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ABTRACT

The theoretical analysis depends on the Classical Laminated Plate Theory (CLPT) that is
based on the Von-Karaman Theory and Kirchhov Hypothesis in the deflection analysis during
elastic limit as well as the Hooke's laws of calculation the stresses. New function for boundary
condition is used to solve the forth degree of differential equations which depends on variety
sources of advanced engineering mathematics. The behavior of composite laminated plates,
symmetric and anti-symmetric of cross-ply angle, under out-of-plane loads (uniform distributed
loads) with two different boundary conditions are investigated to obtain the central deflection for
mid-plane by using the Ritz method. The computer programs is built using Mat lab(R2011a), to
solve non-linearity effects on the central deflection values of rectangular cross-ply composite
laminated plates, aspect ratio, stresses, orthotropic factor (E/G) and orientations of fiber. The non-
linear analysis results of (4.74%) for SSSS of 0°/90°/90°/ 0°cross-ply angle plate, (8.77%) for
CCCC of 0°/90°cross-ply angle plate and (10.83%) for CCCC of 0°/90°/90°/ 0°cross-ply angle
plate showed a good agreement with Reddy, 1997 results.

Comparing between the analytical linear, non-linear and experimental results gave a big
difference between linear and non-linear results, while, non-linear showed close results with
experimental results.

Key words: non-linear analysis, large deflection, composite laminated plate, classical laminated
plate theory and Ritz method.
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1. INTRODUCTION

During the last decades, needs for composite materials which contain two or three types of
materials mixed together homogenously have appeared.

Composite materials have many advantages such as high strength with low weight compared
with traditional engineering materials; furthermore, their properties can be controlled during mixing
of their components to meet the suitable design requirements. When a flat plate subjected to out-of-
plane loads (uniform distributed loads), the real shape of displacement of this plate is nonlinear
shape, Reddy,1997.

Huai, and Hui, 1990, based on the Von-Kéaraman theory of plates and they used double
Fourier series method to solve the nonlinear bending problems of simply supported symmetric
laminated cross-ply rectangular plates under combined action of pressure and in-plane load. The
solution which investigated and satisfies the governing equations and boundary conditions is
obtained. Singh, et al., 1991, investigated the large deflection bending analysis of anti-symmetric
rectangular cross-ply plate based on Von-Kéaraman plate theory is investigated, with one-term
approximation for the in-plane and transverse displacement, under sinusoidal loading. The presence
of bending-stretching coupling in such plates resulted in an additional square nonlinear term which
made the solution load direction dependent, unlike isotropic, orthotropic, symmetric, square anti-
symmetric cross-ply and symmetric and anti-symmetric angle-ply plates. Savithri, and Varadan,
1993, worked on the non-linear bending analysis of simply supported symmetrically laminated
orthotropic plates subjected to uniformly distributed load, using an accurate displacement based
higher-order theory is presented. The non-linear governing equations were solved by the Galerkin
procedure with the Newton- Raphson method. Numerical given here, based on analytical
investigation, will be useful for comparison in future. Tanriéver, and Senocak, 2004, discussed a
large defection analysis of laminated composite plates. Galerkin method along with Newton-
Raphson method was applied to large deflection analysis of laminated composite plates with various
edge conditions. The Von-Karaman plate theory was utilized and the governing differential
equations were solved by choosing suitable polynomials as trial functions to approximate the plate
displacement functions. The solution is compared to that of dynamic relaxation and finite elements.
A very close agreement had been observed with these approximating methods. In the solution
process, analytical computation has been done wherever it is possible, analytical-numerical type
approach has been made for all problems. Nayyar, 2006, examined static and vibration analysis of
laminated plates were conducted conventional and hierarchical finite element formulation based on
First-order Shear Deformation Theory (FSDT). The efficiency and accuracy of the developed
formulation is also established in comparison with approximate solutions based on Ritz-method
which are also developed for the cases under study. A detailed parametric study has been conducted
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on various types of laminated plates, in order to investigate the effects of boundary conditions,
laminate configuration, aspect ratio values and elastic modulus to shear modulus (E/G) ratio.
Shfrin, et al, 2008, studied a semi-analytic approach for the geometrically non-linear analysis of
rectangular laminated plates with general boundary conditions and out-of-plane loads had been
developed. The solution of non-linear partial differential equations of VVon-Kardman plate theory
has been reduced to an iterative (sequential) solution of a set of non-linear ordinary differential
equations using multi-term extend Kantorovich method. Various combinations of boundary and
loading conditions that are beyond the applicability of other semi-analytical methods have been
considered the convergence, accuracy, and applicability of the proposed approach have been
demonstrated through the quantitative study of various cases of large deflection non-linear response
of laminated plates. The semi-analytical method proposed in this paper for the large deflection
analysis of laminated plates subjected to out-of-plane loading can be further extended for non-linear
analysis of plates with in-homogenous or mixed boundary conditions. Kim, et al., 2008, performed
the non- linear structural analysis of higher- aspect- ratio structures. For the high-aspect-ratio
structures, it is important to understand geometric nonlinearity due to large deflections. To consider
geometric non- linearity, finite element analysis based on large deflection beam theory were
introduced. Comparing experimental data and the present nonlinear analysis results, the current
results were proved to be very accurate for the static and dynamic behaviors for both isotropic and
anisotropic beams. Saffari, and Mansouri, 2011, solved non-linear algebraic equations by an
iterative method, the non-linear equations being linearized by evaluating the non-linear terms with
the known solution from the preceding iteration. The Newton-Raphson method, which is based on
the Taylor series expansion and uses the tangent stiffness matrix, had been extensively used to solve
non-linear problems. A new Newton-Raphson algorithm was developed for analyses involving non-
linear behavior. Nishawala, 2011, studied a thin plate or beam; if the deformation is on the order of
the thickness and remain elastic, linear theory may not produce accurate results as it does not
predict the in-plane movement of the member. Therefore, a geometrical nonlinearity, large
deformation theory is required to account for the inconsistencies. The equation of motion for plates
with free and clamped edges was derived using model analysis in conjunction with the expansion
theorem. Theoretical results were compared with a finite element simulation for plates.

