

Software Implementation of Binary BCH Decoder Using Microcontroller

Lect. Mohammed Kasim Al-Haddad

Electronics and Communication Department

College of Engineering - Baghdad University

mkmih12@gmail.com

ABSTRACT:

In this paper a decoder of binary BCH code is implemented using a PIC microcontroller for code

length n=127 bits with multiple error correction capability, the results are presented for correcting

errors up to 13 errors. The Berkelam-Massey decoding algorithm was chosen for its efficiency. The

microcontroller PIC18f45k22 was chosen for the implementation and programmed using assembly

language to achieve highest performance. This makes the BCH decoder implementable as a low cost

module that can be used as a part of larger systems. The performance evaluation is presented in

terms of total number of instructions and the bit rate.

Key Words: BCH code, Berlekamp-Massey algorithm, Chien search, PIC microcontroller.

 باستعوال الوسيطز الذقيق الثنائيت BCHالتنفيذ البزهجي لفك تزهيش شفزة

 هحوذ الحذادهحوذ قاسن م.

 قسن الهنذست الالكتزونيت والاتصالاث

 جاهعت بغذاد –كليت الهنذست

 الخلاصت

يزحبت 721ٌسبوي حزيٍشنطىل PICانثُبئٍت ببسخؼًبل انًسٍطز اندقٍق َىع BCHفً هذا انبحث حى حُفٍذ يُظىيت نفك حزيٍش

خطأ. حى اخخٍبر خىارسٌت 71يغ قدرة ػهى حصحٍح اخطبء يخؼددة، وقد حى ػزض انُخبئج نخصحٍح الاخطبء ٌصم ػددهب حخى ثُبئٍت

نهخُفٍذ وقد حًج بزيجخه بىاسطت نغت PIC18f45k22يٍسً فً ػًهٍت فك انخزيٍش نكفبءحهب. حى اخخٍبر انًسٍطز اندقٍق -بٍزكٍلاو

قببم نهخُفٍذ كىحدة بُبئٍت واطئت انكهفت ويًكٍ اسخؼًبنهب كجشئ يٍ BCHٌجؼم فك حزيٍش وهذا ٍغ نهحصىل ػهى اػهى اداء.انخجً

 قٍى الاداء ػٍ طزٌق اسخؼزاض ػدد انخؼهًٍبث انكهً ويؼدل انخزيٍش.وكبٌ ح اكبز. اَظًت

 .PICهيسي، بحث تشين، الوعالج الذقيق -، خىارسيت بيزكيلامBCHالكلواث الزئيسيت: تزهيش

1. INTRODUCTION

Bose-Chaudhuri-Hocquenghem (BCH) codes are an important subclass of the linear cyclic block

codes that can be considered as a generalization of Hamming codes. Unlike Hamming codes, BCH

codes has multiple error correction capability. There are efficient decoding algorithms for the BCH

codes due to their special algebraic structureو Jiang, 2010. Two important subclasses of the BCH

Codes are the Reed-Solomon Codes, which are nonbinary and the binary BCH codes. This paper is

about the binary BCH code.

Chu and Sung, 2009 presented a technique for improving Chien search base on Constant Galois

Field Multiplication (CGFM) where a multiplication by a constant is implemented by shift register.

Multiplications can be performed in a single shift operation if proper lookup tables are used. Higher

speed performance can be achieved by larger lookup tables. Taki El-Din et al., 3013 proposed an

algorithm for detecting the undetectable received codewords i.e. when the number of errors is

greater than the design error correction capability t. This is achieved by transforming the error

locating polynomial to another polynomial whose coefficients must satisfy certain conditions. If the

conditions are satisfied, the decoder can proceed to Chien search and correct the received codeword,

otherwise, the Chien search is skipped and decoding failure is declared and repeat request is

transmitted. Schipani et al., 2011 made a comparison study of the different decoding algorithms of

the generalized nonbinary BCH codes with the binary BCH codes as a special case. Schipani

proposed an algorithm for syndrome evaluation that is based on rearranging the received codeword

polynomial as a linear combination of polynomials with special grouping of powers of x. This

arrangement reduces the number of multiplications over the direct evaluation of the received

codeword polynomial. Lin et at., 2010 proposed a hardware-based soft decision decoding algorithm

of BCH codes where the syndrome calculations and error location stages are processed in parallel.

Simulation was for the t=2 error correcting code (255,239,2), Lin suggested that the proposed

algorithm can correct at most 2t+1 errors. Wu, 2008 presented a modification to the Berkelamp-

Massey algorithm that can produce a list of candidates of correct codewords (list decoding) for both

Reed-Solomon and BCH codes where the number of correctable errors of these codes is extended

beyond their design error correcting capability.

2. MATHEMATICAL BACKGROUND

Finite fields especially Galois Field (GF) play an important role in coding theory, here is a brief

introduction. A finite field has a finite number of elements, their number is either a prime p or a

power of a prime q=p
m
. If p=2, the GF field is referred to by GF(2

m
), a special but yet important case

where m=1 which yields GF(2) has the only two elements 0 and 1. There are to operations defined

over the field; addition (+) and multiplication (∙). Other than number of elements being finite all

properties if fields apply, like closure, commutative and associative operations, the identity and

inverse elements of addition and multiplication. The elements of a GF(2
m
) are defined as remainder

obtained when dividing the powers of x by a generator polynomial g(x) whose coefficients  GF(2),

i.e. 0 or 1, the roots of g(x)  GF(2
m
). A polynomial with coefficients  GF(2) is called a binary

polynomial. A generator polynomial must be a binary polynomial and irreducible that is it cannot be

factored into two or more binary polynomials. Such a polynomial is also called a primitive

polynomial and its root  is called primitive element because all elements can be represented in

terms of powers of . The above can be stated mathematically as

)()()(xrxgxsxi  deg(r(x))<deg(g(x)) (1)

Equation (1) tells us simply that x
i
 (considered as a polynomial) when divided by g(x), the remainder

r(x) represents the element of the GF(2
m
) field in polynomial form. Table 1. shows an example of

GF(2
3
) field generated using the primitive polynomial g(x)=x

3
+x+1. Table 1. also shows the two

forms representing the GF elements, one is the power of , here the element 0 cannot be represented

as an integer power of , so, it is represented as -
 by convention. The second representation is by

the binary polynomial r(x). The third representation will be explained later in system implantation

section. The addition operation is performed by adding the polynomial form of the elements where

the coefficients are added modulo-2 for example: 62243 1)()1(  xxxx . Note that

modulo-2 addition implies that addition is the same as subtraction i.e., x+x=x-x=0. Multiplication is

performed in the power for with q-1
=1 where q=2

m
, for example:

2227954 1   .

