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ABSTRACT

In the present study, the effect of new cross-section fin geometries on overall thermal/fluid
performance had been investigated. The cross-section included the base original geometry of
(triangular, square, circular, and elliptical pin fins) by adding exterior extra fins along the sides of
the origin fins. The present extra fins include rectangular extra fin of 2 mm (height) and 4 mm
(width) and triangular extra fin of 2 mm (base) 4 mm (height). The use of entropy generation
minimization method (EGM) allows the combined effect of thermal resistance and pressure drop to
be assessed through the simultaneous interaction with the heat sink. A general dimensionless
expression for the entropy generation rate is obtained by considering a control volume around the
pin fin including a base plate and applying the conservations equations of mass and energy with the
entropy balance. The dimensionless numbers used includes the aspect ratio (g), Reynolds number
(Re), Nusselt number (Nu), and the drag coefficients (Cp). Fourteen different cross-section fin
geometries are examined for the heat transfer, fluid friction, and the minimum entropy generation
rate. The results showed that the Nusselt number increases with increasing the Reynolds number for
all employed models. The ellipse models (ET and ER-models) give the highest value in the Nusselt
number as compared with the classical pin fins. The fin of the square geometry with four rectangular
extra fins (SR-models) gives an agreement in Nusselt number as compared with the previous study.
Keywords: Pin Fin, Heat Sink, EGM method.

ciile 3 g ladl el Suas o 4 ) Cile S i) JCAN aa dpdie il ) aladia) il
AN A gl JulES A8y jha afadinly

ciaa Bage aBilS 0
Cilanal) g S
s 51 A Aaalall 2ok i 5l 555 gaa

AaMal)

ole Tl Gy ) Cale U el adial) Cppen] aaa Adic ) S adae AR L Gl n 5l el b
(S3an o) By cauye (Eilia) JR& e culS Caile 3 AGL A jall adaliall 5 cailall ol jall g SN 45 ) jall yal 62l
o ale 2 g5 ale 4 (i my Jibvivse S 5331 ) (peniai ddie I oW1 JSEN dilial 2015 dilial Caal 134 8 23 s
QS el (EGM) (258 2l 5 (i 48 jla aladial ol (i cale 2 )15 ale 4 308 J ghay i <45 531
https://doi.org/10.31026/j.eng.2018.04.01



http://www.jcoeng.edu.iq/
https://doi.org/10.31026/j.eng.2018.04.01
mailto:kadhum.audaa@yahoo.com

Number 4 Volume 24  April 2018 Journal of Engineering

el s e 311 e Ll 3 Jalal slSlae JMS (e Lot aiy Sl 5 Jaiaall (aalésil 5 Ay all e gliall (e JS S
Lis Ailae Gudai s A paall 4y ) Adie Jl Jga d0as aaa (B DA e Jeanty 5581 Al 68 Janad olall (gae3U)
(Nu) b dae ((Re) Halgiy 2ae ¢ (g) JSAI At oo Aeadiual) a3 jpilaall | g 35V 45 ) e ae ALK 5 28U
) sl Jiml e JSG daldl) il Juaadl caile S Llide Leaia DSE jde day )l Au )3 &3y, (Cp) &) Jalaas
i) mand g ol shy y e 3ol ) ae 3l e il dae ol Ay il AU e gl g W) A g8 a5 A 5 adlall S
e Al il aae Aal 30l ) dand el e Jaas Alia g Allaiie 25 an (g gl JREN aadiis Ladie 5 A 5 )4l
G Fns e Alien Fun L& 5133 ) g g ye UK 5 naal) omstigl 23 el plasil Al & ) Cile )
AL &gl a4 jlia Baa

CEGM 42k 351l cms 45 5001 caile ) cdalidal) cilalsl)

1. INTRODUCTION

These techniques can be considered as passive techniques because generally use surface or
geometrical modifications. These heat transfer enhancement techniques have many practical
applications for internal cooling of turbine airfoils, combustion chamber liners and electronics
cooling devices, biomedical devices, and heat exchangers. Entropy, the thermodynamic measure, is
an analytic tool that may serve to evaluate phenomena that dominate our lives and therefore belongs
to the realm of philosophy. Since the trends show a universal trend for equalization, like the
concepts of codification and globalization, an increase in global entropy is appearing as an obvious
result, Shaukatullah, et al., 1996, and George, 1995. Thus, what is the entropy? Entropy has been
defined as the residual irreversible energy generated in thermodynamics Boltzmann, 1872.

