
Journal of Engineering    Volume    23     November      2017 Number  11 
 

 

18 

 

Design of L1 -Adaptive Controller for Single Axis Positioning Table 

 
Amjad Jalil Humaidi 

Assistant Professor. Dr. 

Control and System Engineering Department-University of Technology  

601116@uotechnology.edu.iq 

 

    Mohammed Ali Saffah Mohammed                                                                     Mohanad N. Mustafa           

                Assist lecturer                                                                                                       Assist lecturer 

             Almansour College                                                        Control and System Eng. Dep. -University of Technology 

   mohammadalisffah@yahoo.com                                                                       Moohanadnm72@yahoo.com 

   

ABSTRACT 

L1 adaptive controller has proven to provide fast adaptation with guaranteed transients in a 

large variety of systems. It is commonly used for controlling systems with uncertain time-

varying unknown parameters. The effectiveness of  L1 adaptive controller for position control 

of single axis has been examined and compared with Model Reference Adaptive Controller 

(MRAC). The Linear servo motor is one of the main constituting elements of the x-y table 

which is mostly used in automation application. It is characterized by time-varying friction and 

disturbance.  

    The tracking and steady state performances of both controllers have been assessed for two 

different types of input signals ramp and step inputs. The simulated results based on MATLAB 

(2012a) package showed that L1 adaptive controller could outperform MRAC in terms of 

robustness and tracking.   

Keywords:  L1  adaptive controller, position control, servo motor, x-y table  

 

 للسٌطرة على الحركة الخطٌة لمحور لمنضدة ذات محور مفرد  L1 نوع  متكٌفمسٌطر  تصمٌم

 
 امجد جلٌل حمٌدي 
 استاذ مساعد دكتور 

 الجامعة التكنولوجية–قسم هندسة السيطرة والنظم 
 مهند نوفل مصطفى                                                      محمد علً سفاح محمد                                                     

 مدرس مساعد                                                   مدرس مساعد                                                                     
  الجامعة التكنولوجية–قسم هندسة السيطرة والنظم                                                                                     كلية المنصور الجامعة

 
 

 الخلاصة
 استخدام تم وقد محور واحدباتجاه  X-Yمنضدة الحركة الخطية ل تطبيقل مستمر تيار ذو مؤازر محرك استخدام تم العمل هذا في    

 والوجذولت صهٌٍا الوخغٍشة الوؼلواث راث الوٌظىهاث ػلى السٍطشة المستخدم في  (L1 ًىع الوخنٍف الوسٍطش)  حديث متكيف مسيطر

 رو نٍفـــــــــــالوخ الوسٍطش هغ  L1 ًىع الوخنٍف الوسٍطش( الوقخشح الوسٍطش هقاسًت جـــــــــحو الأداء وحقٍٍن الوقاسًت ولغشض .القٍوت

 .الٍهالوحىسالوٌضذة  الخطً الوىقغ ػلى للسٍطشة ورلل (Model Reference Adaptive Control) ٌوزجتــالو ؼٍتـــــــــــــالوشج

 .(Uncertainties) هؤمذة الغٍش الخشامٍب وهخخلف الادخاه اشاساث اًىاع لوخخلف اػلاٍ الوسٍطشٌي هخاًت حقٍٍن حن

 ورلل الوسٍطشٌي اششاف وححج الوخغٍشة الاحخناك وحشامٍب الاضطشاباث بىجىد الوقخشحت الخطٍت للوحشماث الوحاماة حٌفٍز حن   

 اداء اعطى    ًىع الوخنٍف الوسٍطش بأى (MATLAB 2012a) بشًاهج باسخخذام الٌظشٌت الٌخائج اثبخج .الٌظشي الاساس لاثباث

 المرجعية ذو المتكيف المسيطر من عليھا الحصول تم تلك التي من افضل المستقرة الحالة وخواص داينميكي حركي واداء متابعة
 .المنمذجة

 .X-Yهٌضذة , هسخوش حٍاس رو هؤاصس هحشك, السٍطشة ػلى الوىقغ ,   L1 ًىع الوخنٍف الوسٍطش: الكلمات الرئيسية
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1. INTRODUCTION 

    Over the last few years, L1-adaptive control theory has attracted the attention of many 

control researchers.  It permits transient characterization, cope with time varying uncertainties, 

and can create a compromise between tracking performance and robustness, Hovakimyan, 

2010, and Cao, 2009.  

