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ABSTRACT

This paper proposes a new method to tune a fractional order PID controller. This method
utilizes both the analytic and numeric approach to determine the controller parameters. The
control design specifications that must be achieved by the control system are gain crossover
frequency, phase margin, and peak magnitude at the resonant frequency, where the latter is a new
design specification suggested by this paper. These specifications results in three equations in
five unknown variables. Assuming that certain relations exist between two variables and
discretizing one of them, a performance index can be evaluated and the optimal controller
parameters that minimize this performance index are selected. As a case study, a third order
linear time invariant system is taken as a process to be controlled and the proposed method is
applied to design the controller. The resultant control system exactly fulfills the control design
specification, a feature that is laked in numerical design methods. Through matlab simulation,
the step response of the closed loop system with the proposed controller and a conventional PID
controller demonstrate the performance of the system in terms of time domain transient response
specifications (rise time, overshoot, and settling time).

Keywords: Fractional order PID controller; gain crossover frequency; phase margin; peak
magnitude at resonant frequency.
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1. INTRODUCTION

The fractional order PID controller (also called PI*D* ) was proposed by Podlubny, 1994 and
Podliubny, 1999 and has a transfer function

C(s) = Kp + 4+ Kps* 1)

where K, K;, Kp € R and A and p € R* are the parameters of the controller that must be tuned.

Parameters A and p increase the degree of freedom in tuning the controller, which makes the
design of the control system more flexible. Fractional order PID controllers have less sensitivity
to parameter variation due to these two additional parameters, Zhao, et al., 2005. Since the
PI*D* controller has five parameters, up to five design specifications can be fulfilled by this
controller, while the PID controller can fulfill up to three design specifications.

In general, there are two approaches to tune the PI*DH controller, analytical and numerical
Valerio, and Costa, 2010. In Zhao, et. al, 2005 and Caponetto, et al., 2004, the controller
parameters were derived analytically to achieve gain (phase) margin and phase (gain) crossover
frequency specifications. In Monje, et al., 2008, one of the equations was taken as an objective
function and the rest of the specifications were taken as constraints. In Bhisikar, et. Al, 2014,
Wang, et al, 2015, and Badri, 2015, the set of equations were solved numerically. Badri, and
Tavazoei, 2013 solved the equations graphically by finding the intersection point of two curves.
Sadati, 2007 used a performance index in time domain to determine the controller parameters,
while Tepljakov, et al., 2015 used a performance index in frequency domain to determine these
parameters. Lazarevic, 2013 tuned the controller parameters using genetic algoritm to minimize
a performance index.The objective functions in such problems have complex surfaces such that
the analytic methods of optimization often fail Dorcak, et al, 2006. Another approach to tune a
fractional order PID controller was given in Xue, et al., 2006, Khalil, et. Al., 2009, and Joshi
and Talange, 2013, by taking cerain values for the fractional order of integration and
differentiation and finding the optimal values for the remaining gain parameters.

The remaining of this paper is organized as follows: In section 2, the proposed tuning method is
presented, in section 3, a design and simulation example is presented to demonstrate the
application of this method, and in section 4, the conclusions are drawn from the simulation
results.

2. THE PROPOSE TUNING METHOD

Consider the unity feedback control system shown in Fig. 1. The transfer functions of the
controller and the plant are C(s) and P(s), respectively. The sinusoidal transfer function of the
controller is

Clw) =K, + —= t Kp(jw)* = K+K,(/a)) + Kp(jw)* = K+K,]"1w + Kpjtow#

K;
(aw)?
=K, +K,(cos(2)+]sm( )) —4 _'1+KD(COS(2)+]SIH(;[))”(A)“

C(jw) = K, + K;(cos (/ZT) + j sin (ﬂL ))w + Kp (cos (,uz ) + j sin (,uzn) Y
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C(jw) = Kp + K, cos%na)_)l + Kp cos“—:w“ +j(—K; sin%"a)_’1 + Kp sin”z—"w“) @)
Cw)P(jwy) = 14(py, — 1) = 1e/@m=) = pibmei(-T) = ¢i¢m(cos(—m) + j sin(—1m) )

C(jw)P(jwe) = e/Pm(—=1+j(0)) = —e~/om

—e—Jjdm
P(jwc)

Cw) = @)

Substituting Eqg. (2) in Eq. (3) and equating the real part and imaginary part of both sides yields

—e JjPm
P(jwe)

KP+K,cos—wC +KDcos“— P =R(

) (4)

AT . U —e~JPm
—K, sin=w*+K,sin—ow" =3
1 2 c + D 2 c “5( P(jwc)

) (5)

The steady state error should be zero; therefore, A > 0 (Final value theorem). The two relations
u=1—21and u = A are assumed to exist between u and A; the reason for choosing these

relations is to get the sine and cosine functions for the same angle, namely, %"
i) First, assume that

p=1-2 (6)

