Number 1 Volume 24 January 2018  Journal of Engineering

Second Order Sliding Mode Controller Design for Pneumatic Artificial

Muscle
Ammar Al-Jodah Laith Khames
Assistant Lecturer Assistant Lecturer
Control and Systems Eng. Dep. Control and Systems Eng. Dep.
University of Technology, Baghdad- Iraq University of Technology, Baghdad- Iraq
ammar.aljodah@gmail.com laithkhames@yahoo.com
ABSTRACT

In this paper, first and second order sliding mode controllers are designed for a single link

robotic arm actuated by two Pneumatic Artificial Muscles (PAMs). A new mathematical model
for the arm has been developed based on the model of large scale pneumatic muscle actuator
model. Uncertainty in parameters has been presented and tested for the two controllers. The
simulation results of the second-order sliding mode controller proves to have a low tracking error
and chattering effect as compared to the first order one. The verification has been done by using
MATLAB and Simulink software.
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1. INTRODUCTION

In the past few years, Pneumatic Artificial Muscles (PAMs) has received great attention
in the robotics industry for its compact size and high power. Robots are basically exoskeletons
with actuators that provide the motion through torque and forces on the joints. Actuators are
normally DC or AC motors, hydraulic or pneumatic cylinders. Despite the many advantages of
these actuators, there is still a need for an actuator which is compact, flexible and has the ability
to deliver higher power. Higher power applications required electric or hydraulic power to move,
but pneumatics still have the potential to deliver high power with a compact design. For many
years, the Pneumatic actuators were limited in the simple, repetitive tasks with a low level of
automation. Pneumatic actuators were not adapted to be used in robotic systems very easily, the
mean two obstacles were: 1- Pneumatic systems required complex controllers to achieve a high
accuracy. 2- compliance (not robust to load variations). Air compressibility is the prime reason
for those obstacles, Caldwell, et al., 1995.

PAMs overtake the main obstacles mentioned earlier since these PAMs has all the
advantages of pneumatic actuators such as the low cost and compactness, and it does not have
the disadvantages of low power and lack of compliance. Such light weight actuators have a great
benefit in robotic systems since it will not greatly affect the payload. Tondu, and Lopez, 2000

A PAM is simply a cylinder made of a flexible rubber which fits inside a helical braided
plastic sheath, Ching-Ping Chou, and Hannaford, 1996. This structure makes the PAM
widened and shortened when its cylinder inflated. When PAM shorten it deliver high axel force
as compared to its weight. The way PAM construction make it very similar to its human
counterpart in the extent of its size and force.

Controlling PAM is a very challenging task since PAMSs are continuously changing in
shape, size, internal pressure, temperature, and axel force. With all these changes it is hard to
find an accurate model for the PAM. The nonlinear and robust control technique is highly
favorable in controlling PAMs where no accurate model is presented. Several works has been
done using those techniques which includes: backstepping control, Carbonell, et al., 2001 ,
adaptive control, Lilly, 2003 and the sliding mode control Utkin, 1978 , Carbonell, et al.,
2001, Lilly, and Liang Yang, 2005, Van Damme, et al., 2007 , and Boudoua, et al., 2015 .

Sliding mode controllers are in the leads of robust controllers that are able to overtake the
model uncertainties and external disturbances. | this paper a new model of one link robotic arm
actuated by two large scale PAMs is presented. The model of PAMs is augmented with the
model of one link robotic arm to have the overall model. Sliding mode controller will be used to
control the arm to follow the desired trajectory. Second order sliding mode controller is used to
overcome the chattering effect.

This paper is arranged as follows. Section 2 contains the derivation of the mathematical
model of one link arm actuated by PAMs in the bicep/tricep configuration. Section 3 presents the
derivation of a sliding mode controller for the robotic arm. Section 4 presents simulation results
of the control system with the first order and second order sliding mode controllers. Section 5
contains the conclusions.

2. THE MATHEMATICAL MODEL

In general, before any controller design, it is important to obtain a mathematical model
for the system to be controlled which is the closest approximation of its true behavior. The
system can then be analyzed, and the controller can be designed to meet the required
performance. The single link robotic arm is shown in Fig. 1. The equation of motion of the single
link robotic arm is given by
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(ml2+ D +mglcosq =1 6N

Where g, g are the arm rotation angle and angular acceleration respectively, m is the
mass at the end of the arm, [ is the arm length, I is the arm moment of inertia, g is the
gravitational acceleration, and  is the torque required to rotate the arm. The torque is generated
by the bicep and tricep PAMs and is given by the equation, Lilly, and Liang Yang, 2005:

= (F() = Fp()r )

Where F;(.) and F,(.) are the forces generated from the tricep and bicep PAMs respectively, r
is the pully radius. The PAM model given by Repperger, et al., 1998, is used to find F;(.) and
F,,(.) as follows

F(.) = —Ki(x)x; — Be(Xp) X + Py 3)

Fy(() = —Kp(xp)xp — Bp(Xp)Xp + Py 4)

Where K,(x;),Kp(x,) is the tricp and bicep PAM spring coeffecients respectively. These
coeffecients are nonlinear function of PAM postion. B:(x;), B, (x}) is the tricp and bicep PAM
damper coeffecients respectively. These coeffecients are nonlinear function of PAM velocity.
X, X, are the amount of PAM contraction for tricep and bicep respectively. x;,x, are the
velocity of PAM contraction for tricep and bicep respectively. P, P, are the pressure of tricep
and bicep PAMs respectively. The K;(x;), B;(x,), where i = (b, t) is given by Repperger, et
al., 1998:
Ki(x) = kyxf + ko + kg i = (b,t) ®)

B;(%) = byi%,2 + byX, + bs;  i=(bt) (6)

Where ky;, k,;, ks;, by, by, and bs; are constants given in Table 1, Repperger, et al., 1998.
These constants takes two states, one when the PAM inflated and the other one when it is
deflated. The bicep and tricep PAM state is given by

) bicep inflated

¢<0= {tricep deflated
()

) bicep deflated

¢4>0 = {tricep inflated

The pressure of tricep and tricep PAM is given by

P, = Py + AP (8)
Pb = POb + AP (9)

Where P, Py, are the initial pressure of the tricep and bicep respectively, AP is the pressure
difference between the tricep and bicep respectively. AP is the control input to the system. The
amount of muscle contraction x;, x;, is given by Lilly, and Liang Yang, 2005:

xt=(§+q)r,5ct=rq (10)

Xp =(§—q)r, Xp = —1q (11)

Where the angle g Is considered as the zero position at which both x; and x;, is zero.
By substituting Eq. (8) and Eq. (9) in Eq. (3) and Eq. (4), after that substituting in Eq. (2) gives
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T = (=K (x)x — Be(X)% + Por + AP + Kj, (xp,)xp + By (Xp)xp — Pop + AP )T (12)

By substitute Eq. (5) and Eq. (6) in Eq. (12)
T = (—(kqex? + kpeXe + kae)xe — (b1eXe” + byeXe + b3 )Xe + Py + AP
+ (kipxj + kopXp + kap)xp + (bipXy” + bapXy, + bap )Xy — Pop (13)
+ AP )r

By substituting Eq. (10) and Eq. (11) in Eq. (13) and the result in Eq. (1) gives

G = 6193+ 6,9% + 839 + 8,43 + 65G% + 8¢G + 5, cosq + S5 + bu )
u = AP
—T3(k1b + klt)

ml2 + 1
3mrt

5. — — (kyp = ki) + 173 (kap — ko)
2= ml2 +1
QBrr*/2)(kyp — kyp) + 3 (kyp + kap) + 1% (ksp + kat)
ml2 + 1
—r*(byp + b1y)
ml2 + 1
(14)
7”3(17219 — byt)
ml? + 1]
_Tz(b3b — b3t)
ml2 +1
_ glm
07 = ml? + I
7(Pop — Pot) + I (ku kip) + (th k2p) + (k3t k3p)

ml? + I
2r

ml? + 1 ),

61=

63:_

64:

"

65:

66=

>
[ee]
Il

b =

The robotic arm parameters are assumed as in Table 2.
To consider the uncertainty, the system is represented as following

g =fo+Af +bu
fo = 51q3 + 526]2 + 53q + 54,673 + 556.12 + 66q + 57 cos g + 68 (15)
Af = A8;1q3 + A6,q% + AS3q + AS,G3 + ASsG? + ASgq + A, cos g + Ag

Where the nominal values 6;,i = 1,2, ...,8 are given in Table 3 which obtained by substituting
the parameters of Table 1 and Table 2 in Eq. (14).
The uncertainty parameters Ad;,i = 1,2, ...,8 is a percentage of the nominal values.
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3. SLIDING MODE CONTROLLER DESIGN

The task in sliding mode controller design is to find a function of states called sliding
function and a state-feedback control law u(x(t)) = Ugq t+ Ugy,,. The control law will drive the
state towards the sliding surface (reaching phase), and then makes it slide on it to origin x =
[0 0 .. 0 ]7 (sliding phase). If the states were the error and its derivatives, then a tracking
behavior can be ensured if the states return to origin, Utkin, et al., 2009 . The reaching condition
is given by ss < 0, which is satisfied by the switching part of the control action uy,,. The sliding
condition is to maintain s = 0, which is satisfied by the equivalent part of the control action u.,,.
The error equation is given by

e=q—4qq (16)