    L1-adaptive control theory allows for decoupling of adaptation from robustness. The 

architecture also allows for transient characterization and robustness in the presence of fast 

adaptation without using persistent excitation, applying gain scheduling, or using high-gain 

feedback. Moreover,   -adaptive control can be used for nonlinear time-varying systems in the 

presence of state constraints, Hovakimyan, 2010, and Hacker, 2011.  

   To achieve its goals,   -adaptive control uses three distinct laws; state predictor law, 

adaptation law and control law. The state predictor law is responsible for modelling the 

system's desired performance, while the adaptation law ensures that the state estimates and 

plans are identical. Additionally, the control law tries to reduce the chattering in the control 

loop by including a low pass linear filter.  

    The L1 controller has already been shown to be beneficial in many control applications such 

as drilling systems, wing rock, aerial vehicles, acrobats, the hysteresis in smart materials, and 

the regulation of arterial CO2 tension in blood, Techy, et al., 2007, and Pomprapa, et al., 

2013. 

    In the present work, two controllers have been suggested, L1 controller and Model 

Reference Adaptive Controller for positioning control of single axis positioning table. The 

performance comparisons of the presented controllers are assessed, via simulation, in terms of 

tracking and robustness.   

                  

2. ANALYSIS OF   -ADAPTIVE CONTROL 
     Two different architectures of adaptive control will be studied: Direct MRAC and Direct 

MRAC with state predictor which can be developed later to synthesize L1-adaptive control 

architecture. It is worthy to mention that   -adaptive control is a modified version of direct 

MRAC. Therefore, one can proceed to analyze the MRAC and then to state the main 

constructing elements of L1 –adaptive control. 

 

2.1 Direct Model Reference Adaptive Control (MRAC) 

Let the system dynamics obey to the following structure of differential equation, 

Hovakimyan, 2010:                                                    

             ̇( )     ( )     . ( )    
   ( )/      ( )                                                         (1) 

              ( )       ( ) 
where  ( )     is measured state of the system,     

   , a known Hurwitz matrix, 

defines the desired dynamics for the closed-loop system and its eigenvalues should have  

negative real values,        are known constant vectors, ,  ( )    is the control input, 

 ( )    is the regulated output, and        is a vector of unknown uncertainty constant 

parameters. The development of MRAC architecture is initiated by suggesting the nominal 

controller;  

                          
   ( )       ( )                                                                                   (2) 

where  ( )    is uniformly bounded piecewise-continuous reference input and    is given by 
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                                                                                                    (3)     

The direct MRAC is given by 

                 ( )     ̂ 
 ( ) ( )      ( )                                                                                  (4) 

where  ̂ ( )    
  is the estimate of   . Substituting Eq.(4) into Eq.(1) yields the closed – loop 

system dynamics, Hovakimyan, 2010: 

             ̇( )  .      ̃ 
 ( )/  ( )        ( )      ( )                                                    (5)                  

             ( )       ( )  
where  ̃ ( )   ̂ ( )      denotes the parametric estimation error. The signal of tracking 

error will be:   
              ( )    ( )   ( ) 
              ̇( )       ( )     ̃ 

 ( ) ( )            ( )                                                               (6) 

The updated law of the parametric estimate is given by Cao, 2009, and Maalouf, 2013:                  

             ̇̂ ( )    Γ ( ) 
 ( )                     ̂ ( )                                                            (7) 

where Γ    is the adaptation gain. The matrix         is found by solution of the 

algebraic Lyapunov equation, Hacker, 2011, and Hovakimyan, 2007:                 

              
                                                                                                                 (8) 

For arbitrary       . The block diagram of the closed–loop system is in Fig.1. 
 