The optimistic design of thermal systems can be achieved by minimizing entropy generation in the
systems. This issue has been the topic of great importance in many engineering fields such as heat
exchangers, cooling of nuclear reactors, MHD power generators, geophysical fluid dynamics,
energy storage systems, cooling of electronic devices, etc. Entropy generation is associated with
many processes such as heat transfer across finite temperature gradient, characteristics of convective
heat transfer, magnetic field effect, viscous dissipation effect etc. Pin-fin heat sinks have an
advantage of impeding the development of the thermal boundary layer in a unidirectional flow at the
expense of an increase in pressure drop Khan, and Culham, 2003 and Khan, et al., 2006. There are
many cross-section geometries of the fins different in the thermal and flow performance, well; the
main question here is which type of heat sink performs better? So far, several researchers have been
interested in this question and sought proper answers to it. Hossain, 2006 presented the
simultaneous optimization of heat sink design parameters based on a minimization of the entropy
generation associated with thermal resistance and fluid pressure drop. All relevant design parameters
such as geometric parameters of a heat sink, source and bypass configurations, heat dissipation,
material properties and flow conditions can be simultaneously optimized to characterize a heat sink
that minimizes entropy generation and in turn results in a minimum operating temperature of an
electronic component. The results showed thermally optimized heat sink showed better thermal
performance than the optimized heat sink obtained from entropy generation minimization but with
higher entropy generation rate and pressure drop penalty. Khan, et al., 2007 presented a study to
examine the effect on overall thermal/fluid performance associated with different fin geometries,
including, rectangular plates as well as square, circular and elliptical pin fins. And their results
clearly indicated that the preferred fin profile is very dependent on these parameters. Kim, et al.,
2008 gave a comparison between the thermal performances of the two types of heat sinks most
commonly used in the electronic equipment cooling: plate- equipment cooling: plate-fin and pin-fin
heat sinks. In order to obtain the fluid flow and thermal characteristics of heat sinks, an experimental
investigation was conducted. The results showed a contour map, which depicts the ratio of the
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thermal resistances of the optimized plate-fin and pin-fin heat sinks as a function of dimensionless
pumping power and dimensionless length. The contour map indicated that optimized plate-fin heat
sinks possessed lower thermal resistances than optimized pin-fin heat sinks when dimensionless
pumping power is small and the dimensionless length of heat sinks is large. On the contrary, the
optimized pin-fin heat sinks have smaller thermal resistances when dimensionless pumping power is
large and the dimensionless length of heat sinks is small. Khan, 2010 employed an entropy
generation minimization procedure to optimize the overall performance (thermal and hydrodynamic)
of isolated fin geometries and pin-fin heat sinks. The formulation for the dimensionless entropy
generation rate was obtained in terms of fin geometry, Prandtl numbers > 0.71 from single pins
(circular and elliptical) with and without blockage as well as pin-fin arrays (in-line and staggered).
Carlos, et al., 2013 gave a comparison of the performances of online and offset micro pin-fin heat
sinks with variable fin density. They used water as a coolant in the single phase and laminar regime.
4748 micro flat fins with rounded sides, which are distributed in three different sections along the
flow length, are used in these configurations. Their results indicate that the offset micro pin-fin heat
sink is a good alternative for cooling the IC chips of 2016. Naoko, et al., 2014 presented
experimental and numerical investigation of heat sinks with miniature/micro pins and the effect of
the pin size, pin height and the number of pins on heat transfer characteristics of heat sinks. Five
types of basic heat sink models are investigated. The whole heat transfer area of heat sinks having
the different pin size, pin height and the number of pins respectively is kept constant. They showed
that the heat sink temperature rises with increase in the number of pins.

