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ABTRACT 

  The theoretical analysis depends on the Classical Laminated Plate Theory (CLPT) that is 

based on the Von-K ráman Theory and Kirchhov Hypothesis in the deflection analysis during 

elastic limit as well as the Hooke's laws of calculation the stresses. New function for boundary 

condition is used to solve the forth degree of differential equations which depends on variety 

sources of advanced engineering mathematics. The behavior of composite laminated plates, 

symmetric and anti-symmetric of cross-ply angle, under out-of-plane loads (uniform distributed 

loads) with two different boundary conditions are investigated to obtain the central deflection for 

mid-plane by using the Ritz method. The computer programs is built using Mat lab(R2011a), to 

solve non-linearity effects on the central deflection values of rectangular cross-ply composite 

laminated plates, aspect ratio, stresses, orthotropic factor (E/G) and orientations of fiber. The non-

linear analysis results of (4.74%) for SSSS of   /   /       cross-ply angle plate, (8.77%) for 

CCCC of   /   cross-ply angle plate and (10.83%) for CCCC of   /   /       cross-ply angle 

plate showed a good agreement with Reddy, 1997 results. 

 Comparing between the analytical linear, non-linear and experimental results gave a big 

difference  between linear and non-linear results, while, non-linear showed close results with  

experimental results.  

Key words: non-linear analysis, large deflection, composite laminated plate, classical laminated 

plate theory and Ritz method. 
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 انخلاصه
التذليل الٌظسي يعتود على  ًظسيىة اليىهيذَ الوسكاىَ الكيسىيكيَ التىد عسىتٌد على  ًظسيىة  ىْى كىازهي ّ س ىيا  كيس ىْ          

 ىىوي دىىدّد الوسًّىىَ ّكىىرل  وىىْاًيي ُىىْج  ىىد دسىىام ادجِادا ياسىىتىدهل دّار جديىىدٍ علىى  الوذىىاّز الوتعاهىىدٍ لذىىل الوعىىادد  

ط الذديىَ بادعتوىاد على  هيىادز هتٌْعىَ  ىد السيا ىيا  الٌِدسىيَ الوتحدهىَيالتذح   ىد التها ليَ هي الدزجَ السابعَ دسى  الرىسّ

سىىلْج اليىىهالخ الهاحيىىَ الوسكاىىَرالوتٌا سٍ ّنيىىس الوتٌا سٍرعذىىل دوىىل ادًذٌىىاش العىىام(الوْش  برىىكل هٌتظن لعرىىس   ىىسّط دديىىَ 

بساهج الذاسْمرهاعيمر لتٌهير دىل اداىاز استىدام ن ع  للذيْر عل  ادشادَ الوسكصيَ  د الوستْي الْسهد باستىدام طسيحة زيتص

دجِىادا  رعاهىل التغىايس عاهىدٍ رًسىاة الهىْر الى  العىس  ر االيخهيَ عل  وين ادشادَ الوسكصيَ  د اليلْاح الهايحيَ الوسكاىَ الوت
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%  للوثال بركل بسيط هىي 4ي7كوا يلد( ًتالج التذليل اليخهد الذاليَ عىتلف عي ًتالج الاذْث السابحَ دليا يّاعجاُا  االوتعاهد 

%  للوثال بحىٍْ هىي 44ي7الجِا  ادزبع اللْح ذّ الهاحا  ادزبع الوتعاهدٍ(صهسدزجَ/عسعيي دزجَ/عسعيي دزجَ/صهس دزجَ  ر (

ذّ  %  للوثاىل بحىٍْ هىي الجِىا  ادزبىع للىْح71ي38الجِا  ادزبىع  للىْح ذّ الهاحتىيي الوتعاهدعيي(صىهس دزجَ/عسىعيي دزجىَ  ّ(

 الهاحا  ادزبع الوتعاهدٍ (صهسدزجَ/عسعيي دزجَ/عسعيي دزجَ/صهس دزجَ ي

ًتالج التذليل الىهد هىي جاًى  ّبىيي ًتىالج   بيي ًتالج التذليل الىهد ّاليخهد ّالعولد ّّجدًا الهازق الكايس عن هحازًة

  ل اليخهد  د التيوين دًِا ادوسم ال  الْاوعي ّالري يدعن ادعتواد عل  ًتالج التذليالتذليل اليخهد ّالعولد هي جاً  اخس  

 التذليل اليخهدر ادشادَ الكايسٍر اليلْاح الهاحيَ الوسكاَر ًظسية اليلْاح الهاحيَ الوسكاَ ّطسيحة زيتصي انكهًات انرئيسيه:

1. INTRODUCTION 

During the last decades, needs for composite materials which contain two or three types of 

materials mixed together homogenously have appeared. 

