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ABSTRACT

L1 adaptive controller has proven to provide fast adaptation with guaranteed transients in a
large variety of systems. It is commonly used for controlling systems with uncertain time-
varying unknown parameters. The effectiveness of L£1 adaptive controller for position control
of single axis has been examined and compared with Model Reference Adaptive Controller
(MRAC). The Linear servo motor is one of the main constituting elements of the x-y table
which is mostly used in automation application. It is characterized by time-varying friction and
disturbance.

The tracking and steady state performances of both controllers have been assessed for two
different types of input signals ramp and step inputs. The simulated results based on MATLAB
(2012a) package showed that £1 adaptive controller could outperform MRAC in terms of
robustness and tracking.
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1. INTRODUCTION

Over the last few years, L1-adaptive control theory has attracted the attention of many
control researchers. It permits transient characterization, cope with time varying uncertainties,
and can create a compromise between tracking performance and robustness, Hovakimyan,
2010, and Cao, 2009.

L 1-adaptive control theory allows for decoupling of adaptation from robustness. The
architecture also allows for transient characterization and robustness in the presence of fast
adaptation without using persistent excitation, applying gain scheduling, or using high-gain
feedback. Moreover, L,-adaptive control can be used for nonlinear time-varying systems in the
presence of state constraints, Hovakimyan, 2010, and Hacker, 2011.

To achieve its goals, L;-adaptive control uses three distinct laws; state predictor law,
adaptation law and control law. The state predictor law is responsible for modelling the
system's desired performance, while the adaptation law ensures that the state estimates and
plans are identical. Additionally, the control law tries to reduce the chattering in the control
loop by including a low pass linear filter.

The L1 controller has already been shown to be beneficial in many control applications such
as drilling systems, wing rock, aerial vehicles, acrobats, the hysteresis in smart materials, and
the regulation of arterial CO; tension in blood, Techy, et al., 2007, and Pomprapa, et al.,
2013.

In the present work, two controllers have been suggested, L£1 controller and Model
Reference Adaptive Controller for positioning control of single axis positioning table. The
performance comparisons of the presented controllers are assessed, via simulation, in terms of
tracking and robustness.

2. ANALYSIS OF L;-ADAPTIVE CONTROL

Two different architectures of adaptive control will be studied: Direct MRAC and Direct
MRAC with state predictor which can be developed later to synthesize £;-adaptive control
architecture. It is worthy to mention that L;-adaptive control is a modified version of direct
MRAC. Therefore, one can proceed to analyze the MRAC and then to state the main
constructing elements of £1 —adaptive control.

2.1 Direct Model Reference Adaptive Control (MRAC)
Let the system dynamics obey to the following structure of differential equation,
Hovakimyan, 2010:
x(t) = Ax(t) + b (u(t) + kT x(t)), x(0) = x4 1)
y(®) = T x(t)
where x(t) € R™ is measured state of the system, A,, € R™", a known Hurwitz matrix,
defines the desired dynamics for the closed-loop system and its eigenvalues should have
negative real values, b,c € R™ are known constant vectors, , u(t) € R is the control input,
y(t) € R is the regulated output, and K, € R™ is a vector of unknown uncertainty constant
parameters. The development of MRAC architecture is initiated by suggesting the nominal
controller;
Unom = _k; x(t) + kg r(t) 2)
where r(t) € R is uniformly bounded piecewise-continuous reference input and kg is given by
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1

9= cTAlb 3)
The direct MRAC is given by
u(t) = —k{(©)x(t) + kg r(t) (4)

where k,(t) € R™ is the estimate of k,. Substituting Eq.(4) into Eq.(1) yields the closed — loop
system dynamics, Hovakimyan, 2010:

() = (Am — b EI(©)) 2(t) + bkgr(t), x(0) = xo (5)

y(®) = cT x(®)
where k,(t) £ k,(t) — k, denotes the parametric estimation error. The signal of tracking
error will be:

e(t) £ xp, () —x(0)

