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ABSTRACT

This study investigates the performance of a single pile and a (2x2) pile group located near
saturated clayey slope under cyclic lateral loading using Finite Element Analysis (FEA). The
simulations were conducted using Plaxis 3D with the Hardening Soil Model (HSM), which
allows for a more accurate representation of soil behavior, especially in cyclic loading
conditions. The model considered clayey soils with parameters derived from the official
geotechnical report prepared by the Consulting Engineering Bureau (CEB) Laboratories of
the University of Baghdad's College of Engineering. Both the single pile and pile group were
placed at a distance of (4D) from an (8m) high slope with a (1:4) gradient. The loading
conditions included static vertical loads and cyclic lateral loads. The most important results
reached, pile groups reduced lateral displacement by 30-50% versus single piles, which
suffered 20-40% greater displacement near slopes due to uneven soil support. One-way
cyclic loading caused larger than two-way cyclic load permanent displacements, while two-
way loading increased fatigue risks, with both degrading clay strength by up to 50%. Peak
bending moments occurred at pile heads and slope crests, but group piles lowered these
stresses by 30%.

Keywords: Finite element analysis, Cyclic load, Pile foundation, Clayey slope.

1. INTRODUCTION

The study of cyclic loading in geotechnical and structural engineering has witnessed
substantial development over the decades, driven by the need to understand the effects of
repeated dynamic forces such as earthquakes, wind, and traffic on soil-structure systems.
Foundational contributions by early researchers paved the way for modern analysis. (Darcy,
1856) indirectly explored cyclic effects through his work on water infiltration in soils, while
(Terzaghi, 1943) introduced the effective stress principle, a cornerstone in analyzing pore
pressure behavior under cyclic conditions. Later, (Seed and Idriss, 1971) developed the
Cyclic Stress Ratio (CSR) framework, which became the basis for practical liquefaction
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assessments. In pile foundation analysis, (Matlock, 1970) introduced a model for cyclic
loading in soft clays, (Gazetas and Dobry, 1984) further contributed by modeling nonlinear
soil-pile interaction during seismic events. Additional work by (Andersen, 2015; Lehane
and Jardine, 1994; Randolph and Gourvenec, 2017) provided deeper insights into cyclic
loading effects on marine and clayey soils. Cyclic loading also plays a critical role in slope
stability, as it can increase excess pore water pressure and reduce shear strength, making
slopes more susceptible to failure. (Broms, 1964) was among the first to investigate pile
behavior in sloped ground, followed by theoretical developments from (Poulos, 1971) and
design procedures from (Reese, 1965) .