Composite materials have many advantages such as high strength with low weight compared 

with traditional engineering materials; furthermore, their properties can be controlled during mixing 

of their components to meet the suitable design requirements. When a flat plate subjected to out-of-

plane loads (uniform distributed loads), the real shape of displacement of this plate is nonlinear 

shape, Reddy,1997. 

Huai, and Hui, 1990, based on the Von-Káráman theory of plates and they used double 

Fourier series method to solve the nonlinear bending problems of simply supported symmetric 

laminated cross-ply rectangular plates under combined action of pressure and in-plane load. The 

solution which investigated and satisfies the governing equations and boundary conditions is 

obtained. Singh, et al., 1991, investigated the large deflection bending analysis of anti-symmetric 

rectangular cross-ply plate based on Von-Káráman plate theory is investigated, with one-term 

approximation for the in-plane and transverse displacement, under sinusoidal loading. The presence 

of bending-stretching coupling in such plates resulted in an additional square nonlinear term which 

made the solution load direction dependent, unlike isotropic, orthotropic, symmetric, square anti-

symmetric cross-ply and symmetric and anti-symmetric angle-ply plates. Savithri, and Varadan, 

1993, worked on the non-linear bending analysis of simply supported symmetrically laminated 

orthotropic plates subjected to uniformly distributed load, using an accurate displacement based 

higher-order theory is presented. The non-linear governing equations were solved by the Galerkin 

procedure with the Newton- Raphson method. Numerical given here, based on analytical 

investigation, will be useful for comparison in future. Tanriöver, and Senocak, 2004, discussed a 

large defection analysis of laminated composite plates. Galerkin method along with Newton-

Raphson method was applied to large deflection analysis of laminated composite plates with various 

edge conditions. The Von-Káráman plate theory was utilized and the governing differential 

equations were solved by choosing suitable polynomials as trial functions to approximate the plate 

displacement functions. The solution is compared to that of dynamic relaxation and finite elements. 

A very close agreement had been observed with these approximating methods. In the solution 

process, analytical computation has been done wherever it is possible, analytical-numerical type 

approach has been made for all problems. Nayyar, 2006, examined static and vibration analysis of 

laminated plates were conducted conventional and hierarchical finite element formulation based on 

First-order Shear Deformation Theory (FSDT). The efficiency and accuracy of the developed 

formulation is also established in comparison with approximate solutions based on Ritz-method 

which are also developed for the cases under study. A detailed parametric study has been conducted 
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on various types of laminated plates, in order to investigate the effects of boundary conditions, 

laminate configuration, aspect ratio values and elastic modulus to shear modulus (E/G) ratio. 

Shfrin, et  al, 2008, studied a semi-analytic approach for the geometrically non-linear analysis of 

rectangular laminated plates with general boundary conditions and out-of-plane loads had been 

developed. The solution of non-linear partial differential equations of Von-Káráman plate theory 

has been reduced to an iterative (sequential) solution of a set of non-linear ordinary differential 

equations using multi-term extend Kantorovich method. Various combinations of boundary and 

loading conditions that are beyond the applicability of other semi-analytical methods have been 

considered the convergence, accuracy, and applicability of the proposed approach have been 

demonstrated through the quantitative study of various cases of large deflection non-linear response 

of laminated plates. The semi-analytical method proposed in this paper for the large deflection 

analysis of laminated plates subjected to out-of-plane loading can be further extended for non-linear 

analysis of plates with in-homogenous or mixed boundary conditions. Kim, et al., 2008, performed 

the non- linear structural analysis of higher- aspect- ratio structures. For the high-aspect-ratio 

structures, it is important to understand geometric nonlinearity due to large deflections. To consider 

geometric non- linearity, finite element analysis based on large deflection beam theory were 

introduced. Comparing experimental data and the present nonlinear analysis results, the current 