é(t) = A, e(t) + b kF(H)x(t), e(0) = 0. (6)
The updated law of the parametric estimate is given by Cao, 2009, and Maalouf, 2013:
k() = =T x()e” (t) Pb, ke (0) = kxo (7)

where I'eR* is the adaptation gain. The matrix P = PT > 0 is found by solution of the

algebraic Lyapunov equation, Hacker, 2011, and Hovakimyan, 2007:
ALP+PA,=-Q (8)
For arbitrary Q = QT > 0. The block diagram of the closed—loop system is in Fig.1.

The following is the candidate of Lyapunov function:

V(e®.k(0) = ") Pe(®) + £ KL(O Rel® ©)
Its time derivative along the system trajectories Eq.(6) — Eq.(7) is given by
V() =—eT(t)Qe(t) <O. (10)

Hence, the equilibrium of Eq.(6) and Eq.(7) is Lyapunov stable. The asymptotical convergence
to zero of tracking error, the second derivative of Eq.(9) is used,;

V() = —2eT()Q é(t). (12)
It follows that é(t) is uniformly bounded, and hence V(t) is bounded, implying that V(¢t) is
uniformly continuous. Application of Barbalat’s lemma yields, Hovakimyan, 2010:

lim V()=0 (12)
which leads to the fact e(t) — 0 ast — oo. Thus, x(t) asymptotically converges  to x,,,(t).

2.2 Direct MRAC with State Predictor
One can re-parameterize the above-discussed structure utilizing a state predictor as follows,
Hacker, 2011, and Hovakimyan, 2007

®(t) = ApZ(0) +b (u(t) + kf (Ox(®),  2(0) = x, (13)

() = (),
where x(t) € R" is the state of the predictor. By subtracting Eq.(1) from Eq.(13), the
prediction error dynamics can be obtained,

¥(t) = Ay () + b kX (t) x(t), %(0) =0 (14)
where (t) 2 %(t) — x(t) and k. (t) 2 k,(t) — k,(t). One may note that these error dynamics
are equivalent to the error dynamics indicated in Eq. (6). Next, let the adaptive law for k&, (t) be
given as

k()= —Tx(t) ¥"(t) Pb k. (0) = k. (15)
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This adaptive law is identical to Eq.(7) in its structure with an exception of replacing the
tracking error e(t) is by the prediction error X(t). The Lyapunov function candidate is chosen
as Hovakimyan, 2010, and Maalouf, 2013:

V(X0 k(D) = F'(0) PR + L EE(®) Fa(0) (16)
r
which leads to
V(t) = =%T(t) Q %(t) <0. (17)

This means that both errors ¥(t) and k,(t) are uniformly bounded. However, Barbalat’s
lemma cannot be applied to prove asymptotic convergence of X(t) to zero without introducing
the feedback signal u(t). Moreover, the estimation error X(t) can be kept uniformly bounded if
both x(t) and X(t) diverge at the same rate.

The closed-loop of state predictor would mimic the reference system Hovakimyan, 2010 :
x(t) = Anx() + bk r(t),  2(0) = x, (18)
y(©) = cTx()

Thereby, Barbalat’s lemma can be included to deduce that X¥(t) — 0as t — o. Fig. 2 shows
the block diagram of the direct MRAC with state predictor.

3 PROBLEM FORMULATIONS:
The class of system indicated in Eq.(1) can be extended to the following more general class,
Hovakimyan, 2010, Cao, and Hovakimyan, 2007, and Cao, and Hovakimyan, 2008;

x(t) =A,x(t)+b (a) u(t) +07(t) x(t) + a(t)), x(0) = x, (19)

y(®) = cTx(t) (20)
where 8(t) € R™ is a vector of time-varying unknown parameters, w € R is an unknown
constant with known sign, and a(t) € R accounts for input disturbances.