That is, the heat sink with miniaturized fine pins showed almost no effect on the heat transfer
enhancement. Huashuai, et al., 2015 developed a finite element analysis for determining heat
transfer from in-line and staggered-pin fin heat sinks used in electronic packaging applications.
They used this method to predict the heat transfer performance of the new heat sink with woven
fabric structure, called fabric pin fin heat sink. Their results show that the minimum temperature of
heat sink decreases with an increase of pin fin length, but the decreasing amplitude has decreased.
Pakrouh, et al.,, 2015 presented a numerical investigation in which thermal performance
characteristics of pin fin heat sinks enhanced with phase-change materials (PCMs) designed for
cooling of electronic devices are studied. The paraffin RT44 HC is poured into the aluminum pin fin
heat sink container. They showed that increasing the number, thickness, and height of fins leads to a
significant decrease in the base temperature as well as the operating time of the heat sink. Therisa,
et. al., 2016 presented a modification of classical heat sink depends on various geometric
parameters like, fin length, fin height, fin thickness, number of fins, base plate thickness, space
between fins, fin shape or material etc. and based on the concept of standard pin fin, splayed pin fin
and hybrid pin-fin heat sinks. They observed that the pyramid structure gives a result of increasing
heat dissipation rate, but splayed pin fins given more heat transfer beyond this hybrid heat sink
performed well.

Chougule, et al., 2016 studied the effects of design parameters and the optimum design parameters
for a Pin-Fin heat sink (PFHS) under multi-jet impingement case with thermal performance
characteristics have been investigated by using Taguchi methodology. They showed that the analysis
of the Taguchi method reveals that, all the parameters mentioned have equal contributions in the
performance of heat sink efficiency. Finally, the present study focused on the enchantment the
cross-section of the pin cylindrical fin. From the previous research revision, it may be noted that
there exists a large amount research work on the performance of classic cross-section geometry of
pin-fins. Therefore, the main aim of this study is concerned with the new or developed other
geometric modeled by entropy generation minimization.
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2. HEAT SINK MODELS

Regard an original pin fin of arbitrary cross section (triangular, square, circular, or elliptical) with an
extra two or four triangular or square, fins geometry of a heat sink as shown in Table.1l. The
dimensions of the base plate are (LoxWhpxtp). Each pin fin has different geometry. The approach
velocity of the air is (Uapp). The direction of the flow is parallel to the x-axis. The bottom surface is
kept at constant temperature (Tp) and the top surface is insulated. The average wall temperature of
the pin surface is (Tf). The ambient temperature and the tube wall temperatures are fixed at 300 and
365 K, respectively. The heat source is idealized as a constant heat flux (Q) boundary condition at
the bottom surface of the base plate. The mean temperature of the heat source is (Ts). It is assumed
that the heat sink is fully shrouded and the heat source is situated at the center of the base plate. It
was assumed that the fluid temperature is averaged over the height of the heat sink, so the fluid
temperature (Ta) is the bulk mean fluid temperature. Fully developed heat and fluid flow are
assumed in the analysis, and the thermophysical properties are taken to be temperature independent.
In designing a heat sink, the size and the heat load are the usual constraints.

2.1 Model Development and Fanatical Solution

Regard an original pin fin of arbitrary cross-section as shown in Fig.1, which is extended from a
base plate. The approach velocity of the air is (Uapp) and the ambient temperature of the air is
assumed to be (Ta). The surface temperature of the pin fin wall is (Tf) > (Ta). This study assumes the
following design considerations, Khan, and Culham, 2003:

Each pin is of uniform diameter, D, and height, H, with the circular cross-section.

The pins are uniformly spaced on the base plate.

The fin tips are adiabatic.

There is no air flow bypass, i.e. the heat sink is fully ducted.

The air flow is normal to the pin-axis.

The approach velocity is uniform for each row in a heat sink.