results were proved to be very accurate for the static and dynamic behaviors for both isotropic and 

anisotropic beams.  Saffari, and Mansouri, 2011, solved non-linear algebraic equations by an 

iterative method, the non-linear equations being linearized by evaluating the non-linear terms with 

the known solution from the preceding iteration. The Newton-Raphson method, which is based on 

the Taylor series expansion and uses the tangent stiffness matrix, had been extensively used to solve 

non-linear problems. A new Newton-Raphson algorithm was developed for analyses involving non-

linear behavior. Nishawala, 2011, studied a thin plate or beam; if the deformation is on the order of 

the thickness and remain elastic, linear theory may not produce accurate results as it does not 

predict the in-plane movement of the member. Therefore, a geometrical nonlinearity, large 

deformation theory is required to account for the inconsistencies. The equation of motion for plates 

with free and clamped edges was derived using model analysis in conjunction with the expansion 

theorem. Theoretical results were compared with a finite element simulation for plates. 

Concluding Remarks: 

            In present work the considered cases are as follows:-  

(a)Wide coverage to cases of static load (uniform distributed load) which is    made of 

materials E-fiber glass and Polyester, multi-layers of cross-ply angle and thickness (4mm) was 

observed. 

(b) Using a new orthogonal shape functions and Ritz method to cover our boundary 

conditions which are not used in previous papers. 

(c) Making a new device for bending test. 
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2. ANALYTICAL SOLUTION (CLASSICAL LAMINATED PLATE THEORY) 

The classical laminated plate theory is an extension of the classical plate theory to composite 

laminates.  In the classical laminated plate theory (CLPT), it is assumed that the Kirchhoff 

hypothesis holds:- 

1. Straight lines perpendicular to the mid surface (i.e. transverse normally) before deformation 

remain straight after deformation. 

2. The transverse normal do not experience elongation (i.e. they are inextensible ) 

3. The transverse normal rotates such that they remain perpendicular to the mid surface after 

deformation. 

The first two assumptions imply that the transverse displacement is independent of the 

transverse (thickness) coordinate and the transverse normal strain εZZ is zero. The third assumption 

results in zero transverse shear strain, γxz=0, γyz =0. Reddy, 1997. 

 

2.1 Displacements: Reddy, 1997 

 (     )    (   )   
   

  
                                                                                                         (1.a) 

 (     )    (   )   
   

  
                                                                                      (1.b) 

(     )    (   )                                                                                                          (1.c) 

        

2.2 Strains: 

 The Von-Káráman strains and the associated plate theory is named the Von-Káráman plate 

theory: Reddy, 1997. 
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 In view of assumption of the classical laminated plate theory, Eq. (2) becomes: 
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2.3 Plane Stress –Reduced Constitutive Relations 

A state of generalized plane stress with respect to the XY-plane is defined to be one in 

which:- 

 

     =   (x,y),   =   (x,y),    =0,ε  =0                                                          (5) 

                                  

 The strain-stress relations of an orthotropic body in plane stress state can be written as: 

  

    [   ]=[   ][ε  ]                                                                                              (6) 

 

 Most laminates are typically thin and experience a plane state of stress. For a lamina in the 

XY-plane, the transverse stress components are     ,     and     . Although these stress components 

are small in comparison to      ,     and   , they can induce failures because fiber-reinforced 

composite laminates are weak in the transverse direction (because the strength providing fibers are 

in the XY-plane). For this reason, the transverse shear stress is not neglected in shear deformation 

theories. However, in most equivalent-single layer theories the transverse normal stress     is 

neglected. Then the constitutive equations must be modified to this account for this fact. Reddy, 

1997. 

The condition     =zero results in following static constitutive equations for       layer that 

is characterized as orthotropic lamina uniform distributed loads Reddy,1997. 

