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ABSTRACT 

In this paper, first and second order sliding mode controllers are designed for a single link 

robotic arm actuated by two Pneumatic Artificial Muscles (PAMs). A new mathematical model 

for the arm has been developed based on the model of large scale pneumatic muscle actuator 

model. Uncertainty in parameters has been presented and tested for the two controllers. The 

simulation results of the second-order sliding mode controller proves to have a low tracking error 

and chattering effect as compared to the first order one. The verification has been done by using 

MATLAB and Simulink software. 
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1. INTRODUCTION

In the past few years, Pneumatic Artificial Muscles (PAMs) has received great attention 

in the robotics industry for its compact size and high power. Robots are basically exoskeletons 

with actuators that provide the motion through torque and forces on the joints. Actuators are 

normally DC or AC motors, hydraulic or pneumatic cylinders. Despite the many advantages of 

these actuators, there is still a need for an actuator which is compact, flexible and has the ability 

to deliver higher power. Higher power applications required electric or hydraulic power to move, 

but pneumatics still have the potential to deliver high power with a compact design. For many 

years, the Pneumatic actuators were limited in the simple, repetitive tasks with a low level of 

automation. Pneumatic actuators were not adapted to be used in robotic systems very easily, the 

mean two obstacles were: 1- Pneumatic systems required complex controllers to achieve a high 

accuracy. 2- compliance (not robust to load variations). Air compressibility is the prime reason 

for those obstacles, Caldwell, et al., 1995.  

PAMs overtake the main obstacles mentioned earlier since these PAMs has all the 

advantages of pneumatic actuators such as the low cost and compactness, and it does not have 

the disadvantages of low power and lack of compliance. Such light weight actuators have a great 

benefit in robotic systems since it will not greatly affect the payload. Tondu, and Lopez, 2000  

A PAM is simply a cylinder made of a flexible rubber which fits inside a helical braided 

plastic sheath, Ching-Ping Chou, and Hannaford, 1996. This structure makes the PAM 

widened and shortened when its cylinder inflated. When PAM shorten it deliver high axel force 

as compared to its weight. The way PAM construction make it very similar to its human 

counterpart in the extent of its size and force. 

Controlling PAM is a very challenging task since PAMs are continuously changing in 

shape, size, internal pressure, temperature, and axel force. With all these changes it is hard to 

find an accurate model for the PAM. The nonlinear and robust control technique is highly 

favorable in controlling PAMs where no accurate model is presented. Several works has been 

done using those techniques which includes: backstepping control, Carbonell, et al., 2001 , 

adaptive control, Lilly, 2003   and the sliding mode control  Utkin, 1978 ,  Carbonell, et al., 

2001 ,  Lilly, and Liang Yang, 2005 , Van Damme, et al., 2007 , and  Boudoua, et al., 2015 . 

Sliding mode controllers are in the leads of robust controllers that are able to overtake the 

model uncertainties and external disturbances. I this paper a new model of one link robotic arm 

actuated by two large scale PAMs is presented. The model of PAMs is augmented with the 

model of one link robotic arm to have the overall model. Sliding mode controller will be used to 

control the arm to follow the desired trajectory. Second order sliding mode controller is used to 

overcome the chattering effect. 

This paper is arranged as follows. Section 2 contains the derivation of the mathematical 

model of one link arm actuated by PAMs in the bicep/tricep configuration. Section 3 presents the 

derivation of a sliding mode controller for the robotic arm. Section 4 presents simulation results 

of the control system with the first order and second order sliding mode controllers. Section 5 

contains the conclusions. 