Where q, is the desired angle. Diffrentiate Eq. (16) gives

€=q—{qq (17)
The second derivative of Eq. (17) gives
é =i~ i (18)
Define the surface function as following
s=¢é+ e (29)
The derivative of the surface function is given by
s=¢é+1é (20)
By substituting Eqg. (18) in Eq. (20) gives
S=q4—q4q+Aé (21)
By substituting Eq. (15) in Eq. (21) gives
S=fo—qGqg+Aé+Af +bu (22)
The proposed control law is given by
1
u= 5 (ueq + usw) (23)
Where the proposed u, is
Ueq = —fo + Ga — A€ (24)
Substituting Eq. (24) in Eq. (23) then the result in Eq. (22) gives
s =Af + uy, (25)

Let ug, = —k sign(s), Eq. (25) becomes
s = Af — k sign(s) (26)

The reaching condition ss < 0 must be satisified as following
ss = sAf — ks sign(s)

= sAf — k|s| 27)
< IsllAf| = kls]
< —Isl(k = |Af])
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the above equation is true if the following condition hold
k > |Af| (28)

In this paper,it has been noted from simulation that selecting k as k = 1, will be enough to
cancel out the uncertainties in the system. Choosing a value more than one will cause more
chattering in the control action.

It is well known that the classical sliding mode controller has a high chattering in the
control action. The chattering effect makes things difficult in the implementation because of the
high frequency of on and off states which are never practical for the PAM system. To solve this
problem, chattering reduction methods is used. One of the methods to reduce the chattering is to
consider the second order sliding mode. In the second order sliding mode, the derivative of
control action appears in the second derivative of the surface function which represents the
virtual control as following, Bartolini, et al., 2009:

S=q@(tx)+y(tx)u
and the following conditions are assumed
lul < Uy
0<I,<yltx) <Iy
lp(t, x)| < ®

Where Uy, I, Ty, and & are positive constants. One of the efficient second order sliding mode
algorithms is the super twisting algorithm. The super twisting controller is widely implemented
in real-time applications for its high robustness and easy to implement properties. It can be seen
as a nonlinear version of the classical Pl controller. Super twisting is an algorithm developed
specifically to control systems of relative degree one with the main advantage of chattering
reduction. The trajectories of the 2-sliding exhibit a twisting motion around the origin, hence the
name, see Fig. 2. The continuous control u(t) has two terms. The first one is a continuous
function of the sliding variable. The second one is an integration of a discontinuous first order
differential equation. The control algorithm is defined by the following control law, Bartolini, et
al., 2009:

u = —A|s|Psign(s) + j —W sign(s)dt (29)

the convergence to the sliding manifold will be in finite time if the following sufficient
conditions satisfied, Bartolini, et al., 2009:
)
w > m
40 Ty (W + @) (30)

TR L,(W—-®)
0<p=<05

2

From Eq. (25), differentiate s again to get
§=Af + 1, (31)

From Eq. (31), y(t,x) =1, ¢(t,x) = Af, both are bounded. These conditions 0 < T,, <
y(t,x) <Ty and |@(t,x)| < P are satisfied since both y(t,x) and ¢(t,x) are bounded,
however, finding an exact value for I}, Iy, and @ is difficult. But however, The following
values can be used for I, and Ty: I3, = 0.9, I}, = 1.1. A conservative value of ® = 0.5 will be
assumed since it is difficult to find an exact estimation. Parameters have to satisfy the following

conditions: first condition W > (F2 = 0.5556) a value of W = 1 is chosen, second condition

m
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2 4P Ty(W+P) _ o .
A% = (F?n T o) 3.6885) = A > 1.9205 avalue of A = 2 is chosen. And finally p chosen

as p = 0.5.

4. SIMULATION RESULTS

The Classical Sliding Mode Control (CSMC) system is shown in Fig. 3. A smooth
desired angle trajectory is used to test the proposed controllers given by Lilly, and Liang Yang,
2005:

qqa = /2 + 0.5(sin(2m X 0.02t) + sin(2m X 0.05t) + sin(2m X 0.09t)) (32)

The initial angle is 57.2958°. The uncertainty in the parameters is taken as 5 percent. The
sampling time has been chosen as 0.001 second. Fig. 4 shows the desired and actual trajectory of
the robot arm angle, it can be noted that the two trajectories are matched after few seconds of the
initial position. Fig. 5 shows the angular velocity of the Arm. It can be noted that the arm suffers
from oscillation in the velocity which is comes from the chattering phenomena in the control
action. Fig. 6 shows the control action which has a high amount of chattering this is also
apparent in torque in Fig. 7, in practice this control action cannot be implemented since there is
no way to supply such pressure in this high frequency.