 

      [

   
   
   
]

( )

=  ,   -
( ) [

ε  
ε  
γ
  

]

( )

                                                                          (7)  

 

  Where i,j=1,2,6 ,k the number of layers and   ,   -
( )  are the plane stress-reduced stiffness 

founded by Reddy, 1997. 
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  2.4 Equations of Motion 

As noted earlier, the transverse strains (γxz, γyz, εzz ) are identically  zero in the Classical 

Plate Theory. Consequently, the transverse shear stresses ( xz ,  yz ) are zero for a laminate made of 

orthotropic layers if they are computed from the constitutive relations. The transverse normal stress 

 zz is not zero by the constitutive relation because of the Poisson effect. However, all three stress 

components do not enter the formulation because the virtual strain energy of these stresses is zero 

due to the fact that kinematically consistent virtual strains must be zero [see Eq.(9)]: 

     

   ε    ε    ε                                                                                               (9) 

 

 Whether the transverse stresses are accounted for or not in a theory, they are present in 

reality to keep the plane in equilibrium. In addition, these stress components may be specified on 

the boundary. Thus, the transverse stresses do not enter the virtual strain energy expression, but they 

must be accounted for in the boundary condition and equilibrium of forces. 

 Here, the governing equations are derived using the principle of virtual displacement. In the 

derivations, we account for static effects. 

 The static version of the energy is:-   
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Where the virtual strain energy  U (volume integral of    ), the virtual potential virtual  V and the 

virtual  work done by applied forces are given by:- 
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Where    is the distributed force at the bottom (z=
 

 
) of the laminate,    is the distributed force at 

the top (z= 
 

 
). 
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The quantities (    ,     ,    ) are called the in-plane force resultants, and (    ,     

,    ) are called transverse force resultants All stress resultants are measured per unit length (e.g., 

   and    in N/m and    in N.m/m).  
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[A], [B] and [D] are the common laminate stiffness matrices of membrane stiffness, bending–

membrane coupling stiffness and bending stiffness. For arbitrary laminates, these matrices are 

defined as Reddy, 1997.  
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 2.5 Ritz Method (Energy Method) 

Components of the compatible infinitesimal virtual displacements (u, v, w) must be 

piecewise continuous functions of x, y and z in the interior domain of the body. In addition, they 

should satisfy the geometrically boundary condition of the elastic system and be capable of 

representing all possible displacement patterns. If these admissible displacement functions are 

chosen properly, very good accuracy can be attained. 

According to this theorem, as discussed above, of all displacements that satisfy the boundary 

conditions, those making the total potential energy of the structure a minimum are the sought 

deflections pertinent to the stable equilibrium conditions. 

 

2.6 Boundary Conditions 

In general, the definition of the boundary conditions are procedure to  fix edges the 

elements, plates, as free(F), simply supported(S), clamped(C), built-in or hinged. The boundary 

conditions that are (clamped-clamped-clamped-clamped, for four edges case, CCCC) or mixing two 

or more than of these types (clamped-free-simply supported-free, CFSF). The way of fixing edges 

depend on the application of a structure, plate, dimensions of a structure, the load type and the load 

amount. Robbert M. Jones, 1999. 

(a)Free-edges (F):  

             =      =0;   x x a= y y  =0 

            (b)Simply supported edges (S):  

          w x a y  =0    x x a= y y  =0 

           (c)Clamped edges(C):  

                    w x a y  =0; (
 w

 x)
)|(x=a) =(

 w

 x)
)|(y=b)=0.  

 

 

 

\ 
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2.7 Displacement Function 

The behavior of a structure, plate, is different from fixing way to other. In present work, the 

orthogonal arbitrary displacement functions are used to find the exact solution of these cases as 

following:- 

 

1. CCCC boundary condition,Szilard, 2004. 

u(x,y)=(1/4) Amn (1-cos(α x))(1-cos(β)), v(x,y)=(1/4)  mn (1-cos(α x)) (1-cos(β)),  

w(x,y)=(1/4) mn (1-cos(α x)) (1-cos(β))  

 

2. SSSS boundary condition, Szilard,2004. 

u(x,y)=  Amn sin(α x) sin(β y), v(x,y)=   mn sin(α x) sin(β y), w(x,y)=   mn sin(α x) sin(β y)  

3. CCCF boundary condition[Present work] 

u(x,y)= (1/2) Amn (1-cos(α x))(  ).
 n  

 
/ (eβy   )  v(x,y)= (1/2)     (1-cos(α x)) (  ).

 n  

 
/ (eβy  

 )    

w(x,y)= (1/2)  mn (1-cos(α x))(  ).
 n  

 
/ (eβy   )    

4. SSSF boundary condition (Present work): 

u(x,y)=  Amn sin(α x)(  ).
 n  

 
/
eβy, v(x,y)=   mn sin(α x)(  ).