The control objective is to ensure that y(t) tracks a bounded piecewise-continuous reference
signal r(t) using full-state feedback adaptive controller, Hovakimyan, 2010, and Cao, and
Hovakimyan, 2007, and Hovakimyan, 2007.

4. L;-ADAPTIVE CONTROL ARCHITECTURE
In what follows, the elements of £--adaptive controller will be explained. The controller

comprises three main parts; state predictor, adaptation law and control law, Hovakimyan,
2010, and Cao, and Hovakimyan, 2007, and Hovakimyan, 2007.

4.1 State Predictor
The following state predictor will be considered:

2(t) = A, %(t) + b (w(t)u(t) +OT(Ox(E) + 5(1:)), 2(0) = x,

() = cTR(t) (21)
which is a similar structure indicated in Eq.(20) except that the unknown parameters w, 6(t),
and o(t) are exchanged by their adaptive estimates @(t), (t), and &(t), respectively.

4.2 Adaptation Laws
The adaptive process is conducted by the projection-based adaptation laws:

0(t) =T Proj (é(t), —~T(t)pbx(t)) 8(0) = 8,
&(t) =T Proj(6(t), —xT(t)Pb) 8(0) = 6,, (22)
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(1) = T Proj( @ (1), —%"()Pbu(t))  @(0) = @,
where %(t) = £(t) — x(t), T € R* is the adaptation rate and P = PT > 0 is the solution of the
algebraic Lyapunov equation A}, P + PA,, = —Q for arbitrary Q = QT > 0.
4.3 Control Law

The control signal is produced as the output of the following (feedback) system Cao, and
Hovakimyan2007, and Hovakimyan2010:

u(s) = =k D(s) (1(5) — ko 7(5)), 23)
where r(s) and 7j(s) are the Laplace transforms of r(t) and 7j(t), respectively, where #(t)
and k, are given by:

A(t) 2 a(®)u(t) + 07 (t) x(t) + 6(b), (24)

ky 2 —1/cTA;b;
where k > 0 and D(s) are a feedback gain and a strictly proper transfer function leading to a
strictly proper stable

A wkD(s)
Clo) 2225 voeq (25)

The DC gain is set at C(0) = 1. Choosing D(s) = 1/s results in a simple first-order strictly
proper C(s) of the form

wk
C(s) =
. stw k :
letting & € © gives, Hacker, 2011, and Hovakimyan, 2010:
L £ maxgee||01l4
H(s) & (sl — A4,,)" b (27)
G(s) 2 H(s)(1=C(9))
The £-adaptive controller is subjected to the following £,-norm condition:
G L=1 (28)
The main elements £;-adaptive control structure is illustrated in Fig. 3.
If 6(t) is a stationary parameter of fixed value, then the £;-norm condition can be further
simplified. For the special choice of D(s) = 1/s, the closed-loop system matrix 4  is given by;
An + 00T bow ]
= , 29
’ —k0T —kw (@)
where A, has to be Hurwitz with all its eigenvalues have negative real values for all 6 € ® and
w € Q,.Figu.4 shows the difference between £;—adaptive controller and MRAC archetechture.

(26)

5. PROJECTION OPERATOR
Consider a convex, compact set with a smooth boundary given by Hovakimyan, 2010, and
Maalouf, 2013.

Q. 2 {6 € R*|f(O) < c} 0<c<1, (30)
where f: R™ — R is described by the following convex function:
Tp_p2
f(B)z% , 0<e <1 (31)

where 6,,,, IS the norm bound confining the parameter vector 6, and &g represents the
convergence tolerance that the adaptive parameter is allowed to exceed compared to its
maximum conservative value. If a special structure of the function f(6) < 1, which defines the
boundaries of the outer set, then one can get that 876 < (1 + &p) 624