From the above it is clear that every element is the additive inverse of itself and the multiplicative

inverse of i
 is q-1-i

for more details and proofs of claims stated above the reader may refer to

references Justesen, Høholdt, 2004 and Jiang, 2010. The elements of a GF field can be generated

by hardware using a linear feedback shift register (LFSR), Jiang, 2010, as shown in Fig. 1, where

the branches represent the coefficients of g(x), the contents of the LFSR can be initialized by any

element other than 0. A single clock to the LFSR represents a multiplication by x when the LFSR

overflows; g(x) is subtracted from the content. Clocking j times is equivalent to multiplication by x
j
.

One more thing that needs to be addressed before leaving this section is the minimal polynomials. A

minimal polynomial i(x) of element i
 is a binary irreducible polynomial with i

 as its root. The

polynomial 1(x)=(x+)(x+2
)(x+4

)=x
3
+x

2
+1 is a minimal polynomial of  because it is binary,

irreducible and has  as root, and there is no binary polynomial of degree less than 3 with  as a

root, the polynomial x+ is not minimal although it is of degree 1 because it has the coefficient 

which is not a binary value. The roots of 1(x): , 2
, 4

 are called conjugates.

3. BINARY BCH CODES

Generalized BCH codes are of length n=q
v
-1 where q is a power of prime and v is positive integer.

Two important subclasses of the generalized BCH codes are the binary BCH codes when q=2 and

the Reed-Solomon (RS) codes when v=1, Moreira and Farrell, 2006. In this paper we are interested

in the binary BCH codes, which can be described as follows; for m3 and t<2
m
-1 there exist a binary

BCH code C(n,k,t) with the following properties:

1- Code length: n=2
m
-1

2- Number of parity bits: n-k≤mt

3- Minimum hamming distance: dmin2t+1

4- Error correcting capability: t errors in a codeword

The generator polynomial g(x) of binary BCH code with above parameters is the minimum-degree

binary polynomial that has , 2
, 3

,…., 2t
 as roots, i.e.

tig i 2,,3,2,10)( (2)

The binary polynomial that satisfies Eq. (2) can be described in terms of the minimal polynomials of

the roots i
 as

))(,),(),((LCM)(221 xxxxg t  (3)

Where LCM(a,b) is the least common multiple of a and b. It can be shown that GF elements i
 and

2i
 are both conjugates, that is they are both roots of the same minimal polynomial. Therefore the

even indexed minimal polynomials can be removed and Eq. (3) becomes

))(,),(),((LCM)(1231 xxxxg t   (4)

Hamming codes are special case of BCH codes with g(x)= (1(x)) and t=1. If the massage k-bits are

represented in a polynomial form

1

1

2

210)(

 k

k xmxmxmmxm  (5)

The BCH code can be generated by multiplying m(x) by the generator polynomial

)()()(xgxmxc  (6)

This is a nonsystematic encoding, for the systematic encoding the codeword c(x) is given by Eq. (7),

Moreira and Farrell, 2006

)()()()()(xgxqxpxmxxc kn  
 (7)

Where, p(x) and q(x) are the remainder and quotient when dividing x
n-k

m(x) by g(x). In both

equations (7) & (8) the codeword c(x) is a multiple of the generator polynomial g(x), this means that

the roots of g(x) (Eq. (2)) are also roots of c(x), i.e.

ticcccc ni

n

iii 2,,2,10)()1(

1

2

210   

 (8)

These 2t equations can be written in matrix form

0

































T

T

nttt

n

n

n

n CHcccc

12222

13233

12222

12

1210

)()(1

)()(1

)()(1

1

],...,[



















 (9)

Equation (9) gives the parity check matrix H. It has been mentioned earlier that if i
 is a root of one

of the minimal polynomials in Eq. (4) and hence g(x), then its conjugates are also roots, these

conjugates appear in the even rows of Eq. (9), so, these rows can be removed from H

































11221212

15255

13233

12

)()(1

)()(1

)()(1

1

nttt

n

n

n

H



















 (10)

where, Each element of H is a GF(2
m
) element which can be represented by a vector of m bits.

4. DECODING OF BINARY BCH CODES

The process of decoding BCH codes is described by the block diagram shown in Fig. 2. It consists

of 3 main stages; the first is the syndrome calculations, the second is to use these syndrome values to

find a polynomial whose roots represents the error locations, the third step is to solve the error

locating polynomial to find the error positions. Since we are dealing with a binary code (unlike RS

codes) there is no need for an error evaluation step as the error values in the binary case are always

1’s. These 3 main blocks are describes next.