Concluding Remarks:

In present work the considered cases are as follows:-

(a)Wide coverage to cases of static load (uniform distributed load) which is  made of
materials E-fiber glass and Polyester, multi-layers of cross-ply angle and thickness (4mm) was
observed.

(b) Using a new orthogonal shape functions and Ritz method to cover our boundary
conditions which are not used in previous papers.

(c) Making a new device for bending test.
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2. ANALYTICAL SOLUTION (CLASSICAL LAMINATED PLATE THEORY)

The classical laminated plate theory is an extension of the classical plate theory to composite
laminates. In the classical laminated plate theory (CLPT), it is assumed that the Kirchhoff
hypothesis holds:-

1. Straight lines perpendicular to the mid surface (i.e. transverse normally) before deformation
remain straight after deformation.

2. The transverse normal do not experience elongation (i.e. they are inextensible )

3. The transverse normal rotates such that they remain perpendicular to the mid surface after
deformation.

The first two assumptions imply that the transverse displacement is independent of the
transverse (thickness) coordinate and the transverse normal strain €z is zero. The third assumption
results in zero transverse shear strain, yx,=0, yy, =0. Reddy, 1997.

2.1 Displacements: Reddy, 1997

owo
u(x,y,z) = u(xy) — Z—— (1.a)
Awo
V(Xl y' Z) = Vo (X, Y) - Za_v; (1b)
(X, Y» Z) = W"(X! Y) (1C)
2.2 Strains:

The Von-Karaman strains and the associated plate theory is named the Von-Karaman plate
theory: Reddy, 1997.

2
E = ;;—: + 1% (a";:w) (2.2)
&y = 513 (50’ (2.b)
rxy=§(3—;+%+2—2’+2—vy”) (2.0)
Yae = 5 (5 +55) 2.d)
Yy =5 (5 +5) (2.6)
£z = 2.9

In view of assumption of the classical laminated plate theory, Eq. (2) becomes:

2 2
due 1 /0w 0%wo
=—+ -(—) —z .
Bxx = 55 + 2 ( ax ) ox? (3-2)
2 2
ave 1 /0we 0%wo
=—+-|=) —z .
Eyy ay + 2 ( ay ) dy? (3 b)
1/0u. , Ove . Owe OWe 0%wo
Ly =3 (5o +3-+22.2) -2 .
Xy 2 \ dy 0x ox Oy dx 0y (3 C)
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1 ow ow
Yxz 5(—3—)( 3_") =0 (3.d)
1 Wo Wo
Yo =3(= 5 +%5) =0 (3.)
€, =0 , (3.9)
du° 1 [dwe 02w
Exx [ ox E(E) l [ OOXZ ]
e — av 1 [ow-)2 _ 0 we
Lyy] 5*i(a) |77 o )
Xy

duo dve . Owo Owe 9%wo
wtoata ol Pl

2.3 Plane Stress —Reduced Constitutive Relations
A state of generalized plane stress with respect to the XY-plane is defined to be one in

which:-
Oxx=Oxx(X,Y),0yy =0yy (X,Y), 62,=0,€,,=0 ()
The strain-stress relations of an orthotropic body in plane stress state can be written as:
[o31=[Qj;1[ei;] (6)

Most laminates are typically thin and experience a plane state of stress. For a lamina in the
XY-plane, the transverse stress components are c,; , 1, and t,, . Although these stress components
are small in comparison t0 oy, , oy, andtyy, they can induce failures because fiber-reinforced
composite laminates are weak in the transverse direction (because the strength providing fibers are
in the XY-plane). For this reason, the transverse shear stress is not neglected in shear deformation
theories. However, in most equivalent-single layer theories the transverse normal stress o,, is
neglected. Then the constitutive equations must be modified to this account for this fact. Reddy,
1997.