The following is the candidate of Lyapunov function: 

           . ( )  ̃ ( )/   
 ( )    ( )   

Γ

1
  ̃ 
 ( )  ̃ ( )                                                         (9) 

Its time derivative along the system trajectories Eq.(6) – Eq.(7) is given by 

           ̇( )     ( )    ( )                                                                                                (10)                                  

Hence, the equilibrium of Eq.(6) and Eq.(7) is Lyapunov stable. The asymptotical convergence 

to zero of tracking error, the second derivative of Eq.(9) is used;   

            ̈( )       ( )   ̇( )                                                                                                 (11)   

It follows that  ̇( ) is uniformly bounded, and hence  ̈( ) is bounded, implying that  ̇( ) is 

uniformly continuous. Application of Barbalat’s lemma yields, Hovakimyan, 2010: 

               
   

 ̇ ( )                                                                                                                     (12) 

which leads to the fact  ( )    as    . Thus,  ( ) asymptotically converges       to   ( ).  
 
2.2 Direct MRAC with State Predictor   

    One can re-parameterize the above-discussed structure utilizing a state predictor as follows, 

Hacker, 2011, and Hovakimyan, 2007   

          ̇̂( )      ̂( )    . ( )    ̂ 
  ( ) ( )/        ̂( )                                                 (13) 

          ̂( )      ̂( )  
where  ̂( )     is the state of the predictor. By subtracting Eq.(1) from Eq.(13), the 

prediction error dynamics can be obtained,            

          ̇̃( )       ̃( )     ̃ 
 ( )  ( )       ̃( )                                (14)                               

where  ̃( )   ̂( )   ( ) and  ̃ ( )   ̂ ( )    ( ). One may note that these error dynamics 

are equivalent to the error dynamics indicated in Eq. (6). Next, let the adaptive law for  ̂ ( ) be 

given as                                    

        ̇̂ ( )    Γ ( )  ̃
 ( )                  ̂ ( )                                                                  (15) 
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This adaptive law is identical to Eq.(7) in its structure with an exception of replacing the 

tracking error  ( ) is by the prediction error  ̃( ). The Lyapunov function candidate is chosen 

as Hovakimyan, 2010, and Maalouf, 2013: 

        . ̃( )  ̃ ( )/    ̃
 ( )    ̃( )   

Γ

1   ̃ 
 ( )  ̃ ( )                                                        (16)         

which leads to 

          ̇( )    ̃ ( )    ̃( )                                                                                                (17)                                 

This means that both errors  ̃( ) and  ̃ ( ) are uniformly bounded. However, Barbalat’s 

lemma cannot be applied to prove asymptotic convergence of  ̃( ) to zero without introducing 

the feedback signal  ( ). Moreover, the estimation error  ̃( ) can be kept uniformly bounded if 

both  ( ) and  ̂( ) diverge at the same rate. 

   The closed–loop of state predictor would mimic the reference system Hovakimyan, 2010 :                

           ̇̂( )      ̂( )     g  ( )            ̂( )                                                                   (18)                                                     

           ̂( )       ̂( )   
Thereby, Barbalat’s lemma can be included to deduce  that  ̃( )      as     . Fig. 2 shows 

the block diagram of the direct MRAC with state predictor.  

 

3 PROBLEM FORMULATIONS:  

    The class of system indicated in Eq.(1) can be extended to the following more general class, 

Hovakimyan, 2010,  Cao, and Hovakimyan, 2007, and Cao, and Hovakimyan, 2008; 

            ̇( )      ( )    .   ( )   
 ( )  ( )   ( )/  ( )                                    (19) 

            ( )     ( )                                                                                                                (20)                                                                         

where  ( )     is a vector of time-varying unknown parameters,     is an unknown 

constant with known sign, and  ( )    accounts for input disturbances. 