 

2. THE MATHEMATICAL MODEL 

In general, before any controller design, it is important to obtain a mathematical model 

for the system to be controlled which is the closest approximation of its true behavior. The 

system can then be analyzed, and the controller can be designed to meet the required 

performance. The single link robotic arm is shown in Fig. 1. The equation of motion of the single 

link robotic arm is given by 
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(𝑚𝑙2 + 𝐼)�̈� + 𝑚𝑔𝑙 cos 𝑞 = 𝜏 (1) 

Where 𝑞, �̈� are the arm rotation angle and angular acceleration respectively, 𝑚 is the 

mass at the end of the arm, 𝑙 is the arm length, 𝐼 is the arm moment of inertia, 𝑔 is the 

gravitational acceleration, and 𝜏 is the torque required to rotate the arm. The torque is generated 

by the bicep and tricep PAMs and is given by the equation ,  Lilly, and Liang Yang, 2005:  

𝜏 = (𝐹𝑡(. ) − 𝐹𝑏(. ))𝑟 (2) 

Where 𝐹𝑡(. ) and 𝐹𝑏(. ) are the forces generated from the tricep and bicep PAMs respectively, 𝑟 

is the pully radius. The PAM model given by  Repperger, et al., 1998, is used to find 𝐹𝑡(. ) and 

𝐹𝑏(. ) as follows 

𝐹𝑡(. )  = −𝐾𝑡(𝑥𝑡)𝑥𝑡 − 𝐵𝑡(𝑥�̇�)𝑥�̇� + 𝑃𝑡 (3) 

𝐹𝑏(. )  = −𝐾𝑏(𝑥𝑏)𝑥𝑏 − 𝐵𝑏(𝑥�̇�)𝑥�̇� + 𝑃𝑏 (4) 

Where 𝐾𝑡(𝑥𝑡), 𝐾𝑏(𝑥𝑏) is the tricp and bicep PAM spring coeffecients respectively. These 

coeffecients are nonlinear function of PAM postion. 𝐵𝑡(𝑥�̇�), 𝐵𝑏(𝑥�̇�) is the tricp and bicep PAM 

damper coeffecients respectively. These coeffecients are nonlinear function of PAM velocity. 

𝑥𝑡, 𝑥𝑏 are the amount of PAM contraction for tricep and bicep respectively. 𝑥�̇�, 𝑥�̇� are the 

velocity of PAM contraction for tricep and bicep respectively. 𝑃𝑡 , 𝑃𝑏 are the pressure of tricep 

and bicep PAMs respectively. The 𝐾𝑖(𝑥𝑖), 𝐵𝑖(𝑥�̇�), where 𝑖 = (𝑏, 𝑡) is given by  Repperger, et 

al., 1998:  

𝐾𝑖(𝑥𝑖) = 𝑘1𝑖𝑥𝑖
2 + 𝑘2𝑖𝑥𝑖 + 𝑘3𝑖        𝑖 = (𝑏, 𝑡) (5) 

𝐵𝑖(𝑥�̇�) = 𝑏1𝑖𝑥�̇�
2 + 𝑏2𝑖𝑥�̇� + 𝑏3𝑖         𝑖 = (𝑏, 𝑡) (6) 

Where 𝑘1𝑖 , 𝑘2𝑖 , 𝑘3𝑖, 𝑏1𝑖, 𝑏2𝑖 , and 𝑏3𝑖 are constants given in Table 1, Repperger, et al., 1998. 

These constants takes two states, one when the PAM inflated and the other one when it is 

deflated. The bicep and tricep PAM state is given by 

�̇� < 0 ⇒ {
𝑏𝑖𝑐𝑒𝑝 𝑖𝑛𝑓𝑙𝑎𝑡𝑒𝑑
𝑡𝑟𝑖𝑐𝑒𝑝 𝑑𝑒𝑓𝑙𝑎𝑡𝑒𝑑

 

�̇� > 0 ⇒ {
𝑏𝑖𝑐𝑒𝑝 𝑑𝑒𝑓𝑙𝑎𝑡𝑒𝑑
𝑡𝑟𝑖𝑐𝑒𝑝 𝑖𝑛𝑓𝑙𝑎𝑡𝑒𝑑

 

(7) 

The pressure of tricep and tricep PAM is given by  

𝑃𝑡 = 𝑃0𝑡 + ∆𝑃 (8) 