The condition o,,=zero results in following static constitutive equations for k™ layer that
is characterized as orthotropic lamina uniform distributed loads Reddy,1997.

Oxx Q) Exx ()
[ny‘ = [Q;]® [83’3’] (7)
Txy yxy

Where 1,j=1,2,6 ,k the number of layers and [Qij](k) are the plane stress-reduced stiffness
founded by Reddy, 1997.

Q _ El Q _ V12E2 _ V21E2
11 1—vé2v21' 127 1 viz2v21 1-vizv21’
2
= =G 8
Q22 1_v12v21rQ66 12 (8)
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2.4 Equations of Motion
As noted earlier, the transverse strains (Yxz, Yyz €2z ) are identically zero in the Classical
Plate Theory. Consequently, the transverse shear stresses (tx; , Ty, ) are zero for a laminate made of
orthotropic layers if they are computed from the constitutive relations. The transverse normal stress
oz, 1S not zero by the constitutive relation because of the Poisson effect. However, all three stress
components do not enter the formulation because the virtual strain energy of these stresses is zero
due to the fact that kinematically consistent virtual strains must be zero [see Eq.(9)]:

8ey, = 8¢y, = 8¢, =0 9

Whether the transverse stresses are accounted for or not in a theory, they are present in
reality to keep the plane in equilibrium. In addition, these stress components may be specified on
the boundary. Thus, the transverse stresses do not enter the virtual strain energy expression, but they
must be accounted for in the boundary condition and equilibrium of forces.

Here, the governing equations are derived using the principle of virtual displacement. In the
derivations, we account for static effects.

The static version of the energy is:-

SW = [ [(U + V)dxdy = 0 (10)
Where the virtual strain energy 6U (volume integral of 6U,), the virtual potential virtual 3V and the

virtual work done by applied forces are given by:-

h
Ly Ly (3

U= fo fo g f_zg[ﬁxxgxx + OyyEyy + Txyyxy)dxdydz
2

U= foLX fOLy{f_%g[Gxx(Sxx(o) + 285, M) + ny(syy(o) + Zsyy(l)) + Tyy (yxy(o) + ZYXy(l)) )}dxdydz
(12) 2

V=- fOLX foLy[Qb(Xr y)w (X, y, g) + q(x y)w (x, y, 2)]dxdy (12)

Where qy, is the distributed force at the bottom (zzg) of the laminate, q; is the distributed force at

the top (z=— g).

NXX h/2 Oxx MXX h/2 Oxx
Nyy| = f_h /2 [ny] dz ; |Myy|= f_h /2 [ny] zdz (13)
XY Txy Xy Txy

The quantities (N, , Nyy , Nyy) are called the in-plane force resultants, and (My, , My,
, My ) are called transverse force resultants All stress resultants are measured per unit length (e.g.,
N; and Q; in N/m and M; in N.m/m).
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[A], [B] and [D] are the common laminate stiffness matrices of membrane stiffness, bending—
membrane coupling stiffness and bending stiffness. For arbitrary laminates, these matrices are
defined as Reddy, 1997.

A1r Az Age Bi1 Biz Bis D11 Dyz Die
[A] = |A1z Azz Aygl; [B] =[Biz Bz Bygl; [D] = D1z Dzz Dy
Ate Aze Ags Bis Bas Bes Die¢ Dz Des
h/2 )
(All , Bl] , Dl]) = f—h/z Q1](1 yZ,Z )dZ (14)
i,j=1,2,6.

2.5 Ritz Method (Energy Method)

Components of the compatible infinitesimal virtual displacements (u, v, w) must be
piecewise continuous functions of x, y and z in the interior domain of the body. In addition, they
should satisfy the geometrically boundary condition of the elastic system and be capable of
representing all possible displacement patterns. If these admissible displacement functions are
chosen properly, very good accuracy can be attained.

According to this theorem, as discussed above, of all displacements that satisfy the boundary
conditions, those making the total potential energy of the structure a minimum are the sought
deflections pertinent to the stable equilibrium conditions.