    The control objective is to ensure that  ( ) tracks a bounded piecewise-continuous reference 

signal  ( ) using full-state feedback adaptive controller, Hovakimyan, 2010, and Cao, and 

Hovakimyan, 2007, and Hovakimyan, 2007. 
 

4. L1-ADAPTIVE CONTROL ARCHITECTURE 

   In what follows, the elements of L1--adaptive controller will be explained. The controller 

comprises three main parts; state predictor, adaptation law and control law, Hovakimyan, 

2010, and Cao, and Hovakimyan, 2007, and Hovakimyan, 2007.  
 

4.1 State Predictor 
   The following state predictor will be considered: 

           ̇̂( )     ̂( )   . ̂( ) ( )   ̂
 ( ) ( )   ̂( )/,   ̂( )     

           ̂( )     ̂( )                                                                                                                 (21) 

which is a similar structure indicated in Eq.(20) except that the unknown parameters  ,  ( ), 

and  ( ) are exchanged by their adaptive estimates  ̂( ),  ̂( ), and  ̂( ), respectively. 
 

4.2 Adaptation Laws 

    The adaptive process is conducted by the projection-based adaptation laws: 

           ̇̂( )        . ̂( )   ̃ ( )   ( )/          ̂( )   ̂ , 

           ̇̂( )        ( ̂( )   ̃ ( )  )            ̂( )   ̂ ,                                                       (22) 
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           ̇̂( )        . ̂( )   ̃ ( )   ( )/         ̂( )   ̂  

where  ̃( )   ̂( )   ( ),      is the adaptation rate and         is the solution of the 

algebraic Lyapunov equation    
          for arbitrary       . 

4.3 Control Law  
    The control signal is produced as the output of the following (feedback) system Cao, and 

Hovakimyan2007, and Hovakimyan2010: 

           ( )      ( ) ( ̂( )   g  ( )),                                                                               (23) 

where  ( ) and  ̂( ) are the Laplace transforms of   (  ) and   ̂( ), respectively, where  ̂( ) 
and   g are given by: 

            ̂( )   ̂( ) ( )   ̂ ( )  ( )   ̂( ),                                                                        (24) 

            g      
   

   ; 

where      and   ( ) are a feedback gain and a strictly proper transfer function leading to a 

strictly proper stable  

           ( )  
   ( )

     ( )
                                                                                                    (25) 

The DC gain is set at C(0) = 1. Choosing  ( )      results in a simple first-order strictly 

proper  ( ) of the form  

           ( )  
   

     
                                                                                                                   (26)                                                                                                        

letting      gives, Hacker, 2011, and Hovakimyan, 2010: 

                   ‖ ‖  

           ( )  (     )
                                                                                                       (27) 

           ( )   ( )(   ( ))    
The L1-adaptive controller is subjected to the following L1-norm condition: 

          ‖ ( )‖
1L
                                                                                                                  (28)       

The main elements L1-adaptive control structure is illustrated in Fig. 3. 

   If  ( ) is a stationary parameter of fixed value, then the L1-norm condition can be further 

simplified. For the special choice of  ( )     , the closed-loop system matrix  g is given by; 

            g  [
     

   

       
],                                                                                           (29) 

where  g has to be Hurwitz with all its eigenvalues have negative real values for all    Θ and 

    .Figu.4 shows the difference between L1 –adaptive controller and MRAC archetechture. 
 

5. PROJECTION OPERATOR 

Consider a convex, compact set with a smooth boundary given by Hovakimyan, 2010, and 

Maalouf, 2013.    