𝑃𝑏 = 𝑃0𝑏 + ∆𝑃 (9) 

Where 𝑃0𝑡 , 𝑃0𝑏 are the initial pressure of the tricep and bicep respectively, ∆𝑃 is the pressure 

difference between the tricep and bicep respectively. ∆𝑃 is the control input to the system. The 

amount of muscle contraction 𝑥𝑡 , 𝑥𝑏 is given by Lilly, and Liang Yang, 2005: 

𝑥𝑡 = (
𝜋

2
+ 𝑞 ) 𝑟, �̇�𝑡 = 𝑟�̇� (10) 

𝑥𝑏 = (
𝜋

2
− 𝑞 ) 𝑟, �̇�𝑏 = −𝑟�̇� (11) 

Where the angle 
𝜋

2
 is considered as the zero position at which both 𝑥𝑡 and 𝑥𝑏 is zero. 

By substituting Eq. (8) and Eq. (9) in Eq. (3) and Eq. (4), after that substituting in Eq. (2) gives 
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𝜏 = (−𝐾𝑡(𝑥𝑡)𝑥𝑡 − 𝐵𝑡(𝑥�̇�)𝑥�̇� + 𝑃0𝑡 + ∆𝑃 + 𝐾𝑏(𝑥𝑏)𝑥𝑏 + 𝐵𝑏(𝑥�̇�)𝑥�̇� − 𝑃0𝑏 + ∆𝑃 )𝑟 (12) 

By substitute Eq. (5) and Eq. (6) in Eq. (12) 

𝜏 = (−(𝑘1𝑡𝑥𝑡
2 + 𝑘2𝑡𝑥𝑡 + 𝑘3𝑡)𝑥𝑡 − (𝑏1𝑡𝑥�̇�

2 + 𝑏2𝑡𝑥�̇� + 𝑏3𝑡)𝑥�̇� + 𝑃0𝑡 + ∆𝑃

+ (𝑘1𝑏𝑥𝑏
2 + 𝑘2𝑏𝑥𝑏 + 𝑘3𝑏)𝑥𝑏 + (𝑏1𝑏𝑥�̇�

2 + 𝑏2𝑏𝑥�̇� + 𝑏3𝑏)𝑥�̇� − 𝑃0𝑏
+ ∆𝑃 )𝑟 

(13) 

By substituting Eq. (10) and Eq. (11) in Eq. (13) and the result in Eq. (1) gives 

 

�̈� = 𝛿1𝑞
3 + 𝛿2𝑞

2 + 𝛿3𝑞 + 𝛿4�̇�
3 + 𝛿5�̇�

2 + 𝛿6�̇� + 𝛿7 cos 𝑞 + 𝛿8 + 𝑏𝑢
𝑢 = ∆𝑃

𝛿1 =
−𝑟3(𝑘1𝑏 + 𝑘1𝑡)

𝑚𝑙2 + 𝐼

𝛿2 =

3𝜋𝑟4

2
(𝑘1𝑏 − 𝑘1𝑡) + 𝑟

3(𝑘2𝑏 − 𝑘2𝑡)

𝑚𝑙2 + 𝐼

𝛿3 = −
(3𝜋𝑟4/2)(𝑘1𝑏 − 𝑘1𝑡) + 𝜋𝑟

3(𝑘2𝑏 + 𝑘2𝑡) + 𝑟
2(𝑘3𝑏 + 𝑘3𝑡)

𝑚𝑙2 + 𝐼

𝛿4 =
−𝑟4(𝑏1𝑏 + 𝑏1𝑡)

𝑚𝑙2 + 𝐼

𝛿5 =
𝑟3(𝑏2𝑏 − 𝑏2𝑡)

𝑚𝑙2 + 𝐼

𝛿6 =
−𝑟2(𝑏3𝑏 − 𝑏3𝑡)

𝑚𝑙2 + 𝐼

𝛿7 = −
𝑔𝑙𝑚

𝑚𝑙2 + 𝐼

𝛿8 = −
𝑟(𝑃0𝑏 − 𝑃0𝑡) +

𝜋𝑟4

8
(𝑘1𝑡 − 𝑘1𝑏) +

𝜋𝑟3

4
(𝑘2𝑡 − 𝑘2𝑏) +

𝜋𝑟2

2
(𝑘3𝑡 − 𝑘3𝑏)

𝑚𝑙2 + 𝐼

𝑏 =
2𝑟

𝑚𝑙2 + 𝐼

 

}
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 (14) 

 

The robotic arm parameters are assumed as in Table 2. 