2.6 Boundary Conditions

In general, the definition of the boundary conditions are procedure to fix edges the
elements, plates, as free(F), simply supported(S), clamped(C), built-in or hinged. The boundary
conditions that are (clamped-clamped-clamped-clamped, for four edges case, CCCC) or mixing two
or more than of these types (clamped-free-simply supported-free, CFSF). The way of fixing edges
depend on the application of a structure, plate, dimensions of a structure, the load type and the load
amount. Robbert M. Jones, 1999.

(a)Free-edges (F):

Myjx=a=Myly=b=0 Vxjx=a=Vyjy=+=0
(b)Simply supported edges (S):
W|x=a,y=b:O; MX|X=a:My|y=b:0
(c)Clamped edges(C):

Wlieay=v=0; (59)I(6=a) =(53)(y=b)=0.
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2.7 Displacement Function

The behavior of a structure, plate, is different from fixing way to other. In present work, the
orthogonal arbitrary displacement functions are used to find the exact solution of these cases as
following:-

1. CCCC boundary condition,Szilard, 2004.
U(X,y)=(1/4) Ay (1-cos(a x))(1-cos(B)), V(X,y)=(1/4) By, (1-cos(a X)) (1-cos(p)),
w(X,y)=(1/4)C,,, (1-cos(a X)) (1-cos(p))

2. SSSS boundary condition, Szilard,2004.
U(XY)= A sin(a X) sin(B y), V(X,y)= Bi, sin(a X) sin(B y), w(x,y)= Cy, sin(a x) sin(By)

3. CCCF boundary condition[Present work]

BY)= (1/2) A (1-c0s(a ) (= D) (8 = 1) v(x,y)= (1/2) Boan (1-cos(a X)) (1)) (e —

1)
w(x,y)= (1/2) C,, (1-cos(a X))(— 1)( ) (eP—1)

4. SSSF boundary condition (Present work):

uX,y)= A, sin(a X)(— 1)( B l)eBy, V(X,y)= B, sin(o x)(—l)(zz__l)eﬁy, W(X,Y)= Cppn Sin(a
Q) C e

2.8 Analytical Solution
The solution of SSSS for E-fiber, Polyester (volume fraction 0.3) for cross-ply angle
plate(0°, 0°/90°, 0°/90°/0°, 0°/90°/90° /0°, 0°/90°/0°/90°)and
dimensions(0.2*0.2*.004m,0.2*0.1,.004m and 0.2*0.05*.004m).It depends on the last sections as
follows:

The load q(x,y) can be expanded as Fourier series as:

16 . i-1) .21
P, V)= E0t mgmoyanes SN ) sin=7) (15)
,j=1,2,3............ , and m, n =3(mode shape).

In the case of uniform distributed load over the surface of plate: q,,, = :2612;
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The potential energy related with the uniformly distributed load q(x,y) Iis:
M=0 2n=0 b *

dxd
m=02%n=0Cm n% hd

N

n2mn

. 1 pfacb
Strain energy: - U = - Iy Iy (Gxx Exx T OyyEyy + Txyyxy) dydy

For pure bending: -

1 0w du 1 0w 1 6w du
=30 ), {[Bn 222 Blngf (5 a—y) -Du 5F -0, 5 H G5 ] [an
1 ow)2 1 0w 1 aw
(2 Ox) BZZ dy + (2 Oy) D12 6x2 22 dy? ] [ E a_y ] [866( axay) -
?w][ou , av & d*w _ ou [ Ow\“ By ( aw) du v
2D66 axay] [By + ax + dx dy. }dXdy T2 fO fO {Bll ((’)X) + Bll 6X( ax) 4 ox t B12 0x 0 +
EO_U(@_W)ZJFE@(@_W)ZJrE(O_W)Z(O_W) _p,, udw _Dydw (a_w)Z_D @ffw_
2 9x \ dy 2 9y \ ox 4 ax dy 11 3x 9x2 2 0x2 \ 0x 12 3x ay2
Dy 02w ( aw)2 du av , By, du ( aw)2 By, du ( aw)2 B11 ( aw)2 ( aw)2 (av)2
2 dy? \ ax + By, ox " dy + 2 dx \ dy + 2 dy \ 9x + 4 \ 9x ay + By, ay +
av [ 0w\? | By, [ ow\* av 92 Dy, 32w [ 0w ? v 2w  Dyy 02w [ 0w 2 ]
BZZ_V(_W) +£(_W) - Dy, _v_w_i_w(_w) —D,, _v_w_ﬁ_w(_w) B66(u) +
ay 6y 4 \ dy dy 0x>2 2 9x2 \ dy dy dy? 2 dy? \ ay ay

d ou 0 du 92 v 92
B66( V) + 2Bgs au av+ 2(Bg — Do) aua ;v + 2(Bge — Dgs) aVaX;v + (Bgs — Dgs) (ax_ay) }dxdy