There is one degree of freedom in choosing A and u (choose one and evaluate the other) as
shown in Fig. 2. Substituting Eq. (6) in Eq. (4) and Eq. (5) yields

/’L_n (1- l)ﬂ 1-1 _ —e~jPm
Kp + K; cos . * + Kp cos—==@l™* = SR(—PUwC))
AT 3 . Am a1 —e~JPm
Kp + K| cos S wc” + Kp sin S W™ = R( P(jwc)) (7)
Ksin® o+ K (- A) A _ w(—e'f‘f’m)
1Sin=-wc psin——wl ™t =35 PG
. A AT —e_j¢m
—K;sin—w¢ * + K, cos—a)cwc’1 = 3( PG ) (8)

Now, take discrete values of A, from 0 to 1, say 0.01, 0.02, ..., 1 (100 values). For each value of
4, solve Eg. (7) and Eq. (8) for K; and K}, in terms of K, and A.
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—e_j¢m) . AT Y (—e_j¢’m) . AT A
—FF|-K SIN—w W —F|-K sin—w w¢
(P(]wc) P 2 c*c P(ch) P 2 c*ce
—e—JPm Am -2 A An A
5(7) COS—w W R - COS— W Wz
K, = P(jwc) Pt (P(ch)) 2 ¢ (9)
r= cos? ezt sin? e 0t N wewz
2 Yc 2 PcePc c
LA — A —
—sm—”coc’1 cos—”wcwc)‘
2 2
AT .y _e_j¢m
cosfot H(Fns) ke
AT —e~JPm
—sm—wcl I(—)
Kp =— S (10)
WcWe

At the resonant frequency of the plant w,., the magnitude of the open loop transfer function is

M, My

IC(jw)P(jw )| =M, = |C(jw,)| = FGwnl Let PGol

\/(Kp + K, cos’%rour_’L + K sin)%ourw‘l)2 + (K, sin%”w;l + K cos%ﬂwrw‘ﬁ)2 =k, (11)
Squaring both sides of Eq. (11) yields

Ar ) . Am N2 . AT 3 Am —AN2 2
(Kp + K; cos—wy " + Kp sin— w, )+ (—K; sin—aw; " + Kp COS— Wy ) =ki (12)

Substituting Eqg. (9) and Eq. (10) in Eq. (12), the value of K} is obtained as follows

-b1x ,b%—4a1C1
Kp

= e (13)
where
A Am Am Am
a; = 1—2a*cos? — — 2a* 1 sin? — + a?* cos? — + a?**~2 sin? —
2 2 2 2
A Am Am Am Am Am
b; = 2a’R cos? -~ 2a?] sin7 cos—-+ 2a*1] sin7cos -+ 2a*7'R sin®? —
A n A A Am
— 2a?*R cos? 7)L+ 202 sin7 cos == 2a2472] sin7 cos —-
s
— 2a**72R sin®> —
2
A Am Am A Am
c; = a?*R? cos? -~ 2a**RI sin — cos — + a?*I? sin? -+ a?*72]2 cos? -
Am Am Am
+ 2a?*72RI sin—-cos—-+ a?*~2R? sin? =~ k%
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(‘)C _ _e_j¢m ~ _e_j¢m
=2 R= 2R(P(jwc) ) = ‘S(P(jwc))

The performance index that will be used to select the optimal value of A

Pi(D) = [, e?(t, Dt (14)
i1) Second, assume that
w=2 (15)

Substituting Eqg. (15) in Eq. (4) and Eg. (5) yields

—_e—JPm
KP+K,cos%”wc"1+KD cos%”wﬁ =ER(:(jw )) (16)
C
. Am A —e~JPm
—K; sin—-w¢ *+ Kp sm—a)c)L = J(m) (17)

For the same discrete values of A, solve Eg. (16) and Eq. (17) for K; and K, in terms of K, and
A

—_e—JPm At —e—JPm At
(P(J'wc)) ~Kp cosmwe m( PGwo) )‘K” €057 We
“(_e_jd)m) sin?wA “(—_e_jd)m) sin?lewA
K, = > P(jwc) 2 ¢l > P(jwc) 2 ¢ 18
I — Am ) Am 2 - sin A ( )
cosTwg"  cosTwg
—sin?w;l sinlz—nwg‘
AT —e—JPm
coszwg? m( FGo0) )‘ P
. A -2 ~ —e_j¢m
—sin—w¢ 3( G ))
K. = 2 Jowc 19
b sinAr ( )
CGon| = o = k
Wy
PGl
Am Am 3 2 . Am g . AT 3 2 _
(KP+K,cos7a)r +KDcos7a)r) +(—K,sm7wr +KDsm7wr) =k, (20)

Squaring both sides of Eq. (20) yields
(Kp + K, cos—wr + K, cos— M2 + (K, sm—wr + K, sm— M2 = k? (21)