The Second Order Sliding Mode Control (SOSMC) system is shown in Fig. 8. The
desired angle trajectory is given by Eq. 32. The initial angle is 57.2958°. The uncertainty in the
parameters is also taken as 5 percent. Fig. 9 shows the angle response of the arm under SOSMC
which is faster than the case of CMC. In Fig. 10 the angular velocity does not suffer from any
chattering, that can also be noted in the control action in Fig. 11 and torque in Fig. 12.

In order to measure the effectiveness of the two controllers and make a clear performance
comparison, a more aggressive reference command is used. A sudden change reference
command is used to test the command following and chattering phenomena. The reference
command is consisting of two steps, the first one is a step of 50° for the first twenty seconds, the
second step is 150° and it start from the second 20 to the second 60 as in Fig. 13.

Fig. 13 shows that CSMC can follow the step command but with high overshoot, and
that's perfectly fine because of the aggressive change in the reference command which induce
high error in the controller making it produce high control action. The velocity of CSM is shown
in Fig. 14 where a chattering can be seen. The control action and torque in Fig. 15 and Fig.16
respectively shows a high amount of chattering. Fig. 17 shows the phase plane of the closed loop
system, the system starts at the initial condition where e = 1 and é = 0, then it start the reaching
phase as can be seen as a half circle below the surface line (the blue line) then it hits the surface
line and slide along it to the zero. When the second step happen the system state jumps from zero
and enter the reaching phase again as can be seen as the upper half circle then it hits the surface
line and slide along it to the zero. It can be noticed the chattering happening in the sliding phase
when the states move along s = 0. In Fig. 18 it can be noticed the surface function has a sudden
jump at the start of each step and it reach zero after around three seconds.

In SOSMC the angle response is shown in Fig. 19 where the angle follows the desired
command with high overshoot similar to the case of CSMC. In Fig. 20 the velocity does not
suffer from any chattering. The control action and torque are shown in Fig. 21 and Fig. 22
respectively, both does not have chattering and the curves appear like a filtered version of the
case of CSMC, that's because the Signum function is appeared under the integration operator.
The phase plane in Fig. 23 does not show any chattering and the states slide smoothly in the
sliding phase. The surface function curve is shown in Fig. 24, the surface function requires
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around four seconds to reach zero from the sudden jump, which is a one second more in case of
CSMC, this increase in time comes with chattering free unlike the case of CSMC.

5. CONCLUSIONS

In this work, a single link robotic arm actuated by a large scale pneumatic muscle
actuator has been studied and explained. A new mathematical model has been developed for this
system which has not been developed in pervious researches. This robotic arm suffers from
uncertainties in the parameters, these uncertainties comes from the compressibility of the air. In
order to have an accurate position tracking, a robust control algorithm is needed. A classical
sliding mode controller has been desired as a first step to control the system. It has been noted
that this type of controller has a high chattering in the control action which make it impractical to
implement in a real system. To mitigate this problem. A second order sliding mode controller is
designed. In this controller the term responsible of the chattering phenomena is integrated. The
integration operation reduces the chattering greatly and that has been showed in the results.
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Figure 1. Single link robotic arm actuated by PAMs.
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Figure 2. Super-twisting algorithm phase trajectory.
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Table 1. Bicep and tricep PAM parameters, Repperger, et al., 1998.

Parameter | Inflated | Deflated
ki 1.6 3.6
ko; -10.9 -20.7
ks; 27.1 47.23
by; 0.04 0.12
b,; -1.3 -2.49
bs; 12.6 14.48

Table 2. The robotic arm parameters (assumed).

Parameter | value unit
m 20 Kg
l 0.5 m
I 1.667 | Kg.m?
g 9.81 m/s?
r 0.05 m
Py 400 kPa
Py: 400 kPa

Table 3. The total system parameters (calculated from Eq. 14)

Parameter q>0 q<o
o -0.00012581 -0.00012581
&, -0.0002257 0.0002257
03 -0.033579 -0.033579
04 -1.9355e-07 -1.9355e-07
s -2.879e-05 2.879e-05
O -0.013103 -0.013103
&, -18.9871 -18.9871
Og 0.015115 -0.015115
b 0.019355 0.019355
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