The displacement functions of SSSS Boundary condition is:

u(x,y) = YXm=12n=1Amn sin == V(X ¥) = Xm=12n=1Bmn si b
W(X Y) - Zm 1Zn 1 Cmn si by (16)

By using separation of variables technique as:
Xmn(X) = Sy sinax ,a=?,Yn(y) = Zmn Sin Bx ,B=% an
Becomes:

u(x,y) = Xm=12n=1AmnXm ) Yn(y) V(XY)= Xh=12n=1 BnnXm ) Y (y)
W(X,y)= Z?;l=l 261(1)=1 CnXm (x), Y(y)

The function Xm(x) and Yn(y) are chosen so as to satisfy the boundary conditions.

Then the strain energy equation for SSSS becomes:-

{ f f a3By; (cos ox sin By)2A%m + (13B11(cos ax sin By)3A,C2m 4+ —2L (cos ax sin fy)*C*mn +

apB; (cos ax sin Py) (sin ox cos Py)Amy, By, + ——22 o B (cos ax sin By) (sin ax cos By)2 AnC?m +

127



Number 2 Volume 21 February 2015 Journal of Engineering

2 2n2
uﬁzﬁ (sin ax cos By) (cos ox sin By)?B,, C?m + % (cos ox sin By)? (sin ox cos By)? C*m +

(L4D11 2

ox sin® By) C3m +

(sinax cos
B

a3D;4 (sin ox cos ax sin? By)A,,Cp +

2

—af?D;,(sin ox cos ox sin? Py) Ay, Cry + ———2 (sin ax cos? ax sin fy) C3m +

apB;, (sinax cos ax sin By cos By) Ay, B, + O‘Bzﬁ (sin? ox cos ax sin By cos? Py)A,C?m +

2 B . . 2 2B . :
- B2 12 (sin ax cos? ax sin Bx cos By) By, C*m + aﬁ—lz (sin? ox cos? ax sin? By cos By)C*m +

B

B%B,,(sin ox cos By)?B%m + B> Bzz(sm X COS By)3B C?m +—=2 (sinax cos Py)*C*m +

12

a?BD;,(sin? ax sin By cos By) By, Cpy + (sin3 axsmBycos By) C3m +

B3D,, (sin? ax sin By cos Py)By,Cpm + B Dz (sm ax sin Py cos? By) C3m + BZBgg(sin ox cos By)2A%m +

02Bgg(cos ax sin By)?B2m + 20PBgg (sm ax cos ox sin By cos By)Ap, B +
2aB% (Bgg — Deg) (sin ox cos ax cos? By) A Cry + 202B(Bgg — Dgg) (cos? ax sin By cos By)Bp, Coy +
02B?(Bgg — Dgg) (COS ax cos By)ZCZm} dxdy

U= %foa fob{ K;A’m +K,A,C?m +K3C*m + K AL Bn+KsAC?m + KB, C?m +K,C*m + KgA,,Cp, +
KoC3m + K pAnCm+K1C3m + Ki3ABn + Ki3AnC?m + Ki4B,C?m + K;<C*m + K;(,B?m +
K17BmC?m + K gC*m +K;9BCry + K30C3m + Ky BpCy + KpC3m +Kp3A%m + Ky B?2m+ KysAp B
+K26AmCmt K27BmCm + KpgC?m }dydy (18)

K;=constant as follow:

K,=03By; (cos ax sin By)?,K,=a3By (cos ox sin By)3,Ks=2—2L (cos ax sin fy)*,

B

K,= 0BB;, (cos ox sin By)(sin ax cos Py),Ks=——= (cos ax sin By) (sin ax cos py)?,

2 2n2
K¢=2 BZB“ (sin ax cos By)(cos ox sin By)Z,K7=% (cos ax sin By)?(sin ax cos By)?,

Kg=a3D;; (sin ax cos ax sin? Py)

By using the Ritz method, the coefficients Amn, Bmn and Cmn are determined boundary conditions can be
obtained from :-
au v

From: 6Amn= A

foa fOb{ZKlAm +K,C?m + KB +KsC?m + KgCpy + K1oCm + K12Bm + Ki3C?m + +2K,3A,, + KpsBy
+K6Crn }dy dy =0

b
foa fo {R11Am*R12By+R13Cm+R14,C?m} dydy, =0 (19)