 n  

 
/
eβy, w(x,y)=      sin(α 

x)(  ).
 n  

 
/
eβy 

 

2.8 Analytical Solution 

The solution of  SSSS for E-fiber, Polyester (volume fraction 0.3) for cross-ply angle 

plate(  ,   /   ,   /   /  ,   /   /      ,    /   /  /   )and 

dimensions(0.2*0.2*.004m,0.2*0.1,.004m and 0.2*0.05*.004m).It depends on the last sections as 

follows: 

The load   q(x,y) can be expanded as Fourier series as: 

     p(x, y)= ∑
    

  (    )(    )
     

     sin(
( i  ) x  

a 
) sin(

( j  ) y  

  
)                                                    (15) 

      i, j= ,  , 3…………, and m, n =3(mode shape).     

In the case of uniform distributed load over the surface of plate:        
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The potential energy related with the uniformly distributed load q(x,y) is: 
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Strain energy: -   
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For pure bending: -  
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 The displacement functions   of SSSS Boundary condition is:
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 By using separation of variables technique as: 

   ( )        α   α  
  

 
 ,   ( )        β   β  
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Becomes: 
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The function Xm(x) and Yn(y) are chosen so as to satisfy the boundary conditions. 

Then the strain energy equation for SSSS becomes:- 

  2
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   =constant as follow: 

   =α    (   α    β )
 ,  =α    (   α    β )

 ,  =
α    

 
 (   α    β ) , 

  = αβ   (   α    β )(   α    β ),  =
αβ
    

 
(   α    β )(   α    β ) , 

  =
α β   

 
 (   α    β )(   α    β ) ,  =

α β
    

 
(   α    β ) (   α    β ) , 

  =α    (   α    α    
 β ) 

By using the Ritz method, the coefficients Amn , Bmn  and Cmn  are determined boundary conditions can be 

obtained from :-                 

        From:     
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 Where: 
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=2(  +   ),   =  +   +   ,   =  +   +   ,   =  +  +    

from:            
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 Where: 
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And from                         
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  Where: 

   =  +   +   ,   =   +   +   ,   =2   ,   =3(  +   +   +   ),   =4(  +  +   +   ),   =

2(  +  +   ),   =3(  +   +   +   ),   =
   

    
       

    

 
      

   

 
 

The set of equations (19), (20) and (21) are solved by using program Mat lab (R2011a)  

2.9 Verification of Case Studies 

         For verifying the solution of present work, we compare our results with those obtained by other 

researchers as shown in Tables (1, 2 and 3) which give good agreement with non-linear results of, Reddy, 

1997.  
 

3. EXPERIMENTAL WORK 
 

 Experimentally, the steps of manufacturing specimens (plates) from E-fiber and Polyester are as 

follows:- 

 1. Taking volume fraction (0.3) from E-fiber   glass and Polyester. 

 2. Connecting fiber coils on the edges of mold. 

 3. Adding the Polyester on fiber coils and move to release bubbles. 

 4. Loading weights on the plates to comprise to thickness (4mm). 

 Finally, the plates are left a while to dry and undergo to three tests: tensile test to find mechanical 

properties of plates, tensile test to find the Poisson’s  ratio and the bending test,50 specimens are manu 
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factored to find the displacement of cross-ply angle plates undergoes to uniform distributed load(0-

8750N/  ) for 10-different boundary conditions. 

3.1 Tensile Test 

Each laminate was oriented in longitudinal, transverse, (45
0
) angle relative to designated (0

0
) 

direction and sample for pure polyester to determine the engineering parameters  ,  ,    . Every samples 

are divided according to dimensions, as set by ASTM Number (D3039/D03039M) as shown in Fig. 1.And 

the sample shape for present study before and after the tensile test. The specimen tensile test is mounted 

vertically in a servo-hydraulic testing machine, and pulled hydraulically with stroke control with large steel 

grips, maximum capacity of tensile machine (50KN) and it occurred in Ministry of scientific search as 

shown: 

3.2 Bending Test 

 The displacement of composite plate under uniform distributed load which can be measured by 

bending device. It measures results for any dimension of plates (length, width and thickness) as shown in 

Fig. 3. 