To consider the uncertainty, the system is represented as following 

 
�̈� = 𝑓0 + ∆𝑓 + 𝑏𝑢

𝑓0 = 𝛿1𝑞
3 + 𝛿2𝑞

2 + 𝛿3𝑞 + 𝛿4�̇�
3 + 𝛿5�̇�

2 + 𝛿6�̇� + 𝛿7 cos 𝑞 + 𝛿8
∆𝑓 = ∆𝛿1𝑞

3 + ∆𝛿2𝑞
2 + ∆𝛿3𝑞 + ∆𝛿4�̇�

3 + ∆𝛿5�̇�
2 + ∆𝛿6�̇� + ∆𝛿7 cos 𝑞 + ∆𝛿8

} (15) 

Where the nominal values 𝛿𝑖, 𝑖 = 1,2, … ,8 are given in Table 3 which obtained by substituting 

the parameters of Table 1 and Table 2 in Eq. (14). 

The uncertainty parameters ∆𝛿𝑖, 𝑖 = 1,2, … ,8 is a percentage of the nominal values. 
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3. SLIDING MODE CONTROLLER DESIGN  

The task in sliding mode controller design is to find a function of states called sliding 

function and a state-feedback control law 𝑢(𝑥(𝑡)) = 𝑢𝑒𝑞 + 𝑢𝑠𝑤. The control law will drive the 

state towards the sliding surface (reaching phase), and then makes it slide on it to origin 𝑥 =
[0 0 … 0   ]𝑇 (sliding phase). If the states were the error and its derivatives, then a tracking 

behavior can be ensured if the states return to origin, Utkin, et al., 2009 . The reaching condition 

is given by 𝑠�̇� < 0, which is satisfied by the switching part of the control action 𝑢𝑠𝑤. The sliding 

condition is to maintain 𝑠 = 0, which is satisfied by the equivalent part of the control action 𝑢𝑒𝑞. 

The error equation is given by 

𝑒 = 𝑞 − 𝑞𝑑 (16) 

Where 𝑞𝑑 is the desired angle. Diffrentiate Eq. (16) gives 

  

�̇� = �̇� − �̇�𝑑 (17) 

The second derivative of Eq. (17) gives 

�̈� = �̈� − �̈�𝑑 (18) 

Define the surface function as following 

𝑠 = �̇� + 𝜆𝑒 (19) 

The derivative of the surface function is given by 

�̇� = �̈� + 𝜆�̇� (20) 

By substituting Eq. (18) in Eq. (20) gives 

�̇� = �̈� − �̈�𝑑 + 𝜆�̇� (21) 

By substituting Eq. (15) in Eq. (21) gives 

�̇� = 𝑓0 − �̈�𝑑 + 𝜆�̇� + ∆𝑓 + 𝑏𝑢 (22) 

The proposed control law is given by  

𝑢 =
1

𝑏
(𝑢𝑒𝑞 + 𝑢𝑠𝑤) (23) 

Where the proposed 𝑢𝑒𝑞 is  

𝑢𝑒𝑞 = −𝑓0 + �̈�𝑑 − 𝜆�̇� (24) 

Substituting Eq. (24) in Eq. (23) then the result in Eq. (22) gives 

�̇� = ∆𝑓 + 𝑢𝑠𝑤 (25) 

Let 𝑢𝑠𝑤 = −𝑘 𝑠𝑖𝑔𝑛(𝑠), Eq. (25) becomes  

�̇� = ∆𝑓 − 𝑘 𝑠𝑖𝑔𝑛(𝑠)  (26) 