Where:
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R11=2(K;+K14),R127K4+K15+K;5,R13=Kg+K 1 g+K26,R14=K, +K5+K 3

from: ou _ v
' Bmn  9Bmn

foa fob{ K4Am+KeC?m + KAy + Ki4C?m + 2Kyg B+ Ki7C?m +K1oCry + Kp1Cpy +2K34Bi+ KpsAp
+K,-Cpn }dy dy=0
b
Jg [ { Ryt Am*R 2B +R 3 CintR 24 C?m }dy dy=0 (20)
Where:
R21=Ky4+K15+K35,R25=2(K16+K12),R23=K19+K 31 K57, R 24 =K +K 174K 7

ou v

And from 3C — 3o

foa f(}){ZKZAmcm+4K3c3m +2KsA,, C+2KeByCry +4K,C3m + KgAp,+3KoC?m + K;0A,+3K;;C%m

+2K13An Cp +2 K14BpCh +4 KisC3m +2K;7B,Cpy  +4K; C3m +K; 9B, +3 K,0C?m + K, By, +3
b

K22C?m +Kp6Am + Ko7Bm +2 KogCrm 3dydy= ;" f'{ F31}dxdy (21)

Where:

R31=K8+K10+K261R32=K19+K21+K271R33:2K28116R34:3(K9+K11+K20+I§22)1R35:4(K3+K7+K15+K18)1R36=
. ommy T
2(K2+K5+K13)’R37=3(K9+K11+K20+K22),F31:ﬁ Cmn SmZT sin® Ty

The set of equations (19), (20) and (21) are solved by using program Mat lab (R2011a)
2.9 Verification of Case Studies

For verifying the solution of present work, we compare our results with those obtained by other
researchers as shown in Tables (1, 2 and 3) which give good agreement with non-linear results of, Reddy,
1997.

3. EXPERIMENTAL WORK

Experimentally, the steps of manufacturing specimens (plates) from E-fiber and Polyester are as
follows:-

1. Taking volume fraction (0.3) from E-fiber glass and Polyester.
2. Connecting fiber coils on the edges of mold.

3. Adding the Polyester on fiber coils and move to release bubbles.
4. Loading weights on the plates to comprise to thickness (4mm).

Finally, the plates are left a while to dry and undergo to three tests: tensile test to find mechanical
properties of plates, tensile test to find the Poisson’s ratio and the bending test,50 specimens are manu
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factored to find the displacement of cross-ply angle plates undergoes to uniform distributed load(0-
8750N/m?) for 10-different boundary conditions.

3.1 Tensile Test

Each laminate was oriented in longitudinal, transverse, (45°) angle relative to designated (0°)
direction and sample for pure polyester to determine the engineering parametersE,,E,, G;,. Every samples
are divided according to dimensions, as set by ASTM Number (D3039/D03039M) as shown in Fig. 1.And
the sample shape for present study before and after the tensile test. The specimen tensile test is mounted
vertically in a servo-hydraulic testing machine, and pulled hydraulically with stroke control with large steel
grips, maximum capacity of tensile machine (50KN) and it occurred in Ministry of scientific search as
shown:

3.2 Bending Test

The displacement of composite plate under uniform distributed load which can be measured by
bending device. It measures results for any dimension of plates (length, width and thickness) as shown in
Fig. 3.

4. RESULT AND DISCUSSION
4.1 Analytical Results

The purpose of the study is to find a theoretical analysis of one of the famous engineering
applications, as well as to increase precision in the analysis to achieve results closer to reality. By using the
Ritz method in the analysis of nonlinear deformation in composite plates with dimensions (0.2*0.2*0.004m),
multi cross-ply angle layers, various boundary conditions and variable of uniform distributed load from
(0-8750N/m?) to obtain the central deflection of the plate. The non-linear behavior of plates or laminated

plates begins after (w>0.3h) and the consequent application of theories mathematically complex
need to be solved by engineering software such as Mat lab (R2011a). The results obtained from
linear analysis, it can be observed that central deflection increases with increasing load with (10-
100% linearly steps) as well as from layer to others. The results obtained from non-linear analytical
analysis with different boundary conditions and three values of aspect ratios how that an increasing
aspect ratio caused decreasing the central deflection with(18.5-27%) for aspect ratio(a/b)=2, and(40-
53%) for aspect ratio(a/b)=4 with relative to aspect ratio(a/b)=1.

4.2 Experimental Results

The results obtained from non-linear experimental analysis of two different boundary
conditions and three values of aspect ratio, it can be observed that same aspect ratios equal to one,
two and four.