4.1 Syndrome Calculations

Like any other block code, the received word and the error pattern are related in polynomial form by

)()()(xexcxr  (11)

Since CH
T
=0, the syndrome can be calculated by

tjrrS ij
n

i

j

j

j 2,,2,1)(
1

0

 




 (12)

Equation (12) involves calculating the syndrome values either using polynomial evaluation over

GF(2
m
) field or using matrix multiplication as in

TRHS  (13)

where, R is the received word as a vector. There is another way of calculation which involves

polynomial division. The received word as a polynomial is divided by the minimal polynomials and

the remainder polynomials are evaluated for the values of the roots j
 as below

)()()()(xbxxaxr jjj   (14)

Recall that j
, j=1,2,…, 2t are roots of j(x) therefore Eq. (12) becomes







1

0

)()(
m

i

ij

j

j

j

j

j bbrS  (15)

The difference between Eq. (12) and Eq. (15) is that Eq. (12) is about evaluating the polynomial r(x)

which of degree n-1 while Eq. (15) is about evaluating the polynomials bj(x) which of degree m

which is less than the order of r(x). But in order to obtain the polynomials bj(x), 2t divisions must be

performed in order to obtain the 2t polynomials bj(x). One last thing is that in binary case Eq. (12)

and Eq. (15) can be used to calculate the syndromes of odd indices and the syndromes of even

indices can be obtained using the equation below which applies for any binary polynomial, Moreira

and Farrell, 2006

 2

2)(ii SS  (16)

4.2 Error Locating Polynomial

The error locating polynomial is of the form

01)1()1)(1(121  v

vv xxxxx   (17)

Where j, j=1, 2,…, v are GF(2
m
) elements that represent the error location through their power

representation, i.e.

ji

j   (18)

The value of ij in Eq. (18) is the error location in the codeword vector R. The roots of Eq. (17) are

the multiplicative inverses of j. The value of v is the order of the equation and the number of errors

and it is unknown. There are different algorithms for finding the error locating polynomial

1- Peterson’s Algorithm

2- Euclidean Algorithm

3- Berlekamp-Massey (BM) Algorithm

There are other algorithms which are beyond the scope of this work. These 3 algorithms share the

common ground that the syndrome values and the coefficient of the error locating polynomial are

related through the so-called Newton’s identity

011 S

02 2112   SS

02 212213   SSS

0112211   vvvvv vSSSS  

01211211   SSSSS vvvvv   (19)

02312112   SSSSS vvvvv  

021212221212   vtvvtvttt SSSSS  

In the binary case the term vv reduces to 0 when v is even or 1 when v is odd. In the above

equations the syndrome values Si are given and the coefficients i are the unknowns. Peterson’s

algorithm solves these linear equations for i. Although Peterson’s algorithm seems straight forward

but it becomes very complex in terms of amount of computations for large number of errors,

especially the degree of the error locating polynomial v which is the number of actual errors is

unknown, so the algorithms has to start with the maximum number of correctable errors allowed by

the design i.e., v=t and go backwards by reducing the order v until the actual number of errors is

reached. For details the reader can refer to Jiang, 2010. The Euclidean algorithm is a general

algorithm with many applications. Here the Euclidean algorithm can be applied to find the so-called

key equation given by

)()()()(xWxxxSx kn   (20)

The algorithm involves repeated polynomial divisions, it starts with x
n-k

 and S(x) as inputs, First x
n-k

is divided by S(x) then S(x) is divided by the remainder of the first step then the remainder of the

first step is divided by the remainder of the second step and so on recursively. The algorithm stops

when the remainder of the last step which becomes W(x) has a degree such that

  12/)())(deg( knxW (21)

Although the Euclidean algorithm is more efficient than the Peterson’s algorithm in terms of amount

of calculations but the Berlekamp-Massey algorithm is preferred over the Euclidean algorithm

because the Euclidean algorithm starts with polynomials of degrees larger than the actual degree of

the error locating polynomial (x) and goes down till the actual degree of (x) is reached, While BM

Algorithm starts with polynomial of order 1 and goes up to the actual degree of (x) and this makes

it more efficient than the Euclidean algorithm. Since in this work, the BM algorithm is adopted in

the implantation of the decoder, this algorithm is presented with more details.

The idea of BM algorithm depends on the Newton identity given by Eq. (19) where the (x) is

suppose to satisfy the Newton identity for syndrome values up to S2t. in the beginning (x) is

initialized by

xSx 1

)1(1)( ,
1

1

)1()( SxB , 1)1(v , j=2

Where B
(j)

(x) is the correction polynomial and the superscript in parentheses is the iteration count.

Newton identity in Eq. (19) is used to estimate the next syndrome value









1

1

1~ j

i

v

i

ij

j

j SS  (22)

The discrepancy between the estimated value of syndrome and the actual one is calculated

jj

j SS
~)( (23)

If the value of 
(j)

=0 then (j)
(x) left unchanged, but B

(j)
(x) is updated as below

)()()1()(xxBxB jj  (24)

If 
(j)

≠0, (j)
(x) is updated as below

)()()()1()()1()(xxBxx jjjj   (25)

In addition to the condition 
(j)

 ≠0, if the condition 2v
(j-1)

<j-1 is satisfied both B(x) and v are updated

as in Eq. (26) and Eq. (27) below otherwise B
(j)

(x) is updates by Eq. (24) and v is kept the same

)()()()1(1)()(xxB jjj   (26)
)1()( jj vjv (27)

The process is repeated 2t steps. The block diagram of BM algorithm is shown in Fig. 3. The reader

may find that this block diagram and variable initialization are different than what is found in

literature, this is because the block diagram has been modified in a way to be suitable for efficient

programming. So, Basically Fig. 3 shows the flowchart of the actual implemented program for

decoding binary BCH codes in this work.