The reaching condition 𝑠�̇� ≤ 0 must be satisified as following 

𝑠�̇� = 𝑠∆𝑓 − 𝑘𝑠 𝑠𝑖𝑔𝑛(𝑠) 

= 𝑠∆𝑓 − 𝑘|𝑠|  

≤ |𝑠||∆𝑓| − 𝑘|𝑠| 

≤ −|𝑠|(𝑘 − |∆𝑓|) 

(27) 

http://en.wikipedia.org/wiki/Control_systems
http://en.wikipedia.org/wiki/Origin_(mathematics)
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the above equation is true if the following condition hold 

𝑘 > |∆𝑓| (28) 

In this paper,it has been noted from simulation that selecting k as 𝑘 = 1, will be enough to 

cancel out the uncertainties in the system. Choosing a value more than one will cause more 

chattering in the control action. 

 It is well known that the classical sliding mode controller has a high chattering in the 

control action. The chattering effect makes things difficult in the implementation because of the 

high frequency of on and off states which are never practical for the PAM system. To solve this 

problem, chattering reduction methods is used. One of the methods to reduce the chattering is to 

consider the second order sliding mode. In the second order sliding mode, the derivative of 

control action appears in the second derivative of the surface function which represents the 

virtual control as following, Bartolini, et al., 2009:  

�̈� = 𝜑(𝑡, 𝑥) + 𝛾(𝑡, 𝑥)�̇� 

and the following conditions are assumed  

|𝑢| ≤ 𝑈𝑀 

0 < Γ𝑚 < 𝛾(𝑡, 𝑥) < Γ𝑀 
|𝜑(𝑡, 𝑥)| < Φ 

Where 𝑈𝑀, Γ𝑚, Γ𝑀, and Φ are positive constants. One of the efficient second order sliding mode 

algorithms is the super twisting algorithm. The super twisting controller is widely implemented 

in real-time applications for its high robustness and easy to implement properties. It can be seen 

as a nonlinear version of the classical PI controller. Super twisting is an algorithm developed 

specifically to control systems of relative degree one with the main advantage of chattering 

reduction. The trajectories of the 2-sliding exhibit a twisting motion around the origin, hence the 

name, see Fig. 2. The continuous control 𝑢(𝑡) has two terms. The first one is a continuous 

function of the sliding variable. The second one is an integration of a discontinuous first order 

differential equation. The control algorithm is defined by the following control law, Bartolini, et 

al., 2009:  

u = −λ|s|ρsign(𝑠) + ∫−W sign(𝑠)𝑑𝑡 
(29) 

the convergence to the sliding manifold will be in finite time if the following sufficient 

conditions satisfied, Bartolini, et al., 2009:  

𝑊 >
Φ

Γ𝑚
 

𝜆2 ≥
4Φ

Γm2
Γ𝑀(𝑊 +Φ)

Γ𝑚(𝑊 −Φ)
 

0 < 𝜌 ≤ 0.5 

(30) 

From Eq. (25), differentiate �̇� again to get 

s̈ = ∆𝑓̇ + �̇�𝑠𝑤 (31) 

From Eq. (31), 𝛾(𝑡, 𝑥) = 1, 𝜑(𝑡, 𝑥) = ∆𝑓̇, both are bounded. These conditions 0 < Γ𝑚 <
𝛾(𝑡, 𝑥) < Γ𝑀 and |𝜑(𝑡, 𝑥)| < Φ are satisfied since both 𝛾(𝑡, 𝑥) and 𝜑(𝑡, 𝑥) are bounded, 

however, finding an exact value for Γ𝑚, Γ𝑀, 𝑎𝑛𝑑 Φ is difficult. But however, The following 

values can be used for Γ𝑚 and  Γ𝑀: Γ𝑚 = 0.9, Γ𝑀 = 1.1. A conservative value of Φ = 0. 5 will be 

assumed since it is difficult to find an exact estimation. Parameters have to satisfy the following 

conditions:  first condition 𝑊 > (
Φ

Γ𝑚
= 0.5556) a value of 𝑊 = 1 is chosen, second condition 
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𝜆2 ≥ (
4Φ

Γm
2

Γ𝑀(𝑊+Φ)

Γ𝑚(𝑊−Φ)
= 3.6885) ⇒ 𝜆 ≥ 1.9205  a value of 𝜆 = 2 is chosen. And finally 𝜌 chosen 

as 𝜌 = 0.5. 

