Models.

del Training results
Models name R? MAE MSE
ANN 0.9994 | 0.0138 0.0005
KNN 1 0.001 0.001
RF 0.8147 | 0.3058 0.1507
Testing results
ANN 0.9998 | 0.0117 0.0002
KNN 1 0.001 0.001
RF 0.8189 | 0.3303 0.1755

Figs. 16 to 18 illustrate the residual plot of the train and test R2 score of ANN, KNN, and RF
models for sorptivity values of RPA concrete.

Q-Q plot

30 EEm Train R2= 0.99 -

mmm TestR2= 0.99

20 : - | %
w
o 10 - i 2 % -
S eo . © @ S| ee
= 0 WS’ 2l P ] [o]
D ¢ g
5]
% ~a0 i B 2 -10
[e]
—20 - -20
—-30 -30
10 20 30 40 50 60 70 80 o -2 o 2
Predicted Value Theoretical quantiles

Figure 16. Residual plot of the train and test R? score of sorptivity for ANN model.
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Figure 17. Residual plot of the train and test R? score of sorptivity for KNN model.
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Figure 18. Residual plot of the train and test R? score of sorptivity for RF model.

5. CONCLUSIONS

After extensive laboratory testing, observations, analysis, and discussion on the effect of RPA
on concrete properties and the potential of predictive models to predict durability, the
following conclusions were reached:

e The determination of properties for both conventional crushed stone and recycled plastic
aggregate (RPA) revealed distinct differences in their physical properties. The RPA exhibited
a notably lower density and a water retention value of 0.50%, indicating reduced mass and
low surface porosity compared to crushed stone. Despite these differences, both aggregate
types met the requirements for compacted and uncompacted bulk density as specified in BS
EN 1097-3, confirming their suitability for use in concrete production. Furthermore, the
aggregates demonstrated excellent mechanical performance, with aggregate impact and
crushing values of 5.20 and 6.60% for crushed stone, and 2.00 and 3.20% for RPA, all falling
well within the permissible limits defined by BS EN 1097-6 and BS EN 1097-2. These results
indicate that both materials possess sufficient mechanical strength to be considered for
structural concrete applications.

e The 15% RPA replacement fresh concrete showed better workability than the control
mix, while the 45% replacement concrete showed the lowest slump value, likely due to the
irregular shape of the RPA and the rough surface structure that affected the flow of water.
The inclusion of RPA reduced the density of the concrete compared to traditional aggregates,
reflecting its lighter nature.

e The compressive strength of RPA concrete decreases with increasing replacement
percentage due to the lower rigidity of RPA compared to traditional coarse aggregate,
showing an inverse relationship between replacement percentage and strength properties.
e At 28 days of curing, the compressive strength of RPA concrete decreased with higher
replacement percentages, attributed to its lower rigidity compared to traditional coarse
aggregates, with reductions of 10.94, 14.65 and 15.69% for 15, 30 and 45% RPA
replacement, likely due to reduced rigidity and increased void content which disrupt the
bond between the aggregate and cement paste, reducing cohesion and strength.

e Water absorption and sorptivity decreased with 15% RPA replacement but increased at
higher percentages compared to the control. This increase is due to the void space in the
interfacial transition zone, which allows easy water penetration.

e Prediction models using K-Nearest Neighbors (KNN) consistently provide the most
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accurate predictions of water absorption and sorptivity property of RPA concrete. KNN
shows the best performance with the lowest error and the highest R? score of 0.001 and 1.00
in all evaluations. Artificial neural networks (ANN) also show strong predictive capabilities,
serving as a reliable alternative to KNN. In contrast, Random Forest (RF) shows inaccurate
predictions, indicating the need for further optimization to improve its performance in
predicting the properties of these materials.
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