4.3 Error Position Locating and Chien Search

The final step of the decoding is to find the roots of the error locating polynomial and from the roots

values, the error position will be found. The algorithm used to find the roots of a GF polynomial is

Chien search, Jiang, 2010. Chien search is simply to evaluate the GF polynomial over all the

elements of the GF(2
m
) field. Recursive calculation is performed in order to make the search

efficient. Suppose that the error locating polynomial (x) is evaluated for the GF element i

vi

t

iii   2

211)((28)

In the next iteration (x) is evaluated for the next GF element i

)1()1(2

2

1

1

1 1)(  iv

t

iii  
vvi

t

iii   22

2

1

1

1 1)((29)

So, by defining each term of the i
th

 iteration of Eq. (28) by

ji

j

i

j  )(
 (30)

These terms will be updated in the next iteration by

ji

j

i

j )()1(
 (31)

With initial values equal the coefficients of (x) i.e. j
(0)

= j. Recalling Eq. (17), the error positions

are obtained from the multiplicative inverses of the roots of (x), so, if the roots were found as 1i ,
2i ,…, vi , the error positions will be at 2

m
-1-i1, 2

m
-1-i2,…, 2

m
-1-iv. In other words if ki is a root,

then the error position epk will be given by

k

m

k iep  12 (32)

5. THE PIC18F45K22 MICROCONTROLLER

The PIC18F45K22 is one of the PIC18(L)F4X/5XK22 family that has many features suitable for

many applications. In this section a brief overview is presented about its features that are relevant to

application of this paper. One of the most attractive features of the PIC18F45K22 is that its price is

around 3$ and the system of binary BCH decoder is entirely implemented by this microcontroller

without any external hardware. The PIC18F45K22 will be referred to throughout this paper by (PIC)

for simplicity. The PIC has a 16-bit wide instructions and 8-bit wide data. It can operate up to

64MHz clock frequency using internal multiply-by-4 PLL. Each instruction is executed by 4 clock

cycles that makes the instruction cycle execution frequency 16MHz which is referred to as Million

Instructions Per Second (MIPS). The Program memory is 32kB (16k instructions), the data memory

is 1536 bytes SRAM, this RAM contains both special Function Registers (SFR) and General

Purpose Registers (GPR). FSR’s are used for control and status of the controller and peripheral

functions, GPR used for general data storage for user applications. The RAM address range is from

0 to 4k addressable with 12-bit data address bus. This address range is divided to 16 banks of 256B.

The FSR’s are located at the end of the addressable range F38h-FFFh. The GPR are implemented in

the first 6 banks 000h-5FFh, the remaining addressable range is not implemented. When a location

in the RAM is to be addressed, the lower 8 bits are specified in the instruction addressing the byte

location within a specific bank, the higher 4 pits should be loaded in the Bank Select Register

(BSR), a special function register, to specify one bank out of the 16 banks. There is an alternative

way to address part of the RAM called the Access RAM. The Access RAM contains the first 96

bytes of the RAM (00h-5Fh) in bank 0 and the last 160 bytes of the RAM (60h-FFh) in bank 15. The

combined 256 bytes are treated as one bank (Access Bank) and the BSR is ignored. This addressing

mode is specified by an operand ‘a’ in the instruction, if a=0, access bank is used and the content of

BSR is ignored, if a=1 the bank is specified by the BSR contents.

Another mode of RAM addressing is the indirect mode. Indirect addressing allows the user to access

a location in data memory without giving a fixed address in the instruction. This is done by using

File Select Registers (FSR’s) as pointers to the locations which are to be accessed. Indirect

addressing is implemented through either of 3 registers FSR0, FSR1, FSR2, each is a pair of 8-bit

registers, FSRnL and FSRnH. Each FSR holds the 12-bit address value, so, the upper 4 bits of the

register is not used. In a given instruction, the memory location is accessed by indirect mode using

the operands INDF0 through INDF2. These are thought of as virtual registers, the actual register is

defined by the FSRn contents. In the implemented program indirect addressing is widely used along

with access bank mode. Direct addressing using the BSR is never needed within the program core.

6. SYSTEM IMPLEMENTATION

The implemented system was designed to correct binary BCH codes of length n=127 bits for any

value of t, only the results shown at the end are for up to t=13 errors. The programming was made

by assembly language using MPLAB IDE V8.70. The start is to find a GF generator polynomial,

and since n=127 the generator polynomial should be of degree m=7. The value of m also represent

the number of bits required to represent the GF(2
m
) elements. There are tables for GF generator

polynomials as in Justesen and Høholdt, 2004 and Lin and Costello1, 1983, the GF generator

polynomial that is commonly used is

731)(xxxg  (33)

One important issue that needs to be addressed is that which representation we should use for the GF

elements? As has been discussed in section 2, there are two representations of the GF elements; one

is the polynomial representation and the other is the powers of primitive element, see Table 1. Each

has its advantages and disadvantages and these are discussed in the following

1- The polynomial representation: Advantages is that all 2
m
 elements can be represented in binary

without special treatment and the addition is simply bitwise XOR. Disadvantage is that the

multiplication is not straightforward; it can only be implemented if one of the multiplicands is in the

power form and the other operand is in polynomial as described in section 2. Since the power of the

elements has a maximum of 2
m-2

, this means that there are cases where 2
m
-2 (126 in our case) sub-

operations may be needed for a single multiplication. This is not practical and therefore the

polynomial representation is not used in the system.

2- The power representation: Advantages is that the multiplication is made by addition of powers

mod 2
m-1

, which can be implemented by few steps. Disadvantages are that the addition is not

possible and requires lookup table and since there are two operands the lookup table will be of

2
mX2

m
 dimension and this is not practical. The other disadvantage is that the zero has no integer

power representation, therefore special treatment is required.

3- The modified representation: It is decided to adopt a representation close to the power

representation where the powers are represented by adding 1 to the actual power and the GF element

0 is represented by 0. In this way all elements are represented by 0 through 2
m
-1. The addition will

be implemented by converting the power representation of the operand to polynomials and

converting the result to power (if needed). The conversion from power to polynomial and vice versa

is implemented by lookup tables, so, there will be 2 size 2
m
=128 lookup tables.