 

4. SIMULATION RESULTS 

 The Classical Sliding Mode Control (CSMC) system is shown in Fig. 3. A smooth 

desired angle trajectory is used to test the proposed controllers given by Lilly, and Liang Yang, 

2005: 

 

𝑞𝑑 = 𝜋/2 + 0.5(sin(2π × 0.02t) + sin(2π × 0.05t) + sin(2π × 0.09t)) (32) 

The initial angle is 57.2958°. The uncertainty in the parameters is taken as 5 percent. The 

sampling time has been chosen as 0.001 second. Fig. 4 shows the desired and actual trajectory of 

the robot arm angle, it can be noted that the two trajectories are matched after few seconds of the 

initial position. Fig. 5 shows the angular velocity of the Arm. It can be noted that the arm suffers 

from oscillation in the velocity which is comes from the chattering phenomena in the control 

action. Fig. 6 shows the control action which has a high amount of chattering this is also 

apparent in torque in Fig. 7, in practice this control action cannot be implemented since there is 

no way to supply such pressure in this high frequency. 

 The Second Order Sliding Mode Control (SOSMC) system is shown in Fig. 8. The 

desired angle trajectory is given by Eq. 32. The initial angle is 57.2958°. The uncertainty in the 

parameters is also taken as 5 percent. Fig. 9 shows the angle response of the arm under SOSMC 

which is faster than the case of CMC. In Fig. 10 the angular velocity does not suffer from any 

chattering, that can also be noted in the control action in Fig. 11 and torque in Fig. 12. 

 In order to measure the effectiveness of the two controllers and make a clear performance 

comparison, a more aggressive reference command is used. A sudden change reference 

command is used to test the command following and chattering phenomena. The reference 

command is consisting of two steps, the first one is a step of 50° for the first twenty seconds, the 

second step is 150° and it start from the second 20 to the second 60 as in Fig. 13. 

 Fig. 13 shows that CSMC can follow the step command but with high overshoot, and 

that's perfectly fine because of the aggressive change in the reference command which induce 

high error in the controller making it produce high control action. The velocity of CSM is shown 

in Fig. 14 where a chattering can be seen. The control action and torque in Fig. 15 and Fig.16 

respectively shows a high amount of chattering. Fig. 17 shows the phase plane of the closed loop 

system, the system starts at the initial condition where 𝑒 = 1 and �̇� = 0, then it start the reaching 

phase as can be seen as a half circle below the surface line (the blue line) then it hits the surface 

line and slide along it to the zero. When the second step happen the system state jumps from zero 

and enter the reaching phase again as can be seen as the upper half circle then it hits the surface 

line and slide along it to the zero. It can be noticed the chattering happening in the sliding phase 

when the states move along 𝑠 = 0. In Fig. 18 it can be noticed the surface function has a sudden 

jump at the start of each step and it reach zero after around three seconds. 

 In SOSMC the angle response is shown in Fig. 19 where the angle follows the desired 

command with high overshoot similar to the case of CSMC. In Fig. 20 the velocity does not 

suffer from any chattering. The control action and torque are shown in Fig. 21 and Fig. 22 

respectively, both does not have chattering and the curves appear like a filtered version of the 

case of CSMC, that's because the Signum function is appeared under the integration operator. 