85



Number 11 Volume 23 November 2017 Journal of Engineering

The projection operator can be defined as, Cao, and Hovakimyan, 2007, and Hovakimyan,
2010:

y if f(6) <0,
Proj(@,y) A y lf f(@) > 0and Vny <0, (32)
T
— o (DY) if f(6) 2 0and VfTy >0,
To geometrically interpret the above equation, let us define a convex set , as
Q, 2 {0 € R"|f(6) < 0} (33)
and let Q; represent another convex set such that
Q, 2{0 e R"|f(O) <1} (34)
Also, let Q4 represents an annulus region defined by
Qs20,\Q,={0|0< f(0) <1} (35)

Inside Q4 the projection algorithm subtracts a scaled component of y that is normal to
boundary {8|f(8) = A}. If the value of A is set to zero (A = 0), then the scaled normal
component is 0. Also, if the value of 4 is set to unity (1 = 1), then the component of y that is
normal to the boundary Q; is entirely subtracted from y such that Proj(8,y) is tangent to the
boundary {6|f(6) = 1}. Further explanation can be seen in Fig. 5, where 8* denotes the true
value of the parameter 6 and belongto Q,, i.e. 8" € Q,.

6. MODELING OF SINGLE AXIS POSITIONING TABLE

Fig. 6 shows the typical elements in one axis. An incremental optical encoder with a
resolution of +1um can measure the worktable position. A servomotor through a ball screw
drives the worktable or slide. Rotary bearings support the screw at both ends. Linear bearings
support the nut along the displacement axis. The nut is constrained to rotate axially and when
the ball screw is turning, a linear motion is imparted to the nut. Linear guide-way precisely
constrains the movement of the positioning table to a single translational axis. The elasticity of
system is mainly caused due to the ball screw; bearing supports, and flux coupling, Raafat,
2011, and ZAN, 2006. The conceptual model of the mechanical system is illustrated in Fig. 7 .

The following assumptions on the physical system are considered to develop a simplified
model, ZAN, 2006:
1. Dynamic friction can be ignored.
2. The ball screw is rigidly coupled to the motor shaft.
3. The compliance between the slide table position and the ball nut is negligible.

The equation of motion can be derived from the simplified model according to the second
law of Newton's as follows, Raafat, 2011:

J O + B16(t) = Tin(8) = T1 () — Ta(2) (36)

M3 (t) + Box(t) = Fi () = Ty(0)/1 (37)
where J is the rotational inertia which includes motor shaft, 6(t) is the angular position, x(t) is
the measured table linear position, T, (t) is the motor torque, T;(t) is the load torque, T;(t) is
the torque due to disturbances, M is the mass, F;(t) is the equivalent force acting on the
positioning table, the coupling, and ball screw mass inertias, B, is the viscous damping arises
from the rotational bearing and ball nut (lumped together), 1, is the screw pitch transformation

86



Number 11 Volume 23 November 2017 Journal of Engineering

factor (from rotational to linear motion) and B, is the mechanical damping due to linear
bearings.

It is well known that the torque T,,(t) is related to the motor current I by a proportionality
torque constant K given by motor the equation.

T, (t) = K;I (38)

The control voltage is the actual input of the system. The servo amplifier receives the applied
voltage and supplies the current to the motor to develop the required electro-mechanical torque.
It is assumed that amplifier has fast response such that its dynamic can be ignored and it is
designated by constant gain K, only for a certain range of operating point. Therefore, the motor
torque can be written as, Raafat, 2011:

Tm(t) = Kq K7 u(t) (39)
where u is the input voltage signal. Consequently, the equation of motion (36) will be :

(/L) &+ (B1/1,) % = KoKru — L,M % — LyBy% + fyc(£) (40)
By regrouping the x terms in the left-half side, the equation can be expressed as follows:

JHM B ., B1+B,13

(o) + (i) = v (/K uc® D

where the uncertainty function f,,.(t) accounts for nonlinear disturbances which includes the
nonlinear friction, torque disturbances and other nonlinearities of the system,

fuc(t) = f(l?) + F, (42)

f@) = (F — F)sgn(v())e” @@/ 1 F.sgn(v(1) (43)
where F; is the load force and k, is the coefficient of viscous friction. Equation (41) can be
written as