—~D OO0 T

2.2 Performance of Heat Sinks

2.2.1 Heat Sink Resistance

The thermal performance of a pin-fin heat sink depends upon the total thermal resistance of the
system consists of a heat source on one side of the base plate and a cooling medium on the other
side. A Control volume is defined in Fig. 1 to calculate thermal resistance in a single circular pin
Khan and Culham, 2003. Assuming that the thermal spreading and contact resistances are
negligible, the total thermal resistance (Rtwt) can be written as:

1
Ro =71 (1)
- + -
Rf Rb
where
1
Rf = (2)
Jhe Pk A, tanh(mH )
1
(3)

R=————
hb (LW _Af )
With the fin parameter
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m = 4
kfinAf ( )
The average heat transfer coefficient of the fin:
Nu; k.
h — f " film 5
T ©)
The average heat transfer coefficient of the base plate:
Nu, k..
h — b ™ film 6
ST, (6)

where the dimensionless average heat transfer coefficients Nus for the selected geometries Culham
et. al., 2007:

Nu, =C, Re/? Pr'? 7)

where Cy is a constant which depends upon the longitudinal and transverse pitches, the arrangement
of the pins, and thermal boundary conditions. For isothermal boundary condition, for an in-line
arrangement it is given by Culham, et al., 2007:
_ [0.2+exp(-0.55S; )1S, °*s *#2

C 8
. (ST -1 ®)
and Nuy for the base plate can be written as Culham, et al., 2007:
Nu, =0.75Re}* Pr¥® 9)
The fin Reynolds number can be defined as:
U, L
Re, — a7 (10)
v
The base plate Reynolds number can be defined as:
UL
Re, = Zap b (11)
v

Thermal spreading resistance occurs when the heat spreads from a surface-mounted heat source into
a conducting solid (base plate, in the case of a heat sink) a planar rectangular heat source situated on
the bottom surface of the base plate having a thickness (t») and thermal conductivity (Ksin). The base
plate is cooled along the top surface through a uniform film coefficient.

2.2.2 Entropy generation minimization (EGM) technique

If the base temperature of the heat sink (Ty) is averaged and assumed to be constant, the energy

balance for the control volume Fig.1, Kim, et al., 2008 is as the following:

The mass rate balance for the CV gives:

dm,,
dt

For steady state, it reduces to:

m = r‘hin = rﬁout

The energy rate balance can be written as:

dE,,
dt

Thus the energy rate balance reduces to:

= rﬁin - mout (12)

+P U

:Q _ch + I'ﬁin (ein + I:)inuin ) - (moutuout out out)
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= m[(uout + Poutuout) - (uin +Paui, )] (13)
The combination of specific internal and flow energies is defined as specific enthalpy; therefore, the
energy rate balance reduces further to:

Q = n.ﬂl(hout - hin) (14)
From the second law of thermodynamics Kim, et al., 2008:
dSey. Q .«
=m(S; -S,)+—+S 15
dt ( out) T gen ( )

a
For steady state, dScv/dt=0, and the total heat transferred from the baseplate Q=Qs+Qp, so the
entropy rate balance reduces to, Kim, et al., 2008:

Sgen :m(sout _Sin)_TQ_a (16)

From a force balance, the total drag force can be written as Kim, et al., 2008:
( out I:)in )Ap (17)

The mass flow rate is given by:

m=pAU,, (18)

The enthalpy difference in Eq. (13) can be written in terms of entropy and pressure differences using
Gibb’s equation [dh=Tds +(1/p)dP] Kim, et al., 2008:

( out ) T (Sout - Sin) + l (Poul - Pln) (19)
p

Consider a fin of the arbitrary constant cross-section, which is immersed in a uniform stream of air
with velocity Uapp and ambient temperature (Ta). The fin is assumed to be isothermal at a
temperature (Tf) as shown in Fig.2. Bejan, 1996 Combines Egs. (12-19) to obtain the entropy
generation rate written as:
_ QZRtot FDU app
gen — +
TaTb Ta

Whereas, the drag force for the fin of the arbitrary cross-section can be written as:

S (20)

1
I:D :CD|:EIOU:pp:|Ap (21)
The total drag coefficient Cb can be given as the sum of both drag coefficients.
——+C,+—= (22)

N

Where (C»=5.784, C3=1.152, and C4=1.260) are the constants depending upon the geometry. For
isothermal boundary conditions, the dimensionless entropy generation rate can be defined as:
S