4. RESULT AND DISCUSSION 

4.1 Analytical Results 
The purpose of the study is to find a theoretical analysis of one of the famous engineering 

applications, as well as to increase precision in the analysis to achieve results closer to reality. By using the 

Ritz method in the analysis of nonlinear deformation in composite plates with dimensions (0.2*0.2*0.004m), 

multi cross-ply angle layers, various boundary conditions and variable of uniform distributed load from       

(0-8750N/m ) to obtain the central deflection of the plate. The non-linear behavior of plates or laminated 

plates begins after (w>0.3h) and the consequent application of theories mathematically complex 

need to be solved by engineering software such as Mat lab (R2011a). The results obtained from 

linear analysis, it can be observed that central deflection increases with increasing load with (10-

100% linearly steps) as well as from layer to others. The results obtained from non-linear analytical 

analysis with different boundary conditions and three values of aspect ratios how that an increasing 

aspect ratio caused decreasing the central deflection with(18.5-27%) for aspect ratio(a/b)=2, and(40-

53%) for aspect ratio(a/b)=4 with relative to aspect ratio(a/b)=1. 

 

4.2 Experimental Results 

The results obtained from non-linear experimental analysis of  two different boundary 

conditions and three values of aspect ratio, it can be observed that same aspect ratios equal to one, 

two and four. 

From the results shown in Tables (1,2 and 3), it can observed that the boundary conditions 

always effect on the central deflections while changing the lamination from symmetric to un-

symmetric may increase the central deflection for aspect ratio as shown in following discussion. 

 

 

4.3 Linear, Non-linear Analytical and Experimental Results 
  For the linear, non-linear analytical and experimental results the plates have a=b=0.2m, 

h=4mm,   =22.049Gpa,   =4.163Gpa,   =1.365Gpa,    =0.334,    =0.063.The results  
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for various techniques, experimental, linear and non-linear analytical results are shown in Figs. (4.a, 

b and c). 

 

4.4. Influence Orthotropic Factor (E/G) on Deflection: 

 In the elasticity law's, the deflection related with modulus of elasticity, from the results we 

proved that analytical and experimental, as shown in Figs. 5.a, b and c, the deflection increased 

when modulus of elasticity decreased, therefore the reinforcement for any composite sections 

depended on the increased modulus of elasticity etc, Fiber, Steel coils or any stiffened material was 

in direction of maximum load. Two of types material, from, Reddy, 1997, with different 

mechanical properties to examine its impact on the results of central deflection for same loads and 

dimensions as shown in Figs. 5 a, b and c. 

 

(a) Material-, Reddy, 1997: 

a=b=0.2m,h=4mm,  =12.605Gpa,  =12.628Gpa,   =2.154Gpa,    =0.2395,    =0.239. 

 

(b)Material-2 (present material):-a = b = 0.2m, h = 4mm,    = 22.049Gpa,   =4.163Gpa 

,G12=1.365Gpa,    =0.334,   =0063. 

 

(c) Material-3, Reddy N.J, 1997: 

a=b=0.2m, h=4mm,   =275.8Gpa,   =6.895Gpa,    =0.6      =0.25,    =6.25E-3. 

 

4.5 Deflection with Boundary Conditions 

In this section, the behavior of cross ply angle plate that exposed to bending distributed load 

of 2-boundary conditions is examined. The maximum value of deflection strongly connected with 

the boundary condition for the plates a = b = 0. 2 m, h = 4 mm,    = 22.049 Gpa,    = 4.163 Gpa, 

   =1.365Gpa,    =0.334,   =0.063 as shown  in Fig.(3.a and b). 

 

4.6 Influence of Aspect Ratio on the Deflection 

 Based on the experimental and theoretical results the effect of aspect ratio non-linearity 

limit(w  .3h) and large deflection limit(w≧ h) for the ten cases of  the boundary conditions are 

discussed and shown in  Figs. 7.a, b, c and d.When the value of b is b ,b/2 or b/4 sameness the 

value of R is R ,R/2 or R/4 respectively. The difference of deflection was nonlinearly when changes 

the value of aspect ratio(R). So, its nonlinearly after changing the boundary conditions. This 

inquiring in all cases which are using in present work increasing or decreasing for plates, 

a=b=.2m,h=4mm,E1=22.049Gpa,E2=4.163Gpa,G12=1.365Gpa,   =0.33,    

4.7 Stress Analysis 

To verify present work results, stresses values in X-and Y-axes (respectively     and    ) 

are compared with those obtained by other researchers, Reddy, 1997 are shown in  Fig. 8.a and b 

for   /    cross-ply angle plate which shows a good agreement. 
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5. CONCLUSION 