            *   
   ( )   +                     ,                                                                (30)      

where f :      is described by the following convex function: 

         ( )  
        

 

       
                                                                                                      (31) 

where      is the norm bound confining the parameter vector  , and     represents the 

convergence tolerance that the adaptive parameter is allowed to exceed compared to its 

maximum conservative value. If a special structure of the function  ( )   , which defines the 

boundaries of the outer set, then one can get that     (    )     
 .  
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 The projection operator can be defined as, Cao, and Hovakimyan, 2007, and Hovakimyan, 

2010: 

    (   )  {

                                                                         ( )    

                                            ( )               

  
  

‖  ‖
 〈
   

‖  ‖
  〉             ( )               

                                      (32) 

To geometrically interpret the above equation, let us define a convex set    as 

               *   
   ( )   +                                                                                             (33)     

and let    represent another convex set such that 

               *   
   ( )   +                                                                                             (34)     

Also, let    represents an annulus region defined by 

                     *     ( )   +                                                                            (35)          

Inside    the projection algorithm subtracts a scaled component of   that is normal to 

boundary *   ( )   +. If the value of   is set to zero (    ), then the scaled normal 

component is 0. Also, if the value of   is set to unity (   ), then the component of   that is 

normal to the boundary    is entirely subtracted from   such that     (   ) is tangent to the 

boundary *   ( )   +. Further explanation can be seen in Fig. 5, where    denotes the true 

value of the parameter   and belong to    , i.e.       . 

 

6. MODELING OF SINGLE AXIS POSITIONING TABLE 

Fig. 6 shows the typical elements in one axis. An incremental optical encoder with a 

resolution of      can measure the worktable position. A servomotor through a ball screw 

drives the worktable or slide. Rotary bearings support the screw at both ends. Linear bearings 

support the nut along the displacement axis. The nut is constrained to rotate axially and when 

the ball screw is turning, a linear motion is imparted to the nut. Linear guide-way precisely 

constrains the movement of the positioning table to a single translational axis. The elasticity of 

system is mainly caused due to the ball screw; bearing supports, and flux coupling, Raafat, 

2011, and ZAN, 2006. The conceptual model of the mechanical system is illustrated in Fig. 7 . 

   The following assumptions on the physical system are considered to develop a simplified 

model, ZAN, 2006: 

1. Dynamic friction can be ignored. 

2. The ball screw is rigidly coupled to the motor shaft. 

3. The compliance between the slide table position and the ball nut is negligible. 

    The equation of motion can be derived from the simplified model according to the second 

law of Newton's as follows, Raafat, 2011: 

        ̈( )     ̇( )     ( )    ( )    ( )                                  (36) 

            ̈( )     ̇( )    ( )    ( )   ⁄                                                                              (37) 

where   is the rotational inertia which includes motor shaft,  ( ) is the angular position,  ( ) is 

the measured table linear position,   ( ) is the motor torque,   ( ) is the load torque,   ( ) is 

the torque due to disturbances,   is the mass,   ( ) is the equivalent force acting on the 

positioning table, the coupling, and ball screw mass inertias,    is the viscous damping arises 

from the rotational bearing and ball nut (lumped together),    is the screw pitch transformation 
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factor (from  rotational to linear motion) and    is the mechanical damping due to linear 

bearings.  

    It is well known that the torque   ( ) is related to the motor current   by a proportionality 

torque constant    given by motor the equation. 

              ( )                                                                                                                      (38) 

    The control voltage is the actual input of the system. The servo amplifier receives the applied 

voltage and supplies the current to the motor to develop the required electro-mechanical torque. 

It is assumed that amplifier has fast response such that its dynamic can be ignored and it is 

designated by constant gain    only for a certain range of operating point. Therefore, the motor 

torque can be written as, Raafat, 2011: 

           ( )         ( )                                                                                                        (39) 

where   is the input voltage signal. Consequently, the equation of motion (36) will be : 

        (   ⁄ )  ̈  (    ⁄ )  ̇             ̈       ̇     ( )                                          (40) 

By regrouping the   terms in the left-half side, the equation can be expressed as follows: 

        (
      

 

      
)  ̈  (

       
 

      
)  ̇    (      )    ( )                                                           (41)  

where the uncertainty function    ( ) accounts for nonlinear disturbances which includes the 

nonlinear friction, torque disturbances and other nonlinearities of the system, 

             ( )   ( )                                                                                                             (42) 