From the results shown in Tables (1,2 and 3), it can observed that the boundary conditions
always effect on the central deflections while changing the lamination from symmetric to un-
symmetric may increase the central deflection for aspect ratio as shown in following discussion.

4.3 Linear, Non-linear Analytical and Experimental Results
For the linear, non-linear analytical and experimental results the plates have a=b=0.2m,
h=4mm,E; =22.049Gpa, E,=4.163Gpa,G,,=1.365Gpa, v,,=0.334, v,,=0.063.The results
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for various techniques, experimental, linear and non-linear analytical results are shown in Figs. (4.a,
b and c).

4.4. Influence Orthotropic Factor (E/G) on Deflection:

In the elasticity law's, the deflection related with modulus of elasticity, from the results we
proved that analytical and experimental, as shown in Figs. 5.a, b and c, the deflection increased
when modulus of elasticity decreased, therefore the reinforcement for any composite sections
depended on the increased modulus of elasticity etc, Fiber, Steel coils or any stiffened material was
in direction of maximum load. Two of types material, from, Reddy, 1997, with different
mechanical properties to examine its impact on the results of central deflection for same loads and
dimensions as shown in Figs. 5 a, b and c.

(a) Material-, Reddy, 1997:
a=b=0.2m,h=4mm,E,=12.605Gpa,E,=12.628Gpa,G,=2.154Gpa, v;,=0.2395, v,,=0.239.

(b)Material-2 (present material):-a = b = 0.2m, h = 4mm, E; = 22.049Gpa, E,=4.163Gpa
,G12=1.365Gpa, v,,=0.334,v,,=0063.

(c) Material-3, Reddy N.J, 1997:
a=b=0.2m, h=4mm, E;=275.8Gpa, E,=6.895Gpa, G,,=0.6E, v,,=0.25, v,;=6.25E-3.

4.5 Deflection with Boundary Conditions

In this section, the behavior of cross ply angle plate that exposed to bending distributed load
of 2-boundary conditions is examined. The maximum value of deflection strongly connected with
the boundary condition for the platesa =b =0. 2 m, h =4 mm, E, = 22.049 Gpa, E, = 4.163 Gpa,
G1,=1.365Gpa, v,,=0.334,v,,=0.063 as shown in Fig.(3.a and b).

4.6 Influence of Aspect Ratio on the Deflection
Based on the experimental and theoretical results the effect of aspect ratio non-linearity

limit(w> 0.3h) and large deflection limit(w= h) for the ten cases of the boundary conditions are
discussed and shown in Figs. 7.a, b, ¢ and d.When the value of b is b ,b/2 or b/4 sameness the
value of R is R ,R/2 or R/4 respectively. The difference of deflection was nonlinearly when changes
the value of aspect ratio(R). So, its nonlinearly after changing the boundary conditions. This
inquiring in all cases which are using in present work increasing or decreasing for plates,
a=b=.2m,h=4mm,E1=22.049Gpa,E2=4.163Gpa,G12=1.365Gpa,v,,=0.33,v,,

4.7 Stress Analysis

To verify present work results, stresses values in X-and Y-axes (respectively oy, and oyy)
are compared with those obtained by other researchers, Reddy, 1997 are shown in Fig. 8.aand b
for 0°/90° cross-ply angle plate which shows a good agreement.
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5. CONCLUSION

The present analytical investigation is carried out to study non-linear analysis of large
deflection of rectangular composite plate undergoes to uniform distributed loads for 10-boundary
conditions. Using Classical Laminated Plate Theory and Ritz method were used to solve the forth
degree of differential equation and used many shape functions which are changing with the change
of boundary condition. A new shape function which depends on the behavior of plate subjects'
uniform distributed load and boundary condition are used. Additionally, experimental program is
developed to makes the composite plates from E-Fiber glass and Polyester of volume fraction (0.3).
The following conclusions can be made:-

(a) Mechanical properties for E-Fiber glass and Polyester with volume fraction (0.3) were obtained.
In addition, composite plates were manufactured and subjected to uniform distributed load to
find the amount of large deflection.

(b)The elasticity modulus of composite plate (Fiber-Polyester) increased with increasing the
Fiberglass coils. Conversely, if underestimated the proportion yarns to less than the value of the
modulus of elasticity.

(c)The deflection depends on thickness, width, length of plate, number of layers and orientation of
plate.

(d) Comparing between the analytical linear, non-linear and experimental results gave a big
difference between linear and non-linear results, while, non-linear showed close results with
experimental results.
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NOMENCLATURE

a =length of plate, X-axis, meter.

Aj;=coefficients of stretching stiffness matrix of composite plate.

b=width of plate, Y-axis meter.