My X% + Byx = u + (1/KoKr) fuc(t) (44)
where M, and B, can be given by:

M, = <]+Ml,2,>' B, = <31+le§)

KaK1lp KoKl

Letting x; = x and x, = x and Eq.(44) can be re-arranged to yield;

X2 = _(Bx/Mx) X2 — (1/Mx) u-— (1/MxKaKT) fuc(t) (45)
The state space form can be written in the following form;

[ l ——l [ ] [O] qu N MxKaKTfuC( )) (46)

y=11 0[]

If equation (46) had been compared with the following class of state equation,
#(8) = Apx(6) + b(w u(t) + 67() x(8) + 0 (1))
By induction, one may easily find that
©=1/My, 0(t) =~ 3= (F@) +F,), 0T = [0 —ky/My],
b=[0 1]Tand c=[1 0]

where 4,, = A — bK,,, and K,,, = [k; k] is the state feedback gain necessary for making the
state matrix A being Hurwitz which all its eigenvalues have negative real values.

7. CONTROLLABILITY CONDITION FOR POLE-PLACEMENT
The requirement for applying pole placement is that the system must be completely stated
controllable. The state space matrices for DC motor are given by:
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0 1

A= [0 _B_xl andb=1[0 1]7 (47)
My

which has the following parameters, Raafat, 2011:

M, = 0.0064 and B, = 0.1966

The controllability matrix is given by
0 1
M= [b Ab]=l1 _ﬁl (48)
M

Also, it is clear that the controllability matrix has a rank equal to 2; i.e., the rank value is equal
to system order and the DC-motor based system is said to be completely controllable.
Substituting the numerical values of model parameters into state and input matrices, one can
obtain,

A:[g —30.17692] ’ b:[(ﬂ

The eigenvalues for this system is s; = 0 and s, = —30.7692. Since the system has been
shown to be completely state controllable, then the pole placement can be applied. If the
desired eigenvalues are set as follows;

A =—12.02 and A, = —20.2
The state feedback gain K,,, which transfer the eigenvalues to desired location is given by

K, =[k; k;] =[242.804 1.4508]
This model matrix can be easily calculated as follows

oA _ 0 1
Am =A =D Kn _[—242.804 —32.22]

8. STABILITY ANALYSIS OF £;-ADAPTIVE CONTROL FOR THE SINGLE-AXIS
POSITIONING TABLE

In order to prove the system stability, the A ; matrix must be Hurwitz. Considering the
values of the uncertainties in Tablesl and 3, the following matrices can be found:

_[ 0 1 0] ot _
An=|_yungos _3029 » P=|1| + 0T =10 -12521], © = 15651077

Again, based on the simulation, k = 100. Substituting these parameters into the matrix Ay will
produce the following matrix:

0 1 0
A, =|-242.804 -33.4721 156.51077
0 —125.21 -15651.077

Using MATLAB package, the eigenvalues of matrix 4 ; is given by;

Al = _12, AZ = -20 y 13 = _15652
Since all of these eigenvalues have negative real parts, this made A4, being Hurwitz and this

will lead to the stability of overall system.

9. SIMULATED RESULTS OF SINGLE-AXIS POSITIONING TABLE

In what follows, the effectiveness of the two suggested controllers will be examined for
different uncertainty structures and for different types of inputs. Tablel gives different
uncertainty structure used in simulated results for various input types. If f(v) is the friction
force given by the following equation;
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f) = (F — E)sgn(v(t)) e~/ + F.sgn(v(t)) (49)
The values of friction parameters used in the simulation are given below, ZAN, 2006.
k, =0.008 N.s/mm, F. = 0.0008 N, F; = 0.012 N, v,=0.0008 mm/s
Other system parameters can are listed below, Raafat, 2011.
M, = 0.0064 kg, B, = 0.1966 kg/s
The form of the uncertainty o(t) becomes
a(t) = _(1/MxKaKT)(f(v) + F)
The other standard parameters are
0T =[0 —k,/M,], w=1/M,
Using the numeric values, the range of compact set of o(t) for this application is given
o(t) € A=[-81.4939,79.6953] N
and the values of 8T and w are given, respectively, as
6T =[0 -1.2521], w = 156.25 (N/Amp.Kg)