NS= gen :NS +Ns (23)
(Q U app /kfiImVTaz) " f
N =%CD57Re$ & (24)

Finally, by using the Egs. (1-11) with Eqg. (24) to obtain the dimensionless form of the entropy
generation rate for any arbitrary cross section is written as, Khan and Culham, 2006:
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S.gen _ (Ta /Tb)keq

L +1c B Re? 7,
S (QZUapp/kaTaz) Ref C5NuLckeq 'tanh(}/Lc \'CGNuLckeq )+C7NuLckeq 2 7 Lo
(25)
Where B, = o °kT, /Q? is a fixed dimensionless duty parameter accounts for the importance of
fluid friction irreversibility relative to heat transfer irreversibility? The duty parameter B, is fixed as
soon as the fluid, fin material, and the base heat transfer rate is specified. The greater the base heat

transfer rate, the smaller will be the fluid friction irreversibility. The constants Cs, Cs, and C7 in Eq.
(24) depend on the geometry of the fin and are given by:

PA W, A PL
Co=—t ,C,=—2-—2 and C,=—
Lf Lb Lb Af
2.2.3 Overall Heat Transfer Coefficient for Heat Sink
Q :Qb +Qf (26)
Where
Qb = (hA)be

Qf = (hﬂA )f Qb
where Ab=LsWhs-At, and (As) depends on the geometry of the cross-section of the fin illustrated in
Table.1. The efficiency of the fin nf with constant convective heat transfer coefficient and an
insulated tip is
_ tanh(mH)

T

mH
As shown in Fig.2, the present model using a single fin with a height of (H=25.26 mm) and a
rectangular base plate with dimensions of (L,=62.69 mm) and (W=58.42 mm) and thickness of
(tv=2.24 mm). Each pin fin is in the shape of an ellipse with a major axis of (b1=15.54 mm) and a
minor axis of (a;=10.27 mm), equilateral triangle with a side length of (h=10.54 mm) and
rectangular with dimensions of (a=15.54 mm) and (b=10.27 mm), square of (a=10.27 mm) side and
finally use a circle shape of diameter of (d=10.27 mm). The present extra fins includes rectangular
extra fin of (t=2 mm) (height) and (b=4 mm) (width) and triangular extra fin of (b=2 mm) (base)
(h=4 mm) (height). Finally, the required equations solved by MATLAB code and the solution
procedure employed in this study presented in Fig.3.

(27)

3. RESULTS AND DISCUSSIONS

The objective of this study is to determine an optimal fin geometry by minimizing the dimensionless
entropy generation rate for different design variables including (Ac cross-sectional area), (Ap plan
form area for drag force), (P fins perimeter), (Lc fins characteristic length) and (Uapp apparatus
velocity) and (Re Reynolds number). In each case, the optimum approach velocity/Reynolds number
is determined to correspond to the minimum entropy generation rate. The problem is solved for
three different longitudinal and transverse pitch ratios and the overall performance is compared to
all fins geometry.

The influences of the axis ratio (¢) and the using of two rectangular and triangular extra fins along
the sides of the original geometry on the drag force for all models of cross-sections fins are shown in
Fig. 4 Clearly, (TR-model) the triangular fin with two square extra fins cross section is the worst
choice, due to the highest drag force which is about (0.0043 N) and the model of (CT-model)

7
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circular fin with triangular extra fins cross section is the best choice for the lowest drag force which
is about (0.0021 N). The drag force for the elliptical geometry decreased monotonically from
(0.0034 N) at (e= 1) to the (0.00012 N) at (¢=0) due to the streamlined geometry of the elliptical
model (ET-model) as compared with the other models.