One of the most important recent studies similar to the problem discussed in the research,
tests conducted by (Orense et al., 2012) showed that unsaturated soils have higher cyclic
strength and lower deformations under seismic stresses than fully saturated soils, with slope
stability being negatively affected by increased saturation and initial shear stresses. (Naeini
and Hamidpoorzare, 2011) studied the behavior of pile assemblies in slopes under
earthquakes using ABAQUS software. He demonstrated that pile response is affected by their
number, diameter, spacing, and location within the assemblage, in addition to the slope
angle. The results indicated that the optimal design of pile assemblies in slopes must take
these factors into account to reduce seismic collapses. (Deendayal et al., 2016) found in
their study that the behavior of piles on slopes under seismic loading is affected by the pile
length-to-diameter ratio and the slope angle to which they are anchored. Lateral
displacements and bending moments increased as the slope angle became steeper and the
L/D ratio decreased. (Wang et al., 2021) used finite element analysis to study the failure of
layered clay slopes under seismic loading and soft clay behavior. The results showed that
the slopes could fail in different ways, with failure zones becoming wider due to earthquake
effects. (Peng et al., 2023) performed tests on piles under rotational lateral loads on slopes
to examine the influence of rotation, load capacity, and slope angle. They observed an
increase in bending moment and head displacement with more rotation, along with a change
in the depth of the maximum moment. They also proposed a numerical model that matched
the test results. Several experimental and numerical studies have investigated the behavior
of piles under cyclic loading in various soil types and slope conditions. (Islam and
Gnanendran, 2013) conducted experimental tests in sandy soils and found that cyclic
loading can improve bearing capacity, especially at lower frequencies such as 0.2 Hz, which
also enhance soil stiffness. However, higher frequencies led to increased permanent
deformations and reduced benefits in capacity improvement. A numerical study by
(Deendayal, 2017) in sandy conditions showed that increasing the L/D ratio lowers
acceleration, displacement, and bending moments, although sloping ground was seen to
increase these responses due to reduced passive soil resistance. In another combined
experimental and numerical study, (QU et al., 2020) observed that piles on sloping ground
experience more settlement than on level ground. While the number of cycles had a minor
effect on vibration displacement, load amplitude significantly influenced it. Their numerical
analysis confirmed experimental findings under elastic conditions. (Yun and Han, 2023)
also reported that slope-induced kinematic forces amplify pile bending moments and
displacements. Their pseudo-static analysis incorporating these forces reduced prediction
errors to 3-35%. Moreover, pile group spacing (5.5D) and soil density were shown to
strongly influence the dynamic behavior. (Rathod et al., 2024) reported over 60%
reduction in lateral capacity due to cyclic loading in sandy soils. They also observed that
shifting from horizontal to sloped ground reduced the bending moment by 25-40%. It was
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found that unidirectional cyclic loading caused more deflection than bidirectional loading,
likely due to increased plastic stress (Sundaramoorthy and Rathod, 2024). In their study,
hybrid fiber-reinforced concrete (HFRC) piles were tested under lateral cyclic loads in dense
sandy-clay soil. The HFRC piles showed better interaction with the surrounding soil, leading
to less displacement and improved energy absorption. The hybrid reinforcement helped the
piles perform better under lateral and axial cyclic loads. Recent large-scale tests on anchor
piles for floating wind turbines showed that two-way cyclic loading led to greater
displacement than one-way loading, even when the vertical force remained constant
(Chalhoub etal., 2025). Designing pile foundations near slopes under cyclic loads presents
challenges, especially in clayey soils. Unlike sandy soils, which drain and settle faster, clay
tends to lose strength over time under repeated loading due to the buildup of pore pressure
and changes in structure. This increases displacement and the chance of slope failure.
Therefore, clay slopes are more affected by dynamic loads and require extra design
attention, such as drainage improvements and slope stabilization.

This study focuses on the behavior of single piles and pile groups under cyclic lateral loads,
particularly near slopes. The analysis is carried out using (PLAXIS 3D, 2022) based on the
finite element method to simulate the interaction between soil and piles during cyclic
loading. The models include nonlinear soil behavior, the generation of excess pore water
pressure, and different loading patterns. Parametric studies are conducted by changing the
amplitudes of lateral displacement and the number of load cycles.

This study is divided into successive sections, beginning with the definition and classification
of cyclic loads, followed by the finite element modeling methodology and soil properties
used. Simulation results are then presented and validated, followed by a discussion of the
results and design recommendations. This organization aims to provide a systematic and
comprehensive analysis of the performance of single and group piles under cyclic loads near
clayey slopes.

2. DEFINITION AND CLASSIFICATION OF CYCLIC LOAD

Cyclic loading refers to repeated or fluctuating forces that cause progressive changes in soil
properties. Three key characteristics: Load reversibility (one-way/two-way), Frequency
range (0.001-50 Hz) and Amplitude effects (strain accumulation). A slenderness ratio (L/D)
of 20 was selected to ensure realistic lateral behavior under cyclic loading. The (2x2) pile
group with 3D spacing was chosen to capture group interaction effects without excessive
stress overlap. Referring to Fig. 1, where a typical (2x2) pile group is subjected to static
vertical load (V) and a cyclic lateral load which is represented by the value the maximum
and minimum values of the imposed lateral cyclic load (Hp,,x) and (Hyin) and (Hyean) is the
mean lateral load, this can be mathematically expressed in Eq. (1), (2), and (3) by (Long and
Vanneste, 1994):

Symmetrical two-way loading :

% — 1 and Hipean=0 (1)
Asymmetrical two-way loading :

-1 < Imax 0 and Hpegn # 0 (2)
One-way loading: % > 1 and Hpypgqn # 0 (3)
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Where, H, 2 and Hy,;, are the maximum and minimum values of the imposed lateral cyclic
load. The amplitude (A) of the cyclic lateral load is defined in Eq. (4) by (Basack and Dey,
2012) as:

Hmax—Hmin
i @

H,s is the static ultimate lateral capacity of the pile group.