           ( )  (     )   ( ( )) 
 ( ( )   ⁄ )       ( ( ))                                               (43) 

where    is the load force and    is the coefficient of viscous friction. Equation (41) can be 

written as 

              ̈     ̇    (      )    ( )                                                                             (44)                                             

where    and    can be given by: 

              (
     

 

      
),      (

       
 

      
) 

Letting      and     ̇ and Eq.(44) can be re-arranged to yield; 

            ̇   (    )   ⁄  (    )   (        )    ( )                                              (45) 

The state space form can be written in the following form; 

           [
 ̇ 
 ̇ 
]  [

  

  
  

  

] 0
   
   
1  0

 
 
1 .

 

  
  

 

      
   ( )/                                                   (46) 

            ,  - 0
   
   
1,  

If equation (46) had been compared with the following class of state equation, 

             ̇( )     ( )   .   ( )   
 ( )  ( )   ( )/               

By induction, one may easily find that 

               ⁄ ,   ( )   
 

      
( ( )     ),  

  ,      ⁄ -, 

             ,  -  and    ,  - 

where          and    ,    - is the state feedback gain necessary for making the 

state matrix   being Hurwitz which all its eigenvalues have negative real values. 

 

7. CONTROLLABILITY CONDITION FOR POLE-PLACEMENT 

   The requirement for applying pole placement is that the system must be completely stated 

controllable. The state space matrices for DC motor are given by: 
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           [
  

  
  

  

]  and   ,  -                                                                                    (47) 

which has the following parameters, Raafat, 2011:   

             and              

               

The controllability matrix is given by  

       ̅  ,        -  [
  

  
  

  

]                                                                                               (48) 

Also, it is clear that the controllability matrix has a rank equal to 2; i.e., the rank value is equal 

to system order and the DC-motor based system is said to be completely controllable.  

Substituting the numerical values of model parameters into state and input matrices, one can 

obtain, 

         0
  
         

1     ,       0
 
 
1 

The eigenvalues for this system is      and              . Since the system has been 

shown to be completely state controllable, then the pole placement can be applied. If the 

desired eigenvalues are set as follows; 

                   and            

The state feedback gain    which transfer the eigenvalues to desired location is given by 

           ,    -  ,             - 
This model matrix can be easily calculated as follows 

                  0
  

              
1   

  

8. STABILITY ANALYSIS OF L1-ADAPTIVE CONTROL FOR THE SINGLE-AXIS 

POSITIONING TABLE 

     In order to prove the system stability, the  g matrix must be Hurwitz. Considering the 

values of the uncertainties in Tables1 and 3, the following matrices can be found: 

         0
  

              
1  ,    0

 
 
1  ,      ,        -,               

Again, based on the simulation,      . Substituting these parameters into the matrix Ag will 

produce the following matrix: 

        g  [
   

                         
                  

] 

Using MATLAB package, the eigenvalues of matrix  g is given by; 

             ,            ,              

Since all of these eigenvalues have negative real parts, this made  g being Hurwitz and this 

will lead to the stability of overall system.  

 
9. SIMULATED RESULTS OF SINGLE-AXIS POSITIONING TABLE 

    In what follows, the effectiveness of the two suggested controllers will be examined for 

different uncertainty structures and for different types of inputs. Table1 gives different 

uncertainty structure used in simulated results for various input types. If  ( ) is the friction 

force given by the following equation;  
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            ( )  (     )   ( ( ))  
 ( ( )   ⁄ )       ( ( ))                                              (49) 

The values of friction parameters used in the simulation are given below, ZAN, 2006. 

                0.008      ⁄ ,      0.0008 N,     0.012 N,   = 0.0008       
Other system parameters can are listed below, Raafat, 2011. 