Bj;=coefficients of bending- stretching coupling matrix of composite plate.

C =clamped edge.

d =derivative of X, y or z, dimensionless.

D;; =coefficients of bending stiffness matrix of composite plate.

€y, €y, €;=unit vectors in X-,Y- and Z-axes, dimmensionless.

E; (Ex or Ey) =modulus of Elasticity in X- xis, GPa.

E, (E, or Egg)=modulus of Elasticity in Y- Axis, GPa.
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Eq (Exy Or E45)=modulus of Elasticity in XY-axis, GPa.
F=free edge.

G,,=shear modulus in XY-axis, GPa.

H=thicknesses of plate, meter.

hy hy .. hy h,he1=thicknesses of layers, meter.

Lx, Ly=length of plate in X-, Y- axes, meter.
m, n=the number of modes in X-, Y-axes, dimensionless.

Myx, Myy, My, =moment in X-,Y-,XY-axis per length, N.m/m.

Ny, N ny:force in X-,Y-,XY-axis per length, N/m.

yy!

q(x, y)=function of uniform distributed load, pressure, N/m?.

Qxx» Qyy, Qxy=shear force in X-,Y-,XY- axis per length, N/m.

R =aspect ratio (a/b), dimensionless.

u. ,vo,w.=mid-plane displacement in X-,Y-,Z- axis, meter.

u(x, y),v(x, y),w(x, y)=function of displacement in X-, Y-,Z-axis.

U=strain energy ,Joule.
V=potential energy, Joule.
W=work done, Joule.

o= m*m/a, m~ 1.

B=n*m/b, m™ L.

Journal of Engineering

1= constant Ratio (22/7), dimensionless. v = poisson's ratio, dim. less.

O, Oyy, Tyy=Stress in X-,Y-, XY- axis , MPa.
€xx= Strain in X- axis , dimensionless.

Eyy= strain in Y- axis, dimensionless.

Vay =shear strain in XY- axis, dimensionless.
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e\ =non-linear strain in X-axis (dim.less).

Volume 21 February 2015 Journal of Engineering

&,;= transverse strain when the lamination angle0°, dimensionless

Thickness=4 mm

iz

f

Length=20 cm

The plate

Stand of Dial Gage

Figure 3. The mechanism of bending test.
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Table 1. First verification of central deflection between Reddy, 1977, results and present analytical
results of CCCC, 0°/90°/90°/ 0°cross-ply angle plate.

a=b=0.3048m, h=2.4384mm, E1=12.605Gpa, E2=12.628Gpa,
G12=2.154Gpa, v,,=0.2395, v,,=0.239.

Pressure Reddy, Present %

(N/m?) 1997 results | analytical results | Difference
(mm) (mm)

1379 0.96 1.00 4
2758 1.65 1.8 8.33
4137 2.16 2.4 10.83
5516 2.55 2.8 8.93
6895 2.87 3 4.33
8274 3.15 3.4 7.35
9653 3.38 3.7 8.65
11032 3.61 4 9.75
12411 381 4.2 9.28
13790 4.00 4.40 9.09
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Table 2. Second verification of central deflection between Reddy, 1997, results and present
analytical results of SSSS, 0°/90°/90°/ 0°cross-ply angle plate.

a=b=0.3048m, h=7.62mm, E1=275.8Gpa, E2=6.895Gpa, G12=0.6E2,
V12:O.25, V21:6.25E‘3.
Pressure Reddy, Present analytical %
(N/m?) 1997 results Difference
results (mm)
(mm)
6895 391 3.70 5.37
13790 5.70 6.20 8.77
27580 7.80 8.40 7.69
41370 9.17 9.70 5.78
55160 10.24 10.90 6.44
68950 11.14 11.80 5.92
82740 11.91 12.70 6.63
96530 12.6 13.00 3.17
110320 13.21 13.90 5.22
124110 13.80 14.50 5.07
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Table 3. Third verification central deflection between Reddy, 1997,results and present analytical
results CCCC,0°/90°cross-ply angle.

a=b=0.3048m, h=2.4384mm, E1=12.605Gpa, E2=12.628Gpa, G12=2.154Gpa,
V12:O.2395, V21:0.239.
Pressure Reddy, Present analytical %
(N/m?) 1997, results results Difference
(mm) (mm)
1379 1.96 1.98 1.02
2758 2.53 2.65 4.74
4137 2.97 3.07 3.36
5516 3.31 3.42 3.32
6895 3.58 3.70 3.35
8274 3.83 3.95 3.13
9653 4.04 4.18 3.46
11032 4.23 4.38 3.55
12411 441 4.52 2.50
13790 4.57 4.68 2.00
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