Fig. 5 Illustrates the effect of the axis ratio (¢) on the Nusselt number for all models of cross-
sections fins the results show that the heat transfer rate of (ER-model) elliptical fin with rectangular
extra fin give the maximum values of the Nusselt number and decreases from (18.9) at (e= 1) to
(27.2) at (e= 0.4) and then becomes constant with the same profile with (ET-model) but with little
deference and the other models give construct profile which show increased the Nusselt number
with increasing axis ratio (g). Fig.6 shows the effects of the Reynolds number based on the
characteristic length of the fin on the Nusselt number for all models of cross-section fins. The results
indicates that the Nusselt number increased as increases the Reynolds number increasing for all
models but the (ER-model) and (ET- model) recorded an increase to maximum value which is about
(Nu= 31.255) at (Re=1.7x10%) and then decreasing as the Reynolds number increases while the
anther models increases as the Reynolds number is increased due to increasing the heat transfer rate
as increasing the Reynolds number.

Figs.7 show the effect of the Reynolds number based on the characteristic length of the fin on the
dimensionless entropy generation rates (Ns) Eq. (25) for all models of cross-sections fins. The
results show that as expected fin geometries have constant Ns, but, for (ER- model) elliptical
geometry, it decreases from (Ns 1.2) at Re = 0 (SS- model) to (Ns =0.05) at (Re = 2.5x10%) (ET-
model) due to this geometry will vary the direction of the fluid flow. Where the maximum (Ns)
exists at (1.52) for (CT-model). Using the model which have four extra fins on the sides caused to
obtain an increase in the Nu about 10% compared with the model with two extra fins (ES- model)
elliptical geometry.

The effect of Reynolds number on the dimensionless entropy generation rates for all models of
cross-sections fins had been plotted in the Figs. 8. The results show that the entropy generation rates
(Sgen) decrease with increasing Reynolds number for all models, and the TT-model triangular fin
with triangular extra fins (TT- model) appeared high value of entropy generation rates. The use of
four extra fins decreases the dimensionless entropy generation rates about (6 %) percent, due to this
geometry increased the fluctuating fluid near the fin surface.

The dimensionless total entropy generation rate, Ns, includes the contributions due to heat transfer
and viscous friction. As the approach velocity increased, the contribution due to heat transfer, (Nsn),
decreased and that of viscous friction, (Nsf), increased for each of the geometries considered. This
behavior is shown in Figs. 9 for the (SR and TR-models). An optimal approach velocity (Uapp)
results away from which the dimensionless total entropy generation rate would increase. The
optimal (Uapp) exists for all geometries depending upon the wetted surface area, where the (SR-
models) give a higher value of dimensionless entropy generation Rates (Ns) than (TR-models). But
the (TR-models) give a higher value of (Nsf) and (Nsh) than (SR-models).

Fig.10 illustrates the effect of the approach velocity for the (CR and SR-models) circular and square
fin geometry with two rectangular extra fins. The (CR models) gave a higher value than (SR-
models) of dimensionless entropy generation Rates (Ns). And the (CR-models) gave a higher value
of (Nsf) and (Nsh) than (SR-models). Fig.11 shows the effect of fin perimeter (P) on the
dimensionless entropy generation rates for all models of fin geometry with rectangular extra fins for
the axis ratio (e= 0 to 1). The figure shows that the dimensionless entropy generation rates (Sgen)
decreased with the increases the fin perimeter (P).

A Comparison of the present analytical results with previous studies is plotted in Fig. 12. The figure
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shows that the enhancement of adding rectangular and triangular extra fins along the sides of
triangular and square of the (TR and SR-models) with the original geometry was studied by (Khan
et al., 2006) for square, circular, ellipse and rectangular geometries. The fin square geometry with
rectangular extra fins (SR-models) shows an agreement in Nussselt number of (11.8 %) compared
with the high value of rectangular plate (RFP- Khan model). The results show that the improvement
of using the rectangular and triangular extra fins along the sides of the ellipse fins (ET and ER-
models) with the original geometry studied by Khan, 2010 for square, circular, ellipse and
rectangular geometries. The ellipse model (ET and ER-models) presented highest values in this
study and with increases in the Nusselt number about (25.21%) when compared with the (EPF-
Khan model). Nevertheless, it increased with the increase of the ReLc until it reached the value of
(Nu=31.42) at (Re=1500) and then it decreased as the Re increase until reaching the value of
(Nu=21.12) at (Re = 2535).