Table 1 systematically categorizes cyclic loading types based on their directionality,
amplitude, and frequency characteristics. This classification provides a framework for
analyzing pile foundation behavior under different dynamic loading scenarios. The effects of
high-frequency (greater than 1 Hz) and low-frequency (less than 0.1 Hz) cyclic loads on deep
foundations in clay soils differ significantly in terms of physical mechanisms, deterioration
risks, and optimal design approaches.

one-way lateral
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(a) (b)
Figure 1. Two-dimensional geometry of the numerical model showing the configuration
of: (a) single pile, (b) 2x2 pile group, placed near a clayey slope under cyclic lateral loading.

Table 1. Classification Table with Citations of Lateral Cyclic Loads, (Wu et al., 2020; British
Standard, 2006; Hopstad et al., 2018).

Load Type Main Cause Amplitude | Cycle Duration Frequency
(kN) (s (Hz)
One-way
Wave Loading Wave pressure on offshore 50-150 5-10 0.1-0.2
structures

Wind Loading Wind pressure on wind turbines 100-300 3-6 0.16-0.33

Traffic (Trucks) Vibrations from nearby truck traffic | 200-500 1-3 0.33-1.0

Two-way

Earthquakes Seismic shaking +75-200 0.5-2 0.5-2.0
Industrial Vibrations | Heavy pumps or motors +50-150 0.1-0.5 2-10

Train Traffic Train-induced vibrations on bridges | +100-300 | 0.3-1 1-3.3
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These differences are based on three main pillars: soil behavior under load, structural
element response, and cumulative effects over time. For high frequencies, the main risk is
rapid pore water pressure build-up. According to (Andersen, 2015), frequencies above (1
Hz) inhibit water drainage from clay pores, leading to cyclic softening. Data show that pore
water pressure can reach (90%) of effective stress after just 200 cycles at 3 Hz, causing a
rapid loss of shear strength of up to (50%), according to (Wu et al., 2020). This sharp impact
increases the risk of sudden displacement of the pilings and material cracking, especially
when amplitudes approach 20% of the ultimate load, as Eurocode 7 warns. In contrast, lower
frequencies are characterized by slower but more persistent cumulative effects. Frequencies
below (0.1 Hz) allow some pore water drainage but cause cumulative plastic strain. These
deformations depend on the number of cycles, as the (Poulos, 1989) equation shows that
deformation increases directly with the square root of the number of cycles. A study
conducted by (Zdravkovi¢ et al., 2015) on offshore wind turbines where lateral
deformations of up to (3%) of the pile diameter were acceptable after (1000) cycles at a
frequency of (0.05 Hz).

3. FINITE ELEMENT MODEL (FEM)

The finite element analysis was performed using Plaxis 3D software with the Hardening Soil
Model (HSM) to examine the behavior of pile foundations on sloped ground. The (HSM) was
selected because it reflects changes in soil stiffness under varying stress conditions. It is
suitable for studying cyclic loading in clay soils, as it considers factors such as pore pressure
buildup, stiffness loss, and permanent deformation. The model also includes shear and
compression hardening, along with dilatancy, which provides a more realistic soil response.
For modeling the piles, the volume representation method was used. Although this method
requires more computational time compared to using pile elements, it offers a more accurate
reflection of actual pile behavior. Fig. 2 illustrates the fundamental concept of the core
hardening mechanism within the model. It depicts how soil resistance to deformation
gradually increases as loading progresses, represented by a series of expanding yield
surfaces in stress space. Each curve marks the transition from elastic to plastic behavior at
various loading stages. With the accumulation of plastic strain, these yield surfaces expand
outward, reflecting an enhancement in the soil's strength (Schanz et al., 2019). However,
this increase is bounded and asymptotically approaches the soil’s ultimate strength as
defined by the Mohr-Coulomb failure criterion. This visual representation clearly
demonstrates the model's ability to capture both stress-dependent stiffness and the memory
effect inherent in soil response.