                       ,                   
The form of the uncertainty  ( ) becomes  

             ( )   (       ⁄ )( ( )     ) 
The other standard parameters are 

                   ,      ⁄ -,      ⁄  

Using the numeric values, the range of compact set of   ( ) for this application is given 

                ( )     ,                -     

and the values of    and   are given, respectively, as 

                   ,        -,            (       )⁄   
 

9. 1 Results based on ramp input 

     The behaviours of position and control signals for the single-axis system are reported based on 

different structures of uncertainties and under the supervision of two suggested controllers.  The 

first structure of uncertainty is indicated as case (1) in Table 1. Fig. 8 shows that L1-adaptive 

controller could keep good tracking performance giving a small value of steady state error (0.03) 

  . On the other hand, MRAC could keep the tracking only for a period of time (2.4 sec), beyond 

which the system shows instability characteristics and the response would grow without limit. This 

is shown in Fig. 9. 

    For the uncertainty structure described in case (2) of Table 1, the system responses and 

control signals are shown in Fig. 10 and Fig. 11. In case of Fig. 10, L1-adaptive controller still 

gives good tracking characteristics. However, the steady state error based on this controller is 

equal to 0.001  . Again, MRAC could only keep a tracking for a while as shown in Fig. 11. 

Beyond 2.4 sec., the response due to MRAC becomes unstable and the response would grow 

without bound. 

   The uncertainty structure of Case (3) will be considered. Fig. 12and Fig. 13 show the position 

and control signal responses for both suggested controllers. The same discussion as the above 

can be argued with the exception that the steady state error resulting from L1-adaptive controller 

is equal to 0.03  . Also, the responses based on MRAC shows instability behavior after a 

period of time (2.4 sec.). 
    For the fourth case of Table 1, the responses and the control signals are shown in Fig. 14. 

Unfortunately, large steady state error are recorded for both controllers; as the value 0.25    

is measured for the response based on L1-adaptive controller and the value 0.33    is 

measured for MRAC.  

    Table 2 lists the summary of steady state errors for all considered cases and for prescribed 

input. It is clear from the above scenarios that the steady state errors resulting L1-adaptive 

controller is much less than those resulting from MRAC. 
 

 

9. 2 Results based on step input 

In the next scenario, the uncertainty structures listed in Table 1 are reformulated and 

presented in Table 3. For the first case of Table 3, the responses and the control signals for bot 

controller are shown in Fig. 15. It is clear from the figure that L1-adaptive controller offers 

better tracking characteristics rather than MRAC. The steady-state error resulting from            

L1-adaptive controller is about 0.0076  , while that for the MRAC is 0.0329  . 
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     For the uncertainty structure described in case (2) of Table 2, the responses and the control 

signals are shown in Fig. 16. Again L1-adaptive controller gives better tracking performance 

with smaller delay time than its counterpart. The steady-state error recorded for this scenario is 

0.274    for L1-adaptive controller-based response and 0.4    for the MRAC-based 

response. 

For the uncertainty structure depicted in case (3), the responses and the control signals for 

the suggested controllers are illustrated in Fig. 17. In case3, the disturbance amplitude was 

fixed, but the frequency was changed to 100 times of the first case. It is clear from the relative 

figure that the tracking performance given by L1-adaptive controller is better than the other one.  

Also, the steady-state error for L1-adaptive control response has been measured to be 0.0083    

while that for the MRAC has been measured to be 0.025  .  

     For the last case of Table 3, the responses and the control signals based on suggested 

controllers are shown in Fig. 18. In the present simulation, one can easily see that an oscillation 

would appear at the responses resulting from both controllers. However, at the steady state, low 

variance oscillation has been observed at the response resulting from L1-adaptive controller, 

while a considerable oscillation with large variance has appeared at the output resulting from 

MRAC. The steady state values given by L1-adaptive controller and MRAC are 0.0265    and 

0.2774  , respectively. 

     Table 4 gives the summary of different steady state errors for different cases. Again, the 

errors based on L1-adaptive controller are much less than those obtained from MRAC.  