The phase plane in Fig. 23 does not show any chattering and the states slide smoothly in the 

sliding phase. The surface function curve is shown in Fig. 24, the surface function requires 
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around four seconds to reach zero from the sudden jump, which is a one second more in case of 

CSMC, this increase in time comes with chattering free unlike the case of CSMC. 

 

5. CONCLUSIONS 

 In this work, a single link robotic arm actuated by a large scale pneumatic muscle 

actuator has been studied and explained. A new mathematical model has been developed for this 

system which has not been developed in pervious researches. This robotic arm suffers from 

uncertainties in the parameters, these uncertainties comes from the compressibility of the air. In 

order to have an accurate position tracking, a robust control algorithm is needed. A classical 

sliding mode controller has been desired as a first step to control the system. It has been noted 

that this type of controller has a high chattering in the control action which make it impractical to 

implement in a real system. To mitigate this problem. A second order sliding mode controller is 

designed. In this controller the term responsible of the chattering phenomena is integrated. The 

integration operation reduces the chattering greatly and that has been showed in the results. 
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Figure 1. Single link robotic arm actuated by PAMs. 

 

                        Figure 2. Super-twisting algorithm phase trajectory. 
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Figure 3. Classical sliding mode control system Simulink. 

 

Figure 4. Angle response of CSMC. 

 

Figure 5. Angular velocity response of 

CSMC. 

 

Figure 6. Control action of CSMC. 

 

Figure 7. Torque of CSMC. 
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Figure 8. Second order sliding mode control system Simulink. 

 

Figure 9. Angle response of SOSMC. 

 

 

Figure 10. Angular velocity response of 

SOSMC. 

 

Figure 11. Control action of SOSMC. 

 

Figure 12. Torque of SOSMC. 
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Figure 13. Angle response of CSMC for step 

command. 

 

Figure 14. Angular velocity response of 

CSMC for step command. 

 

Figure 15. Control action of CSMC for step 

command. 

 

Figure 16. Torque of CSMC for step 

command. 

 

Figure 17. Phase plane of CSMC for step 

command. 

 

Figure 18. Surface curve of CSMC for step 

command. 
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Figure 19. Angle response of SOSMC for 

step command. 

 

Figure 20. Angular velocity response of 

SOSMC for step command. 

 

 

Figure 21. Control action of SOSMC for step 

command. 

 

 

Figure 22. Torque of SOSMC for step 

command. 

 

Figure 23. Phase plane of SOSMC for step 

command. 

 

Figure 24. Surface curve of SOSMC for step 

command.  

  



Journal  of  Engineering    Volume    24      January      2018 Number  1 
 

 

172 
 

Table 1. Bicep and tricep PAM parameters, Repperger, et al., 1998. 

 

Parameter Inflated  Deflated  

𝑘1𝑖 1.6 3.6 

𝑘2𝑖 -10.9 -20.7 

𝑘3𝑖 27.1 47.23 

𝑏1𝑖 0.04 0.12 

𝑏2𝑖 -1.3 -2.49 

𝑏3𝑖 12.6 14.48 

 

Table 2. The robotic arm parameters (assumed). 

 

Parameter value  unit  

𝑚 20 𝐾𝑔 

𝑙 0.5 𝑚 

𝐼 1.667 𝐾𝑔.𝑚2 

𝑔 9.81 𝑚/𝑠2 

𝑟 0.05 𝑚 

𝑃0𝑏 400 𝑘𝑃𝑎 

𝑃0𝑡 400 𝑘𝑃𝑎 

 

Table 3. The total system parameters (calculated from Eq. 14) 

 

Parameter �̇� > 𝟎 �̇� < 𝟎 

𝛿1 -0.00012581 -0.00012581 

𝛿2 -0.0002257 0.0002257 

𝛿3 -0.033579 -0.033579 

𝛿4 -1.9355e-07 -1.9355e-07 

𝛿5 -2.879e-05 2.879e-05 

𝛿6 -0.013103 -0.013103 

𝛿7 -18.9871 -18.9871 

𝛿8 0.015115 -0.015115 

𝑏 0.019355 0.019355 

 