Table 2. shows the memory organization of the program data, the first four entries of the table are

with the range of 0h-60h to make it possible to access them by access bank mode (without

specifying the BSR content) this is useful for reducing program instructions especially these

contents are accessed frequently within loops in the program. The lookup tables are located each in a

separate bank for ease of access, where each table starts at address 0 within the respective bank. The

received codeword although contains 127 bits but is stored in 127 bytes where each bit is stored in a

separate memory location. This might seem like a waist of memory but it is actually not. If the

received codeword is stored compactly in 16 bytes, it would be very difficult and time consuming

(in terms of number of instructions) to access an individual bit. While storing each bit in a separate

memory location (byte) makes it much easier to access the individual bits, especially accessing the

individual bits is needed in the syndrome calculations and Chien search, which are time consuming

parts of the program.

6.1 Implementation of Syndrome Calculations

The syndrome calculation has been discussed in Section 4.1 and it was mentioned that direct

calculation involves evaluation of polynomials, Eq. (12), of higher degree than the remainder

polynomials given by Eq. (15). Because the method of Eq. (15) requires t polynomial divisions in

advance it cannot be considered better than the direct calculation method unless parallelism is

adopted in the implementation which is possible by hardware implementation, where the t

polynomial divisions can be implemented by t separate LFSR’s. Since the implantation of the

system in this work is a software implantation, the direct calculation is adopted with the following

considerations:

1- All calculations are made by using the polynomial representation so there will be no need for

conversion from one form to the other.

2- The values of ij
 are calculated in advance in polynomial form using MATLAB and stored in a

lookup table in the program memory because of its large size.

3- Only the syndromes of odd indices are calculated using Eq. (12) and the syndromes of even

indices are calculated using Eq. (16).

Figure 4. shows a flowchart used to implement the syndrome calculation. The values ij
 are the

elements of the parity check matrix given by Eq. (10) which are stored as a table in the end of the

program memory in polynomial form. These values are addressed by the table pointer register

TBLPTR which is a 3-byte register. The content of the table is read by the instruction TBLRD*+

that reads the content of the table into a memory register TABLAT which is an SFR and at the same

time increments the contents of TBLPTR making it ready for the next read instruction. Since the

received codeword C is binary, the multiplication ci
ij
 of Eq. (9) is simple where the value of ci is

checked for zero value, if so, nothing is done; otherwise the value of ij
 is used to calculate Sj. When

the inner loop is completed the value of Sj is obtained in polynomial form and since the calculations

of the next stage of the BM algorithm requires that the values of syndromes to be in the power form

the value of Sj is converted immediately to power form. This is made easily by lookup table that is

stored in the RAM as in Table 2. The lookup table used to convert from polynomial form to power

form is called GFINV. The polynomial form of Sj is stored in the FSR2L register with FSR2H

loaded with a fixed value of 2 which is the bank address of GFINV table. The contents of the FSR2

is retrieved and stored in place of the old Sj, and the value of Sj becomes in power form. The counter

of the outer loop is incremented by 2 to calculate the odd indexed syndromes. The even indexed

syndromes are later calculated using Eq. (16) which is much faster than the direct calculations.

6.2 Implementation of BM Algorithm

Before going into the details of implementing the BM algorithm, the operation of GF elements

multiplication is considered first because there are few details that need to be considered. It has been

mentioned before that the multiplication in power form is easier than in polynomial form because it

is basically addition of powers mod 2
m
-1. An algorithm presented by Deschamps et al., 2009 for

mod n addition that is suitable for hardware implementation. Since the addition used in this work is

mod 2
m
-1 and mod n is more general, the algorithm is slightly modified for mod 2

m
-1 addition to

make it easier than the mod n addition as shown in Fig. 5. In this algorithm the two integers a and b

are added (which are both represented by m bits) and the result, c, is incremented by 1, then the

result is tested for overflow, if c<M=2
m
 (no overflow) then the addition without incrimination is the

correct result so c is decremented, otherwise when there is an overflow and the m
th

 bit is set then the

m
th

 bit of c is simply cleared and the algorithm terminates. It can be seen that the clearing of the m
th

bit is common for both sides of the condition this does not affect the other branch of the condition

because the m
th

 bit is already 0. The test of the m
th

 bit is simply made using the instruction (BTFSS

f,b,a) or (BTFSC f,b,a), where, the bit whose address (b (0-7)) within the file register (f) is tested if

set (or clear) the next instruction is skipped. The operand a=0,1 is for the memory access mode. The

clearing of a specific bit (b) of a file register (f) is cleared by the instruction BCF f,b,a. The mod

addition algorithm is not implemented in the way described above because the powers of the GF

elements are stored as i+1 rather than i. This requires the algorithm to be further modified as in Fig.

6. This algorithm is used throughout the main program whenever is needed and it is first used for

evaluation of the even indexed syndromes using Eq. (16).

Now some details about BM algorithm implementation is presented by providing more insight for

the main blocks of the algorithms block diagram shown in Fig. 3. The first quantity to calculate is

the estimate of the j
th

 syndrome as in Eq. (22), see Fig. 7. Here a temporary variable (T) is assigned

the value of iSj-1 obtained as a multiplication of two GF elements which are represented by the

alternative power form, so, the algorithm of mod addition shown in Fig. 5 is used. Before carrying

out the multiplication as mod addition of powers, the values of i and Sj-1 are checked if either one

equals to 0. If so, the whole multiplication and addition is skipped and a new iteration is started.

Since the value of T should be added to ̃ , it should be converted to polynomial form in a way

similar to what has been described earlier using lookup table. Here the lookup table used is GF

lookup table where the value of T is used as an address stored in FSR1 and the value pointed by that

address is retrieved as the value of T in polynomial form. Now the addition is performed as a simple

XOR of the two quantities. Next the discrepancy 
(j)

 is calculated as in Eq. (23) which also requires

the conversion of Sj to polynomial form.