 The present analytical investigation is carried out to study non-linear analysis of large 

deflection of rectangular composite plate undergoes to uniform distributed loads for 10-boundary 

conditions. Using Classical Laminated Plate Theory and Ritz method were used to solve the forth 

degree of differential equation and used many shape functions which are changing with the change 

of boundary condition. A new shape function which depends on the behavior of plate subjects' 

uniform distributed load and boundary condition are used. Additionally, experimental program is 

developed to makes the composite plates from E-Fiber glass and Polyester of volume fraction (0.3). 

The following conclusions can be made:- 

 

(a) Mechanical properties for E-Fiber glass and Polyester with volume fraction (0.3) were obtained. 

In addition, composite plates were manufactured and subjected to uniform distributed load to 

find the amount of large deflection. 

(b)The elasticity modulus of composite plate (Fiber-Polyester) increased with increasing the 

Fiberglass coils. Conversely, if underestimated the proportion yarns to less than the value of the 

modulus of elasticity. 

(c)The deflection depends on thickness, width, length of plate, number of layers and orientation of 

plate. 

(d) Comparing between the analytical linear, non-linear and experimental results gave a big 

difference  between linear and non-linear results, while, non-linear showed close results with  

experimental results.  
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NOMENCLATURE 

a =length of plate, X-axis, meter. 

   =coefficients of stretching stiffness matrix of composite plate. 

b=width of plate, Y-axis meter.  

   =coefficients of bending- stretching coupling matrix of composite plate. 

C =clamped edge. 

  =derivative of x, y or z, dimensionless. 

    =coefficients of bending stiffness matrix of composite plate.  

    ℯ  y, ℯ  z=unit vectors in X-,Y- and Z-axes, dimmensionless. 

   (   or    )  modulus of Elasticity in X- xis, GPa. 

   (    or     )=modulus of Elasticity in Y- Axis, GPa. 
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    (    or    )=modulus of Elasticity in XY-axis, GPa. 

F=free edge. 

   =shear modulus in XY-axis, GPa. 

H=thicknesses of plate, meter. 

      …,  ,hk,hk+1=thicknesses of layers, meter. 

Lx, Ly=length of plate in X-, Y- axes, meter. 

m, n=the number of modes in X-, Y-axes, dimensionless. 

   ,    ,   =moment in X-,Y-,XY-axis per length, N.m/m. 

   ,    ,    =force in X-,Y-,XY-axis per length, N/m. 

q(x, y)=function of uniform distributed  load, pressure, N/  . 

   ,    ,    =shear force in X-,Y-,XY- axis per length, N/m. 

R =aspect ratio (a/b), dimensionless. 

   ,  ,  =mid-plane displacement in X-,Y-,Z- axis, meter. 

u(x, y),v(x, y),w(x, y)=function of displacement in X-, Y-,Z-axis. 

U=strain energy ,Joule. 

V=potential energy, Joule. 

W=work done, Joule. 

 = m*π/a ,    . 

β= n*π/b,    . 

π= constant Ratio (22/7), dimensionless.                                         

,    ,    =stress in X-,Y-, XY- axis , MPa. 

ε  = strain in X- axis , dimensionless. 

ε  = strain in Y- axis, dimensionless.  

γ
  

 =shear strain in XY- axis, dimensionless. 
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ε 
  =non-linear strain in X-axis (dim.less). 

ε l= transverse strain when the lamination angle  , dimensionless 

 

  

Figure 1. Shape and dimension of tensile test samples. 

 

Figure 2. Tensile test machine. 

 

    

Figure 3. The mechanism of bending test. 

Glass Container 

Distributed  Weights 

The plate              

Dial Gage         

Stand of Dial Gage 



Journal of Engineering Volume   21  February  2015 Number 2 
 

 

136 

 

 

Figure 4.a. Comparison of central deflection for 0
0
/90

0
 angle of CCCC B.Cs. 