200 - MC-failure condition
I(’
150 — >
-
q ’,’I Hardening yield
100 s surface
[APQ] ,” (vP=const.)
-
=
50
0

0 50 100 150 200 250 300
p’ [kPa)
Figure 2. Successive yield loci for various values of the hardening yield surface and failure
surface (Schanz et al., 2019)
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In this study the viscous boundaries were applied to the right and left edges of the model. A
medium mesh density was employed, resulting in (18,691) elements and (31,453) nodes.
The piles are modelled as a volume element, while the cap modeled as a plate element.

4. SOIL PROPERTIES

The soil properties and geotechnical parameters presented by (Hussein et al., 2024) were
acquired from the official geotechnical report prepared by the Consulting Engineering
Bureau (CEB) Laboratories of the University of Baghdad's College of Engineering. Soil data
for saturated clay were used. Table 2 includes the most important mechanical properties of
soil.

Table 2. Soil properties (Hussein et al., 2024)

Property Value Unit
Modulus of elasticity 20000 kPa
Cohesion 50 kPa
Saturated Unit Weight 20 kN/m3
Poisson’s Ratio 0.45

Friction Angle 15°

5. SIMULATION OF PILE AND SLOPE

The slope adjacent to the pile foundation has a height of (8 m) with a gradient of (1V:4H).
The water table is located at the base level of the slope, which may influence the soil stability
and bearing capacity of nearby pile foundations. Both single piles and (2x2) pile groups were
analyzed at a close spacing of (2D), where the pile diameter is (0.8 m). The proximity to the
slope and the groundwater level are key factors in evaluating slope stability and pile
performance under these geotechnical conditions. Table 3 presents the geometry of the pile
and the slope.

Table 3. Pattern and characteristics of the employed concrete pile.

Pile Type Single and 2x2 Group
Spacing 3d (2.4 m)

Pile Length 16 m

Pile Diameter 0.8m

Pile Cap Size (6x6) m

The dimensions and arrangement of the piles shown in Table 3 were selected based on
practical design standards and previous studies. A pile slenderness ratio of (L/D = 20) was
adopted, which falls within the typical range for deep foundations in medium clay and
provides adequate embedment to develop both lateral and vertical resistance (Poulos and
Davis, 1980). A center-to-center spacing of (3D) was used to allow for interaction between
the piles without causing significant stress overlap, in line with the guidelines of (Randolph
and Gourvenec, 2017). The pile cap, measuring (6x6 m), fully covers the 2x2 pile group
and facilitates effective load transfer. These design parameters are also aligned with the site
conditions outlined in the geotechnical report by the Consulting Engineering Bureau
(Hussein et al.,, 2024), contributing to the accuracy of the model. A slope inclination of
1V:4H and a pile distance of (2D) from the slope crest were chosen to help maintain overall
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slope stability under vertical loading.The selected geometry ensures that the applied static
load does not induce excessive displacement or failure in the slope before the onset of cyclic
loading, thus providing a safe and stable baseline condition for further analysis.

6. LOADING AND BOUNDARY CONDITION

The failure loads are calculated using the load-settlement curves. Engineers generally agree
that a failure load results in a settlement equal to (10%) of the pile's diameter or width, as
proposed in (Terzaghi, 1943). Applying static lateral load before cyclic testing is essential
to establish baseline soil-pile interaction and detect initial nonlinear behavior. The
numerical model was analyzed under combined static and cyclic loading conditions to
simulate realistic in-service behavior. For static loading, (200 kPa) for group based on the
study of (Maheshwari and Viladkar, 2007) and a vertical dead load of (1800 kN) was
applied to represent the superstructure weight for single pile. The boundary conditions
consisted of a fully fixed base (restrained in all directions) to represent bedrock, with roller-
supported sides (restrained horizontally but free vertically) to simulate natural soil
confinement. Fig. 3 shows the time and amplitude diagram for a one and two wat lateral
cyclic load. In this study, the frequency (f) of cyclic loading was selected as 0.165 Hz (10
cycles per minute), consistent with the range validated in (Nimbalkar and Basack, 2024)
to simulate cyclic loads similar to those experienced by columns in offshore structures (such
as offshore wind turbines). It represents a common wave or wind frequency in marine
environments (where cyclic loads are often in the 0.1-0.2 Hz range). The cyclic load
magnitude was explicitly by (Long and Vanneste, 1994) with a capacity of up to( 50%) of
ultimate lateral load.
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Figure 3. Time and amplitude diagram for (a) one-way lateral cyclic load, (b) two-way lateral
cyclic load (Nimbalkar and Basack, 2024)
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7. VALIDATION