The implementation of the block related to Eq. (25) is separated into two parts; the first is to

calculate the discrepancy part (denoted as D(x)) in a temporary location

)()()1()(xxBxD jj  (34)

The Flowchart of implementation of Eq. (34) is shown in Fig. 8, here the coefficient Bi of the term x
i

is multiplied by 
(j)

 and assigned for D(x) as the coefficient Di+1 of the term x
i+1

. This is obvious

because of the term x in the expression of Eq. (34). Of course the coefficient Bi should be checked

for zero value as explained earlier. Later the two terms of D(x) and (j-1)
(x) are added to update

(j)
(x). No special treatment is required except for changing the coefficient of D(x) and (j-1)

(x) to

polynomial form for addition and back to power form using GF and GFINV lookup tables. One last

point is that the block of Eq. (25) appears twice in Fig. 3. A natural way to do it is to position it

before the (2v
(j-1)

-j<0) condition test and on the (No) branch of the (
(j)

=0) condition test. This is not

suitable for in-place calculation of (j)
(x), since updating (j-1)

(x) to (j)
(x) would cause loosing the

value of (j-1)
(x) that is needed for the B

(j)
(x) calculation (as in Eq. (26)) which is implemented in a

later stage. The block of Eq. (26) is simply implemented by multiplying the multiplicative inverse of


(j)

 by (j-1)
(x). The multiplicative inverse (

(j)
)
-1

 is obtained easily when 
(j)

 is in power form

(
(j)

=k
) as (

(j)
)
-1

=(a
k
)

-1
=a

q-1-k
 where q=2

m
-1. The quantity q-1-k is simply the 1’s complement of k.

Since the 
(j)

 is represented in the alternative power form, where the stored value is the power plus

1, a decrement is needed before the binary inversion. Implementation of Eq. (24) is only a shifting

of coefficients and no calculations are involved. The remaining blocks of the BM algorithm

flowchart are straight forward and there is no need to elaborate.

6.3 Implementation of Chien Search

The efficient implementation of Chien search described earlier can be implemented by updating the

coefficients of the error locating polynomial j recursively for each iteration as in Eq. (31). Where,

i
th

 iteration represents the evaluation of (x) for i
. This is faster than the direct evaluation using Eq.

(28) and it suitable for in-place calculations because the initial coefficients are no longer needed.

The flowchart of Chien Search is shown in Fig. 9. The product part is implemented using the

alternate power for of the GF elements and since this product is on one hand needed for the other

iterations, and on the other hand is required to be converted polynomial form for summation part, a

temporary variable T is used to convert to the polynomial form. For practical considerations the

evaluation of (x) for the element 1 (i=0) is made separately outside the loop where the coefficients

j are simply summed and the result is check if equal to zero. When all of the roots of (x) are found

before reaching the final value of the counter i, the process of the Chien search can be terminated to

save the extra unnecessary computations time as suggested by Wu, 2004. For each root found, the

error position is found as in Eq. (32) which is simply the 1’s complement of the roots power

representation.

7. PERFORMANCE EVALUATION

In general the implementation of decoding algorithms can be made either by hardware or software.

Hardware implementation is advantageous in terms of speed so higher bit rates can be

accomplished, but on the other hand its cost is high because of the amount of hardware components

used. The software implementation is better in terms of cost because it needs only a processor and

possibly some input-output peripherals. Fortunately the PIC microcontrollers became a very cost

effective engineering solution because of their high performance and low cost with on chip input-

output peripherals. The implantation of the decoder being entirely software running by a PIC

microcontroller makes the decoder cost only the market price of the used microcontroller

(PIC18F45K22) which is around 3$. The disadvantage is that the speed performance is lower than

the direct hardware implementation because of the sequential execution of instructions and the

limitation of clock frequency. Now the performance analysis of the implemented system will be

given in terms of number of instructions cycles for the three main blocks of the system: syndrome

calculations, BM algorithm and Chien Search, for different values of the decoding capability t. The

code length is fixed as n=127, and the values of the number of correctable errors t is varied from 4 to

13. The choice of the code parameters: n (no. of code bits), k (no. of message bits) and t (no. of

correctable errors) is not arbitrary and these values can be found in tables as in Lin and Costello,

1983. Table 3 shows the number of instructions for each component of the decoder. The first 8 rows

of the table show the number of instructions for different values of t with the number of actual errors

is maximum i.e. v=t. In the next 7 rows t is fixed to 13 and the number of actual errors is varied from

12 to 0. It can be seen that the syndrome calculations depends only on t and not on the actual

number of errors v, this is expected because syndrome calculations is made of two nested loops one

of length n and one of length t which makes the number of instructions proportional to nt. The BM

algorithm requires a number of instructions that depends on the number of actual errors occurred in

the received codeword in spite of the fact that it has a fixed number of iterations (2t) but the

different paths of the algorithm (see Fig. 3) have different amount of calculations. In general it has a

number of calculations proportional to t
2
 Schipani et al., 2011. The number of instructions of Chien

search depends not only on the number of actual errors v (which represents the degree of the error

locating polynomial) but also on the errors locations. Since the loop of Chien search is terminated

when all the error locations are found (see Fig. 9). The number of instructions of Chien search is

given as minimum and maximum, the minimum number of the loop iterations is v, this is a special

case when all errors are found in the first v iterations. The maximum number of iterations is when

the Chien search loop has to go throw all the n-1 GF elements i.e. when the last error position is

found by the last iteration. The next column of Table 3 shows the total number of instruction of the

three decoder components with the Chien search number of instructions taken as maximum. Finally

the achievable bit rate Rb in kilo bits per second (kbps) is given by the last column it is calculated as

tb NnFR / (35)

Where F is the instruction cycle execution frequency which is in our case 16 MHz and Nt is the total

instructions of the decoder for decoding n bits. It is important to note that the system bit rate Rb is

calculated based on the worst case when the number of actual errors is maximum i.e. v=t and the

Chien search iterations is maximum. Therefore, the values of Rb given in Table 3, where v≠t is not

realistic but it is shown for the sake of comparison especially the last entry where a correct

codeword is received v=0. In this case (which is usually the most probable caser) the execution time

is very small (the rate is high) because only the first syndrome value is needed to decide if the

codeword is correct which is when S1=0, there will be no need to calculate the other syndrome

values and this is more easily seen from Peterson’s algorithm, Jiang, 2010.