Figure 4.b. Comparison of central deflection for 0
0
/90

0
/90

0
/0

0
 angle of CCCC B.C. 

Figure 4.c. Comparison of central deflection for 0
0
/90

0
/0

0
/90

0
 angle of CCCC B.Cs. 
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Figure 5.a. Comparison of central deflections of three different materials for   /   /   /  cross-

ply angle plates of  SSSS   B.Cs. 

Figure 5.b. Comparison of central deflections of three different materials for   /   /   /  cross-

ply angle plates of  CCCC BCs. 

Figure 5.c. Comparison of central deflections of three different materials for   /   cross-ply angle 

plates of  CCCC   B.Cs. 

 



Journal of Engineering Volume   21  February  2015 Number 2 
 

 

138 

 

 
Figure 6.a. Analytical central deflection of 5-cross-ply angle plates of CCCC B.Cs. 

Figure 6.b. Analytical central deflection of 5-cross-ply angle plates SSSS B.Cs. 

 

Figure 7.a Comparison the effect of aspect ratio on the central deflection of       /   /   for 

CCCC B.Cs. 
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Figure 7.b. Comparison the effect of aspect ratio on the central deflection  of        for  CCCC  

B.Cs. 

Figure 7.c. Comparison the effect of aspect ratio on the central deflection of       /   /   for 

SSSS B.C.s 

Figure 7.d. Comparison the effect of aspect ratio on the central deflection  of        for  SSSS  B.Cs. 
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Figure 8.a. Stress analysis of X-axis  between  Reddy, 1977, and present analytical results for 

  /   of   CCCC B.Cs. 

Figure 8.b. Stress analysis of Y-axis between Reddy, 1977, and present analytical results for 

  /   of    CCCC B.Cs. 
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Table 1. First verification of central deflection between Reddy, 1977, results and present analytical 

results of CCCC,   /   /       cross-ply angle plate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a=b=0.3048m, h=2.4384mm, E1=12.605Gpa, E2=12.628Gpa, 

G12=2.154Gpa,    =0.2395,    =0.239. 

Pressure 

(N/  ) 

Reddy, 

1997 results  

(mm) 

 

Present 

analytical results 

(mm) 

% 

Difference 

1379 0.96 1.00 4 

2758 1.65 1.8 8.33 

4137 2.16 2.4 10.83 

5516 2.55 2.8 8.93 

6895 2.87 3 4.33 

8274 3.15 3.4 7.35 

9653 3.38 3.7 8.65 

11032 3.61 4 9.75 

12411 3.81 4.2 9.28 

13790 4.00 4.40 9.09 
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Table 2. Second verification of central deflection between Reddy, 1997, results and present 

analytical results of SSSS,   /   /       cross-ply angle plate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a=b=0.3048m, h=7.62mm, E1=275.8Gpa, E2=6.895Gpa, G12=0.6E2, 

   =0.25,    =6.25E-3. 

Pressure 

(N/  ) 

Reddy, 

1997 

results 

(mm)
 

Present analytical 

results 

(mm) 

% 

Difference 

6895 3.91 3.70 5.37 

13790 5.70 6.20 8.77 

27580 7.80 8.40 7.69 

41370 9.17 9.70 5.78 

55160 10.24 10.90 6.44 

68950 11.14 11.80 5.92 

82740 11.91 12.70 6.63 

96530 12.6 13.00 3.17 

110320 13.21 13.90 5.22 

124110 13.80 14.50 5.07 
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Table 3. Third verification central deflection between  Reddy, 1997,results and present analytical 

results  CCCC,  /   cross-ply angle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                         

 
 

a=b=0.3048m, h=2.4384mm, E1=12.605Gpa, E2=12.628Gpa, G12=2.154Gpa, 

   =0.2395,    =0.239. 

Pressure 

(N/  ) 

Reddy, 

1997, results  

(mm) 

 

Present analytical 

results 

(mm) 

% 

Difference 

1379 1.96 1.98 1.02 

2758 2.53 2.65 4.74 

4137 2.97 3.07 3.36 

5516 3.31 3.42 3.32 

6895 3.58 3.70 3.35 

8274 3.83 3.95 3.13 

9653 4.04 4.18 3.46 

11032 4.23 4.38 3.55 

12411 4.41 4.52 2.50 

13790 4.57 4.68 2.00 