9. 1 Results based on ramp input

The behaviours of position and control signals for the single-axis system are reported based on
different structures of uncertainties and under the supervision of two suggested controllers. The
first structure of uncertainty is indicated as case (1) in Table 1. Fig. 8 shows that £,adaptive
controller could keep good tracking performance giving a small value of steady state error (0.03)
mm. On the other hand, MRAC could keep the tracking only for a period of time (2.4 sec), beyond
which the system shows instability characteristics and the response would grow without limit. This
is shown in Fig. 9.

For the uncertainty structure described in case (2) of Table 1, the system responses and
control signals are shown in Fig. 10 and Fig. 11. In case of Fig. 10, £;-adaptive controller still
gives good tracking characteristics. However, the steady state error based on this controller is
equal to 0.001mm. Again, MRAC could only keep a tracking for a while as shown in Fig. 11.
Beyond 2.4 sec., the response due to MRAC becomes unstable and the response would grow
without bound.

The uncertainty structure of Case (3) will be considered. Fig. 12and Fig. 13 show the position
and control signal responses for both suggested controllers. The same discussion as the above
can be argued with the exception that the steady state error resulting from £;-adaptive controller
is equal to 0.03mm. Also, the responses based on MRAC shows instability behavior after a
period of time (2.4 sec.).

For the fourth case of Table 1, the responses and the control signals are shown in Fig. 14.
Unfortunately, large steady state error are recorded for both controllers; as the value 0.25 mm
is measured for the response based on r;-adaptive controller and the value 0.33 mm is
measured for MRAC.

Table 2 lists the summary of steady state errors for all considered cases and for prescribed
input. It is clear from the above scenarios that the steady state errors resulting £,adaptive
controller is much less than those resulting from MRAC.

9. 2 Results based on step input

In the next scenario, the uncertainty structures listed in Table 1 are reformulated and
presented in Table 3. For the first case of Table 3, the responses and the control signals for bot
controller are shown in Fig. 15. It is clear from the figure that £,-adaptive controller offers
better tracking characteristics rather than MRAC. The steady-state error resulting from
L-adaptive controller is about 0.0076mm, while that for the MRAC is 0.0329mm.
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For the uncertainty structure described in case (2) of Table 2, the responses and the control
signals are shown in Fig. 16. Again £;-adaptive controller gives better tracking performance
with smaller delay time than its counterpart. The steady-state error recorded for this scenario is
0.274 mm for r;-adaptive controller-based response and 0.4 mm for the MRAC-based
response.

For the uncertainty structure depicted in case (3), the responses and the control signals for
the suggested controllers are illustrated in Fig. 17. In case3, the disturbance amplitude was
fixed, but the frequency was changed to 100 times of the first case. It is clear from the relative
figure that the tracking performance given by £;-adaptive controller is better than the other one.
Also, the steady-state error for £;-adaptive control response has been measured to be 0.0083 mm
while that for the MRAC has been measured to be 0.025mm.

For the last case of Table 3, the responses and the control signals based on suggested
controllers are shown in Fig. 18. In the present simulation, one can easily see that an oscillation
would appear at the responses resulting from both controllers. However, at the steady state, low
variance oscillation has been observed at the response resulting from £,-adaptive controller,
while a considerable oscillation with large variance has appeared at the output resulting from
MRAC. The steady state values given by £;-adaptive controller and MRAC are 0.0265 mm and
0.2774mm, respectively.