As a final discussion, the increase of the bit rate is considered. To increase the bit rate, one

possibility is to increase the system frequency and this can be done by using a higher level PIC

microcontroller like PIC24 family where frequency can be increased up to 40 Mhz. This option is

simple but still the outcome is limited. Another way is to use a sort of distributed system like the one

described in Fig. 10 where N decoders are used in parallel and fed by a buffer that is filled from the

incoming data stream which can be of bit rate equals MRb where M>1 is a factor, and Rb is the

operating bit rate of the individual decoder as given in Table 3.The input buffer feeds the individual

decoders asynchronously, that is whenever a decoder is free, an n-bit block is fed to it. The output

buffer is to rearrange the decoded messages according to their original sequence. It is assumed that

the occurrence of the cases where v is high and error positions requiring high number of iterations

have a low probability. This arrangement should give the sufficient time for and individual decoder

to decode up to the maximum time required by the worst case but also less overall time for the while

N decoders to decode N codewords that are not necessarily require the maximum time of decoding.

Of course, there can be situations where the cases of high decoding time can occur more than once

in the buffer and the time imposed by the incoming bit rate (MRb) is insufficient. This will create the

situation when the input buffer encounter an all busy decoders when trying to allocate a decoder to

specific codeword, in this case a decoding failure is declared and a retransmission request is issued.

This will make the decoder a suboptimal in the sense that there are situations where the number of

errors v≤t but the time assigned to the decoder is insufficient. The performance evaluation of this

system can be investigated as a future work to find the best choice of the parameters M and N.

CONCLUSION

A binary BCH decoder is implemented in PIC microcontroller platform using assembly language

with n=127 bits and adjustable error correction capability t, the number of code bits n can be

increased to 255 bits with slight modifications to the program. Results shows that the time

consumption of the decoding algorithm depend on the actual number of errors and that suggests

using the designed decoder in a distributed system fashion in order to enhance the performance.

REFERENCES

 Cho, J. and Sung, W., 2009, Efficient Software-Based Encoding and Decoding of BCH Codes,

IEEE Transactions On Computers, Vol. 58, No. 7 pp 878-889.

 Deschamps, J. P., Imaña, J. J., Sutter, G. D., 2009, Hardware Implementation of Finite-Field

Arithmetic, McGrow Hill.

 Jiang, Y., 2010, A Practical Guide to Error-Control Coding Using MATLAB, Artech House.

 Justesen, J., and Høholdt, T., 2004, A Course In Error-Correcting Codes, European

Mathematical Society.

 Lin, S. and Costello, D. J., Jr., 1983, Error Control Coding: Fundamentals and Applications,

Prentice Hall, Englewood Cliffs, New Jersey.

 Lin, Y., Chang, H., and Lee, C., 2010, An Improved Soft BCH Decoder with One Extra Error

Compensation, Proceedings of 2010 IEEE International Symposium on Circuits and Systems,

Paris, pp 3941-3944.

 Lee, Y., Yoo, H. , Yoo, I. and Park, I., 2014, High-Throughput and Low-Complexity BCH

Decoding Architecture for Solid-State Drives, IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, Vol. 22 , No. 5. 1183-1187.

 Moreira, J. C, and Farrell, P. G., 2006, Essentials of Error-Control Coding, John Wiley.

 Namba, K., Pontarelli, S.,Ottavi, M. and Lombardi, F, 2014, A Single-Bit and Double-Adjacent

Error Correcting Parallel Decoder for Multiple-Bit Error Correcting BCH Codes, IEEE

Transactions on Device and Materials Reliability, Vol. 14 , No. 2, pp 664–671.

 Schipani, D., Elia, M., Rosenthal, J., 2011 On the Decoding Complexity of Cyclic Codes Up to

the BCH Bound IEEE International Symposium on Information Theory Proceedings, St.

Petersburg, pp 835-839.

 Taki El-Din, R. F., El-Hassani, R. M. and El-Ramly, S. H., 2013, Optimizing Chien Search

Usage in the BCH Decoder for High Error Rate Transmission, IEEE Communications Letters,

Vol. 17, No. 4, pp 741-744.

 Wu, Y., New, 2008, List Decoding Algorithms for Reed-Solomon and BCH Codes, IEEE

Transactions on Information Theory, Vol. 54, No. 8, pp 3611-3630.

 Wu, Y., Low Power Decoding of BCH Codes, 2004, Proceedings of 2010 IEEE International

Symposium on Circuits and Systems, Canada pp 369-372.

 www.microchip.com, 2012, PIC18(L)F2X/4XK22 Data Sheet, Microchip.

http://ieeexplore.ieee.org.tiger.sempertool.dk/search/searchresult.jsp?searchWithin=p_Authors:.QT.Youngjoo%20Lee.QT.&newsearch=true
http://ieeexplore.ieee.org.tiger.sempertool.dk/search/searchresult.jsp?searchWithin=p_Authors:.QT.Hoyoung%20Yoo.QT.&newsearch=true
http://ieeexplore.ieee.org.tiger.sempertool.dk/search/searchresult.jsp?searchWithin=p_Authors:.QT.Injae%20Yoo.QT.&newsearch=true
http://ieeexplore.ieee.org.tiger.sempertool.dk/search/searchresult.jsp?searchWithin=p_Authors:.QT.In-Cheol%20Park.QT.&newsearch=true
http://ieeexplore.ieee.org.tiger.sempertool.dk/xpl/RecentIssue.jsp?punumber=92
http://ieeexplore.ieee.org.tiger.sempertool.dk/xpl/RecentIssue.jsp?punumber=92
http://ieeexplore.ieee.org.tiger.sempertool.dk/xpl/tocresult.jsp?isnumber=6803904
http://ieeexplore.ieee.org.tiger.sempertool.dk/search/searchresult.jsp?searchWithin=p_Authors:.QT.Namba,%20K..QT.&newsearch=true
http://ieeexplore.ieee.org.tiger.sempertool.dk/search/searchresult.jsp?searchWithin=p_Authors:.QT.Pontarelli,%20S..QT.&newsearch=true
http://ieeexplore.ieee.org.tiger.sempertool.dk/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ottavi,%20M..QT.&newsearch=true
http://ieeexplore.ieee.org.tiger.sempertool.dk/search/searchresult.jsp?searchWithin=p_Authors:.QT.Lombardi,%20F..QT.&newsearch=true
http://ieeexplore.ieee.org.tiger.sempertool.dk/xpl/RecentIssue.jsp?punumber=7298
http://www.microchip.com/