Table 5 shows the settling time for step input response of 5   . It can be noticed that the 

settling time of L1-adaptive controller for all considered cases are less than MRAC. This means 

that L1-adaptive controller has a faster adaptation rate than MRAC. 
 

CONCLUSIONS  

Based on observations of the simulated result, the following conclusions can be drawn: 

1. For ramp exciting input, the results showed that L1-adaptive controller has better tracking 

performance than MRAC. However, for specified uncertainty structures, MRAC fails to 

follow ramp input after a short time. This leads to instability problems in MRAC and its 

corresponding response grows without bound.  
2. For step exciting input, L1-adaptive controller could track and gives better transient 

characteristics than MRAC. However, for specified uncertainty structures, the response 

based on MRAC shows severe oscillatory characteristics. 
3. In case of step input, it can be concluded that the settling time of the L1-adaptive controller 

for all cases of uncertainties is less than that of MRAC. This means that the adaptation rate 

of L1-adaptive controller is faster than that of MRAC.  
4. Chattering shown in responses of positions occurred because of the presence of Signum 

function in the friction model. 
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Figure 1. Closed-loop direct MRAC architecture     Figure 2. Closed-loop MRAC architecture  

                                                                                    with state Predictor 
 

                                 
 

 

 

 

 

 
 

 

 

       Figure 3. Closed-loop L1-adaptive system                  Figure 4. Closed-loop MRAC system  

 
 

 

 

 

 

 

 

 

 

Figure 5. Visualization of Projection Operator in     

 

 

 
 

 

 

 

 

 

 

 

 

Figure 6. Elements of single axis positioning table.   Figure 7. Simplified model of positioning 

                                                                                    table.  
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Figure 8. Transient responses based on L1- adaptive controller for ramp input (case 1). 
 

 
 

 

 

 

 

 

 

 

 
 

Figure 9. Transient responses based on MRAC for ramp input (case 1) 

 

 

 

 

 

 

 
 

              

 
Figure 10. Transient response based on L1- adaptive controller for ramp input (case 2). 

 
 

 
 

 

 

 

 

 

 

 

 
 

 
Figure 11. Transient response based on MRAC for ramp input (case 2). 
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Figure 12. Transient response based on L1 adaptive controller for ramp input (case 3). 

 
 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

Figure 13. Transient response based on MRAC for ramp input (case 3). 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 14. Transient response based on MRAC for ramp input (case 4). 
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 Figure 15. Transient responses based on L1 adaptive controller and MRAC for step input (case 

1). 

 

 

 

 

 

 

 

 
 
 

 
 

             

 

Figure 16. Transient responses based on L1 adaptive controller and MRAC step input (case 2). 
 

 

 

   

 

 

 
 

 

 
 

               

 

 

 

Figure 17. Transient responses based onL1- adaptive controller and MRAC step input (case 3). 
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 Figure 18. Transient based on L1- adaptive controller and MRAC for step input (case 4). 

 

Table 1. Structure of uncertainty. 

Parameter Case 1 Case 2 Case 3 Case 4 
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Table 2. Steady-state errors for different cases. 

 

 

 

 

Table 3. Structure of uncertainty for step input. 

Parameter Case 1 Case 2 Case 3 Case 4 

 ( )         ( ) 
   ( ) 

        ( ) 
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Table 4. Steady-state errors for different cases of ramp input. 

 

 

 

 

Table 5. Settling time for different cases of step input signal. 

 

 

Steady state error (  ) 

Case 1 Case 2 Case 3 Case 4 

L1-controller 0.03 0.001 0.03 0.25 

MRAC Undefined Undefined Undefined 0.33 

 

Steady state error (  ) 

Case 1 Case 2 Case 3 Case 4 

L1-controller 0.0076 0.274 0.0083 Un defined 

MRAC 0.0329 0.4 0.025 Un defined 

 

Settling time (sec) 

Case 1 Case 2 Case 3 Case 4 

L1-controller 0.76 0.7 0.75 0.6 

MRAC 1 1.4 1.2 0.73 