4. CONCLUSIONS

New suggested arbitrary fin geometries having the same wetted surface area are compared according
to the heat transfer, drag force, and dimensionless total entropy generation rate. The (TT and TR-
models) geometries were found to be the worst choice from the point of view of heat transfer and
drag force and hence from the point of view of total entropy generation rate. Whereas, the (CT-
model) geometry appeared to be as the best from the point of view of drag force. For the square and
triangular fins, geometry with rectangular extra fins (SR and TR-models) appeared to be as the best
from the point of view of the dimensionless total entropy generation rate for low approach velocities
and small wetted surface areas. The elliptical geometry is the next favorable geometry from the
point of view of total entropy generation rate for higher approach velocities and with low axis ratios.
It offers higher heat transfer coefficients and lower drag force as the axis ratio is decreased and the
approach velocity is increased. The results showed that the fin of a square with rectangular extra fin
(SR-models) geometry shows an agreement in Nusselt number as compared with that of the
previous study. The lowest Nusselt number value of the studied models was found for the triangular
fin with triangular extra fin (TT -model). But the ellipse models (ET and ER-models) give the
highest value in the study when compared with the same data of other research.
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NOMENCLATURES

By

duty parameter

CltoC4 equation constants

C4t0C7 geometry constants

Co total drag coefficient

Fp total drag force, N

ht, hy base plate and fin average heat transfer coefficient, W/m?K
Keq ratio of thermal conductivity of fluid to the fin material, W/mK
Kfilm air film thermal conductivity, W/mK

Kfin fin material thermal conductivity, W/mK

Lo, L base plate and fin characteristic length in flow direction, m
m fin performance parameter, m™!

Min, Mout air mass flow rate in the inlet and outlet, kg/sec

Ns total dimensionless total entropy generation rate

Nt fluid flow irreversibility
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Nsh
Nup, Nus
Pin, Pout
Pr

Q

Qb, Qf
Rob, Rt
Rep, Res
Riot

Sgen

Sin, Sout
Ta

To

Tt

Ts

Uapp
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heat transfer irreversibility

base plate and fin Nusselt number.

pressure in the inlet and outlet, W/K

Prandtl number

total base plate heat flow rate, W

base plate and fin heat flow rate, W

base plate and fin overall resistance of a fin, K/W
base plate, and fin Reynolds number.

total thermal resistance, K/W

total entropy generation rate, W/K

entropy generation rate in the inlet and outlet, W/K
air film temperature, K

base plate bottom surface temperature, K

pin fin surface wall surface temperature, K

mean temperature of the heat source is, K
approach velocity of the fluid, m/s

Geometrical Symbols

a length side of the square fin, m

a,b1 semi-major and minor axes of the elliptical fin, m
As crosses sectional area of the fin, m?
Ap free stream cross-sectional area, m?

b width of rectangular extra fin, m

d circular pin fin diameter, m

h length of triangular sides fin, m

H fin height, m

h1 height of triangular sides fin, m

Lo base plate length in the downstream direction, m
P perimeter of the fin, m

S side of a square fin, m

SL pin spacing in streamwise direction, m
St pin spacing in spanwise direction, m
th base plate thickness, m

W base plate width, m

Greek Symbols

€ ratio of the plate sides= ty/L

Y% kinematic viscosity of fluid film, m?/s
p fluid density, kg/m®

Yic aspect ratio, H/L.

nf fin efficiency.

Subscripts

b base plate

f pin fin

in inlet

out outlet

Fin Geometry Symbols

TT

triangular fin with triangular extra fin
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TR
ST
SR
CT
CR
ET
ER
RPF
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triangular fin with rectangular extra fin
square fin with triangular extra fin

square fin with rectangular extra fin
circular fin with triangular extra fin
circular fin with rectangular extra fin
ellipse fin with triangular extra fin

ellipse fin with rectangular extra fin
rectangular plate fin of the previous work.

Journal of Engineering

Table 1. Fin cross-section geometries with rectangular and triangular extra fins.