The validation process for this study involved numerical simulations using Plaxis 3D to a
(3%x3) group-pile under cyclic horizontal loading. for numerical analysis which was
conducted by (JIN et al., 2010). As shown in Fig. 4.

Figure 4. Numerical simulation by plaxis 3D program of case (Jin et al., 2010).

The analysis employed the Mohr-Coulomb constitutive model to characterize the cohesive
clay soil layers, by using DELEVER simulation peogram The pile foundation, consisting of
reinforced concrete piles with (1.2 m) diameter and (30.4 m) length, was modeled Results
demonstrated acceptable agreement with experimental data of bending moment
distributions as shown in Fig. 5 where the coefficient of determination (R%) was found to be
(0.75). This validation confirms the robustness of the 3D-FEM approach with Mohr-Coulomb
and AFD models for analyzing cyclic loading effects on pile groups, while suggesting
potential improvements through incorporation of more advanced constitutive models for

soil behavior.
0 - 0

10 ( 10
15 ‘
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= =
+2 +
) 20 ) 20
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35 35
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(a) (b)
Figure 5. Comparisons of test and calculated results of bending moment in pile by
DELEVER (Jin et al,, 2010) and Plaxis 3D (a) load = 8 MN; (b) load = 20.5MN.
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8. RESULTS AND DISCUSSION
8.1. Determination of the Settlement

According to (Terzaghi, 1943), failure is known as a necessary load to displace (10%) of
the pile's diameter, and due to lack of specific criterion for lateral displacement near slopes,
the ultimate load can be considered as the load corresponding to the displacement of (20%)
of the pile diameter as suggested by (Rao et al. 1998). A surface static load was applied on
the piles cap in the static phase to simulate the pressure applied from the residential
building; the value of the load was considered equal to 200 kPa based on the study of
Maheshunri and Viladkar (Maheshwari and Viladkar, 2007), and (1800 kN) for lateral
ultimate load. Shows the load-settlement curve in Fig.6 (a) for a single pile under vertical
loading. The settlement increases with applied load until reaching the ultimate load capacity
(defined at 10-20% of pile diameter displacement) after applied static load (after applying
a safety factor of 2.5) 200 kPa. The single pile exhibits nonlinear behavior as the load
approaches the ultimate capacity, indicating soil strength degradation. Fig.6 (b) Presents
the load-settlement curve for a 2x2 pile group. The group shows higher stiffness (less
settlement) compared to the single pile due to group interaction effects (load distribution
among piles). However, the curve reveals progressive stiffness reduction under cyclic
loading due to accumulated plastic strains in the clayey soil.

7 18
6 16
Es i
£ 1
= 4 = 10
5] (<]
= =
£ 2 £ 6
n g
1
2
0 0
0 500 1000 1500 2000 0 50 100 150 200 250
Static Load (kN) Static Load (kPa)

(a) (b)
Figure 6. (a)The load-settlement curve of the single pile, (b) The load- settlement curve of
the group of piles.

8.2 Pile Head Lateral Displacement with Lateral Cyclic Loading

Compare Fig. 7 (a) lateral displacement of a single pile vs. a pile in a group under one-way
cyclic loading (unidirectional). the single pile exhibits larger displacements due to lack of
lateral restraint from neighboring piles. After (1000) cycles at (50%) amplitude, the single
pile shows significant permanent displacement caused by clay softening. Fig. 7 (b) Displays
displacement under two-way cyclic loading. The pile group demonstrates lower cumulative
displacement due to shared load distribution. Two-way loading causes oscillatory
displacement around zero, but clayey soils remain prone to strength loss over cycles.
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Figure 7. Pile head lateral displacement for a single pile and a pile within a group after
1000 cycles. (a) One-way Lateral cyclic load, (b) Two-way Lateral cyclic load.