Substituting Eq. (18) and Eq. (19) in Eq. (21), the value of K is obtained as follows
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—by+ /b2—4a c
KP _ 2 2 202 (22)

2a2
where
- a2t N 1 . 1 N cos Am
a, = -t ==t
4 cos? /17” 4q?% cos? ATR a”  2cos? /17”
a?t A . . AT
b, = P (—ZR sin > +1 smxln) + m(—l sin A — 2R sin 7)
1. A Am
+a COST(R CAm / /171>+ 2cos—- (1 /171+R . /17t>
sindr \ o TS T e asinag U 252 TSI
2 COS AT 2R sin? v
sin? Am ( S )
] A A
€2 = (R2 sin? -~ RI sin Am + I? cos? 7)
1 2 ZAT[ . 2 . ZAT[
W(I co/s1 7+ RI 51;1/17'[ + R“ sin 7)
cos Am T T
RZ 27" 12 2 _) 1,2
sin? A ( sl 2 €os 2 k2

The performance index in this case is

P,(A) = [J7 e?(t, Ddt (23)
The optimal value of A is

A* = arg{min[min, (P (1)), miny ( P,(1))]}

and the optimal value of u is

. (1=x if miny(P;(2)) < miny(P,(1))
= {/1* if min,(Py(2)) > miny(P,(1))

Thus, the transfer function of the controller is

C(s) = Kp + =+ Kps¥' (24)
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3. DESIGN AND SIMULATION
Consider applying the proposed design procedure to the plant given by the transfer function

1

P(s) =
($) = 370667552 7 2.89855 ¥ 0.561

The resultant PI*D* controller is

C(s) = —0.2374 + 22282 | (.231750615 (25)

50.615

which resuts when (u = 1). The bode plot of the open loop transfer function is shown in Fig. 4.
The control design specifications (¢,, = 60", w. = 0.3, and M, = 0.1) are all achieved by this
controller.

The step response of the close loop system with this PI*' D#" controller is shown in Fig. 5. For
the purpose of comparison, a conventional PID controller is designed using matlab pidtune
command, which designes a PID controller for a given transfer function. The transfer function of
this controller is

0.127

C(S) = 0.167 + S (26)

The step response of the close loop system with the PID controller is shown in Fig. 6. Table 1
shows the transient response specifications of the two systems. The system with the PI*D*
controller has better percentage overshoot, delay time, and rise time than that with the PID
controller, while the settling time is much greater. This is because the specifications that are
fulfilled by the PI*D* controller are the gain crossover frequency which enhances the rise time
and delay time, and the phase margin which enhances the percentage overshoot.

4. CONCLUSIONS

A conclusion can be drawn from the design procedure of this paper that if the domain of some of
the design variables is restricted by a certain mathematical relation (restriction) between these
variables (A and p in this case), an analytic, rather than a numerical, solution can be obtained.
Unlike the optimization problems that may be subjected to certain constraints (such as the
parameters should be positive), the analytic solution gives exact solution of the design
specification equations; this solution may be positive, negative, or even a complex number. This
is evident in the value of Kp, which is negative. While a PI*D* controller that is tuned by
optimization techniques can fulfill the design specifications with some sufficiently small error,
the analytically tuned PI*D* controller fulfill the design specifications exactly, since it is the
solution of a set of simultaneous equations; this is evident in enhancing the percentage overshoot
and rise time of the closed loop system.
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NOMENCLATURE

e= error between the desired and actual output.

j= imaginary unit (= v—1).

Kp= derivative gain of the PID or PI*D* controller, dimensionless.

K= integral gain of the PID or PI*D* controller, dimensionless.

K,= proportional gain of the PID or PI*D* controller, dimensionless.
M,=magnitude of the open loop transfer function at the resonant frequency, dimensionless.
P;(.), P,(.)= performance indices.

R= set of real numbers.

R*= set of positive real numbers.

A= fractional order of integration of the PI*D* controller, dimensionless.
A*= optimal value of A, dimensionless.

u= fractional order of differentiation of the PI*D* controller dimensionless.
w*= optimal value of yu, dimensionless.

w.= gain crossover frequency of the open loop transfer function, radian/s.
w,= resonance frequency of the plant, radian/s.

R=real part of a complex number.

J= imaginary part of a complex number.
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Reference m C(s) P(s) Output

input + ) (PI}‘D“)

Figure 1. Unity feedback control system.
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Figure 2. Relation between A and u: A + u = 1.
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Figure 3. Relation between A and u: u = A.
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Figure 4. Bode plot of the open loop transfer function with PI*D* controller.
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Table 1. Transient response specifications.

controller.

Controller | Percentage overshoot (%) | Risetime (s.) | Settling time (s.) | Delay time
(s)
PID 9.98 7.89 26.4 5.26
PI*D* 4.4 4.72 151.71 3.21
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