Table 4 gives the summary of different steady state errors for different cases. Again, the
errors based on £;-adaptive controller are much less than those obtained from MRAC.

Table 5 shows the settling time for step input response of 5 mm. It can be noticed that the
settling time of £;-adaptive controller for all considered cases are less than MRAC. This means
that £;-adaptive controller has a faster adaptation rate than MRAC.

CONCLUSIONS
Based on observations of the simulated result, the following conclusions can be drawn:

1. For ramp exciting input, the results showed that £;-adaptive controller has better tracking
performance than MRAC. However, for specified uncertainty structures, MRAC fails to
follow ramp input after a short time. This leads to instability problems in MRAC and its
corresponding response grows without bound.

2. For step exciting input, £-adaptive controller could track and gives better transient
characteristics than MRAC. However, for specified uncertainty structures, the response
based on MRAC shows severe oscillatory characteristics.

3. In case of step input, it can be concluded that the settling time of the £,-adaptive controller
for all cases of uncertainties is less than that of MRAC. This means that the adaptation rate
of £;-adaptive controller is faster than that of MRAC.

4. Chattering shown in responses of positions occurred because of the presence of Signum
function in the friction model.
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Figure 8. Transient responses based on L;- adaptive controller for ramp input (case 1).
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Figure 9. Transient responses based on MRAC for ramp input (case 1)
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Figure 10. Transient response based on L;. adaptive controller for ramp input (case 2).
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Figure 11. Transient response based on MRAC for ramp input (case 2).
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Figure 12. Transient response based on L; adaptive controller for ramp input (case 3).

Position (m)

0.1 : . . 1200 . . .
: : Rference input ‘_MRAC Control signal
LU RTRITCROEY: I MRAC Respanss [~} _— 8 — | |
0.068 : i : £ :
oiogfmmnminaa L R S R R DS R 800 WOTR . ST . Newmme . oo, | e
(Li1ed ASTTEES 500 ST R - A— .| .
0 3
>

-0.04

-0.06

i H : : 0 +—4
01 i i P H 200 i i i H
1] 0s 1 15 25 3 1] 05 15 25 3
Time (sec) Time (sec)

Pasition (m)

Figure 13. Transient response based on MRAC for ramp input (case 3).
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Figure 14. Transient response based on MRAC for ramp input (case 4).
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Figure 15. Transient responses based on L, adaptive controller and MRAC for step input (case
1).
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Figure 16. Transient responses based on L, adaptive controller and MRAC step input (case 2).
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Figure 17. Transient responses based onL;- adaptive controller and MRAC step input (case 3).
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Figure 18. Transient based on L;. adaptive controller and MRAC for step input (case 4).

Table 1. Structure of uncertainty.

Parameter Case 1 Case 2 Case 3 Case 4
o(t) 0.002 sin(t) 0.51 sin(t) 0.002 sin(10t) 0.51 sin(10t)
+ f) +fW) +f) +f)
Table 2. Steady-state errors for different cases.
Steady state error (mm)
Case 1 Case 2 Case 3 Case 4
L-controller 0.03 0.001 0.03 0.25
MRAC Undefined Undefined Undefined 0.33
Table 3. Structure of uncertainty for step input.
Parameter Case 1 Case 2 Case 3 Case 4
() 0.002 sin(t) 0.11 sin(t) | 0.002sin(100¢t) | 0.11 sin(10t)
+£(6) +£(6) +£(6) +£(6)
Table 4. Steady-state errors for different cases of ramp input.
Steady state error (mm)
Case 1l Case 2 Case 3 Case 4
L;-controller 0.0076 0.274 0.0083 Un defined
MRAC 0.0329 0.4 0.025 Un defined
Table 5. Settling time for different cases of step input signal.
Settling time (sec)
Case 1 Case 2 Case 3 Case 4
Li-controller 0.76 0.7 0.75 0.6
MRAC 1 1.4 1.2 0.73
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