Table 1. GF elements and their representation.

i

GF elements power form GF elements polynomial form GF elements alternative form

i

i in Binary

Representation
r(x)

Binary

Representation
i

i+1 Binary

Representation

- 0=-
 - 0 000 0=-

 000

0 1=0
 000 1 001 1=0

 001

1 1
 001 x 010 1

 010

2 2
 010 x

2
 100 2

 011

3 3
 011 x+1 011 3

 100

4 4
 100 x

2
+x 110 4

 101

5 5
 101 x

2
+x+1 111 5

 110

6 6
 110 x

2
+1 101 6

 111

Table 2. Program Memory Organization.

Bank Address Contents

0 0h-1Fh General variables

0 20h-3Fh Syndrome values

0 40h-4Fh Error locating polynomial coefficients (x)

0 50h-5Fh Correction polynomial coefficients B(x)

1 00-7Fh GF elements lookup table

2 0h-7Fh GFINV elements lookup table

3 0h-7Eh Received/Corrected code in bits

Table 3. Performance analysis of the implemented binary BCH decoder.

n=127, Instruction Cycle Frequency=16 Mhz

t k v Syndrome

Calculations

BM

Algorithm

Chien Search Total

Instructions

Bit Rate

(kbps) Min. Max.

4 99 4 4702 1455 453 11799 17956 113.17

5 92 5 5874 2087 658 14210 22171 91.66

6 85 6 7046 2833 901 16621 26500 76.68

7 78 7 8218 3693 1182 19032 30943 65.67

9 71 9 10562 5711 1858 23854 40127 50.64

10 64 10 11734 6957 2253 26265 44956 45.20

11 57 11 12906 8273 2686 28676 49855 40.76

13 50 13 15250 11184 3666 33498 59934 33.90

13 50 12 15250 10547 3157 31087 56884 35.72

13 50 10 15250 9195 2253 26265 50710 40.07

13 50 8 15250 7907 1501 21443 44600 45.56

13 50 6 15250 6683 901 16621 38554 52.71

13 50 4 15250 5523 453 11799 32572 62.38

13 50 2 15250 4427 157 6977 26654 76.24

13 50 0 15250 - - - 1178 1724.96

Figure 1. Implementation of LFSR for generating GF elements.

Figure 2. Block diagram for Binary BCH Decoding.

Figure 3. Block Diagram of BM algorithm.

Initialize

j=2, v
(1)

=1, (1)
(x)=1+S1x, B

(1)
(x)=S1

-1









1

1

)1(~ j

i

v

i

ij

j

j SS 

)1()( jj vjv

)()()()1(1)()(xxB jjj  


(j)

=0

(j)
(x)= (j-1)

(x)

)()()1()(xxBxB jj 

)1()( jj vv

jj

j SS
~)(

 Yes

Yes

No

No

j=2t
No

Yes

End

j=j+1

)()()()1()()1()(xxBxx jjjj  

)()()()1()()1()(xxBxx jjjj  

2v
(j-1)

-j<0

Syndrome

Calculations

Finding Error

Locating Polynomial

Finding Roots and

Errors positions
Received

Code
FIFO Buffer

Error

Correction

1 x x
2

g0 g1 g1

c=a+b

c=c+1

c<M c=c-1

c=c mod M

Yes

No

M=2
m

c<M ≡ m
th

 bit of c=0

c mod M ≡ clear m
th

 bit of c

c=a+b

c=c-1

c<M c=c+1

c=c mod M

No

Yes

M=2
m

c<M ≡ m
th

 bit of c =0

c mod M ≡ clear m
th

 bit of c

Figure 5. An algorithm for mod 2
m
-1 addition.

Figure 4. Flowchart for odd index syndrome

calculations.

 Figure 6. An algorithm for mod 2
m
-1 addition

 suitable for the used GF elements alternative

 form.

j=1

i=0

ci=0

Sj=Sj xor ij

i<n

Convert Sj to power form

j=j+2

j<2t

i=i+1

End

Yes

No

Yes

No

No

Yes

Figure 8. Flowchart for implementing

Eq. (34) of BM algorithm.

 Figure 7. Flowchart for implementing

 Eq. (22) of BM algorithm.

0
~
jS , i=1

T=iSj-i

Convert T to polynomial form

jj SS
~~

 xor T

i=i+1

i>v
(j-1)

End

No

Yes

i=0

Sj-i =0
Yes

Yes

No

No

D(x)=0, i=0

Convert  to power form

Di+1=Bi

i=i+1

i>v

End

Bi=0

Yes

No

Yes

No

Figure 9. Flowchart for implementing Chien search.

Figure 10. A proposed Distributive Decoder.

nXN bit

input

Buffer

Decoder 1

Decoder 2

Decoder 2

Decoder N

kXN bit

output

Buffer

Bit rate=MRb Bit rate=MRb(k/n)

i=1

T=j =
jj

(i
)= (i

)+ T

Convert T to polynomial

form

j=1, (i
)=1

j=j+1

j≤v

(i
)=0

i=i+1

i<2
m
-1

Invert bit with position

2
m
-1-i of the received

codeword

End

No

Yes

Yes

Yes

No

No

k=k+1

k=v
No

Yes