Fin cross-section Area, Perimeter and Fin cross-section Area, Perimeter and
geometry with Characteristic Length geometry with Characteristic Length
Rectangular extra fins Triangular extra
fins
b \ TR-Model TT-Model
ﬁ Ac = (hhy) + 3(bt) Ac = 0.5(hh1) + 3(0.5Dbt)
Ap =hH Ap =hH
b P=3(h-b)+6t+3b P =3(h—b) + 6V(t + 3b)
Lc=hl Lc=h1
L, SR-Model [ ST-Model
B Ac = a? + 2(bt) i Ac = a? + 2(0.5bt)
Ap =aH Ap =aH
: P =4a+ 4t R P = 4a+ 6\(b/2b)?+t2-2b
Lc=a+2t Lc=a+2t
B r%%;‘ SR-Model B I‘L’li,hrt ST-Model
. Ac = a2 + 4(bt) . Ac = a2 + 4(0.5bt)
Ap =(a+2t)H Ap =(a+2t)H
- — P =4a+8t : P = 4a+ 8V(b/2b)?+t>-4b
Lc=a+2t Lc=a+2t
= CR-Model Pl CT-Model
Ac = (T1/4)d? + 2(bt) Ac = (11/4)d%+ 2(0.5bt)
‘ Ap =dH ! Ap =dH
P= nl+ 4t L P = nl + 4V(b/2b)?+t?-2b
Lc=d+2t Lc=d+2t
= CR-Model ~ L, CT-Model
~N Ac = (T1/4)d? + 4(bt) Ac = (T1/4)d*+ 4(0.5bt)
) Ap =(d+2t)H ) Ap =(d+4t)H
R P= nl+8t > P = nl + 8V(b/2b)?+t%-4b
Lc=d+2t Lc=d+2t
_ 1 ., ER-Model 1, ET-Model
. @ Ac = maibi+ 2(at) @ Ac = maiby+ 2(0.2bt)
Ap =b:H Ap =blH
% P = 4alE(e)+ 4t % P=
Lc=hy 4alE(e)+ 4V(b/2b)*+t*-
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2b
Lc=bl
] 1, ER-Model ~ ET-Model
. Ac = mtaibi+ 4(at) Ac = maibi+ 4(0.2bt)
Ap =(al+2t)H Ap ==(al+4t)H
b1 P = 4alE(e)+ 8t b1 P=

Le=hy+2t 4alE(e)+ 8V(b/2b)2+t2-
4b
Lc=b1+2t

H=25.26 mm

t=2.24 mn]

Lb=62.69 mm
Figure 2. Dimensions and boundary conditions of the base plate and pin fin used in this study.
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find fin geometry :
Ac, P

give properties-
kfin' kfilm

|
give B.C:
Uapp: T, T

calculate:
Rf, Rb, hf, hb, Ref, Reb, Nuf,

|
calculate constant:
C5, CB8, C7

|
solve eq. 20, 25, 26
Sgen, Ns, Q
1

| Print resultsl

Figure 3. Solution procedure flow chart.
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Figure 4. The effect of the axis ratio and the two extra fin of rectangular and triangular on the drag
force for all models of cross-sections fins.
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Figure 5. The effect of the axis ratio and the two extra fin of rectangular and triangular on the
Nusselt number for all models of cross-sections fins.
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Figure 6. The effect of the Reynolds number based on the characteristic length of the fin and the
four extra fin of rectangular and triangular on the Nusselt number for all models of cross-sections
fins.
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Figure 7. The effect of the Reynolds number and the two extra fin of rectangular and triangular on
the dimensionless entropy generation rates for all models of cross-sections fins.
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Figure 8. The effect of the Reynolds and the two extra fin of rectangular and triangular on the
Dimensionless Entropy Generation Rates for all models of cross-sections fins.
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Figure 9. Effect of approach velocity on the dimensionless entropy generation rates for the square
and triangular fin geometry with rectangular extra fins.
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Figure 10. Effect of approach velocity on the dimensionless entropy generation rates for the circular
and square fin geometry with rectangular extra fins.
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Figure 11. Effect of perimeter on the dimensionless entropy generation rates for all models of fin
geometry with rectangular extra fins.
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Figure 12. The enhancement of the Nusselt number by comparing the analytical results of the
present study with that data studied by Khan et. al., 2007 and Khan, 2010.
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