8.3 Total Settlement

settlement contours after (1000) one-way cyclic load cycles shown in Fig. 8. The single pile
develops localized settlement near the slope, highlighting soil weakness in this zone. The
pile group exhibits more uniform settlement distribution due to load-sharing but still shows
slope influence. Fig. 9 depicts settlement under two-way cyclic loading. Permanent
settlement is reduced compared to one-way loading, but soil displacement around the slope
remains critical.

[*10-3m]
120.00

Total displacements u, (scaled up 20.0 times) (Time 2.000 s)
Maximum value = 0.1077 m (Element 3840 at Node 1659)
Minimum value = -0.1515 m (Element 1252 at Node 1483)

(a)
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(103 m]

Total displacements u,, (scaled up 100 times) (Time 2.000 s)
Maximum value = 4.526*10 -3 m (Element 6951 at Node 226)
Minimum vakse = -0.03218 m (Element 18517 at Node 11000)

(b)
Figure 8. Numerical simulation using Plaxis 3D to analyze settlement of: (a) single pile, (b)
pile group after 1000 one-way lateral cyclic load.
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Maximum value = 3.680*10 -3 m (Element 6951 at Node 226)
Minimum value = -0.02588 m (Element 18517 at Node 11000)

(b)
Figure 9. Numerical simulation using Plaxis 3D to analyze settlement of: (a) single pile,
(b) pile group, after 1000 Two-way lateral cyclic load.

217



M. H. Ali and A. A. Sheikha Journal of Engineering, 2025, 31(11)

8.4 Pile Bending Moment

Fig. 10 (a) [llustrates bending moment depth profiles for the single pile. Maximum moments
occur at Pile head (due to direct lateral load) Near the slope crest (due to reduced soil
support). These critical zones are prone to cracking or structural failure under repeated
cycling. Fig. 10 (b) Shows bending moments in the pile group. Moments are redistributed
among piles, reducing peak values by (30%) compared to the single pile.
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(a) (b)
Figure 10. Pile Bending Moment Distribution, (a) One-way lateral cyclic load, (b) Two-way
lateral cyclic load.

9. CONCLUSIONS

The behavior of piles near slopes under cyclic loading has attracted growing attention due

to the complex soil-structure interaction. This study uses numerical analysis to evaluate

single and group piles near a saturated clay slope, with the following section presenting the
key results:

1. Pile groups (2x2) demonstrated 30-50% lower lateral displacements compared to single
piles under cyclic loading due to load-sharing effects.

2. Single piles near slopes exhibited 20-40% higher displacements due to asymmetric soil
support.

3. Two-way cyclic loading reduced permanent displacement but increased fatigue risks in
piles from oscillatory stresses.

4. Piles adjacent to slope (1V:4H) showed localized settlement and higher bending moments
near the slope crest.

5. Single piles had peak bending moments at pile head (direct lateral load) and slope crest
(reduced soil support). Pile groups redistributed moments, reducing peak values by
~30% compared to single piles.

6. The model validation showed acceptable agreement between numerical and reference
results, with a coefficient of determination (R*) equal to 0.75, confirming the simulation's
accuracy in predicting pile behavior.

7. To ensure stability and performance of piles in clayey soils, especially near slopes, it is
recommended to use pile groups with a 3D spacing configuration to effectively reduce
lateral displacement. Cyclic load amplitudes should be limited to less than 20% of the
ultimate lateral capacity to prevent rapid degradation of the clay’s structural integrity.
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Continuous monitoring of pore water pressure is essential to detect and prevent sudden
loss in shear strength. In high-risk zones, pile lengths should be extended beyond the
potential slope failure plane to enhance overall system stability.

NOMENCLATURE
Symbol | Description
A Amplitude of the cyclic lateral load
Hppax maximum lateral cyclic load
Hean mean lateral load
Hpin minimum lateral cyclic load
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