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ABSTRACT

In this paper, an Integral Backstepping Controller (IBC) is designed and optimized for full control,
of rotational and translational dynamics, of an unmanned Quadcopter (QC). Before designing the
controller, a mathematical model for the QC is developed in a form appropriate for the IBC design.
Due to the underactuated property of the QC, it is possible to control the QC Cartesian positions (X,
Y, and Z) and the yaw angle through ordering the desired values for them. As for the pitch and roll
angles, they are generated by the position controllers. Backstepping Controller (BC) is a practical
nonlinear control scheme based on Lyapunov design approach, which can, therefore, guarantee the
convergence of the position tracking error to zero. To improve controller capability in the steady
state against disturbances, an integral action is used with the BC. To determine the optimal values of
the IBC parameters, the Particle Swarm Optimization (PSO) is used. In the algorithm, the controller
parameters are computed by minimizing a cost function that depends on the Integral Time Absolute
Error (ITAE) performance index.

Finally, different numerical simulations are provided in order to illustrate the performances of the
designed controller. And for comparison purposes, a PID controller is designed and optimized using
the PSO to control the quadcopter. The obtained results indicated a superiority in performance for
the IBC over the PID controller based on some points among which are: a 13.3% and 30.5% lesser
settling times for X and Y consequently, the ability to perform critical maneuvers that the
quadcopter failed to do using the PID controller, and the capability of fast following up and
conforming the changes of pitch (8) angle (within 0.26 seconds) and roll (¢) angle (within 0.26
seconds), while the PID controller indicated a lag between the actual and the desired angles
which reached 83.6% of the desired 6 and 35.6% of the desired ¢. In addition, the results
showed the robustness of the designed IBC controller against external disturbances which represent
the effect of running a quadcopter in an outdoor environment.
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1. INTRODUCTION

Quadcopters, among Multi copters, got and still are getting increasing interest due to their
importance and growing use in many vital applications. For this and for the fact that a quadcopter
system is characterized by being nonlinear, underactuated, and strongly coupled, quadcopters
control represents a challenge for researchers and so bringing more interest and research. A
quadcopter is an unmanned aerial helicopter with four rotors. The rotors are directed upwards and
they have positioned in a square formation with equal space from the center of mass of the
quadcopter.

The quadcopter is controlled by changing the angular velocities of the rotors. The major forces
and moments acting on a quadcopter are those created by rotors. The four rotors form two pairs
(front and back) and (left and right). One pair rotates clockwise, however, the other pair rotates
counter-clockwise to balance the torques exerted upon the body of the quadcopter Brito, 2009. The
free body diagram and axes of a quadcopter are shown in Fig.1. Increasing or decreasing the speed
of the four rotors together generates vertical motion. Forward (backward)motion, which is related to
the pitch (8) angle of rotation about the y-axis, can be obtained by increasing the back (front) rotor
speed and decreasing the front (back) rotor speed. A sideway motion, which is related to the roll (¢)
angle of rotation about the x-axis, can be achieved by increasing the left (right) rotor speed and
decreasing the right (left) rotor speed. Finally, the yaw motion given by angle (y) which represents
the rotation about the z-axis, is obtained from the difference in the counter torque between each pair
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of rotors. Thus way, the quadcopter has six degrees of freedom, X, Y, Z, 8, ¢, and y.Due to the
property of the QC of being underactuated, it is possible to control the QC Cartesian positions (X, Y,
and Z) and the yaw angle through ordering the desired values for them. As for the pitch and roll
angles, they are generated by the position controllers.

The dynamical model of the quadcopter is the starting point for all studies related to quadcopter
control. The mathematical model for the quadcopter dynamics and motion could be obtained either
using Euler -Lagrange equations or Newton-Euler equations. Same results are obtained in both
cases, Bouabdallah, 2007, and, Bresciani, 2008. In this work, Newton-Euler formulation is used.

Several control techniques can be used to control the quadcopter. Such techniques vary from the
classical linear to the nonlinear ones. Some examples of these techniques are the Proportional-
Integral-Derivative (PID), Linear Quadratic (LQ) controllers, He, and Zhao, 2014, and,
Bouabdallah, et al., 2004. Backstepping control and sliding-mode controllers, Bouabdallah, and
Siegwart, 2005, and, Swarup, and Sudhir, 2014, fuzzy control, Rabhi, et al., 2011, fuzzy PID
controller, Seidabad, et al., 2014, and neural network control, Burman, 2016.

In this work, an IBC technique based on the Lyapunov stability theory is developed to stabilize
the system on the desired trajectory. The reasons behind this choice are:
> It provides a systematic and recursive design methodology for nonlinear feedback control.
> It has sort of robustness against external disturbance and parameters uncertainty.
> It allows the system operating outside linear region (the hovering condition), thus does not need

to simplify the dynamical model (ignoring coupling terms) as in the design of linear controllers

which they suffer from a huge performance degradation whenever the quadcopter leaves the
nominal conditions or performs aggressive maneuvers.

The idea of the IBC design is to select recursively some appropriate state variables as virtual
inputs for lower dimension subsystems of the overall system and the Lyapunov functions are
designed for each stable virtual controller. Therefore, the designed final actual control law can
guarantee the stability of the total control system, Bouabdallah, 2007. Although the IBC method
can provide a systematic process for controller design, a stable and satisfactory performance is not
achieved without proper values for the IBC parameters. To get beyond satisfactory response, IBC
parameters optimization is necessary, and thus in this work, PSO is used to off-line compute the
optimal parameters for the IBC.

In addition to evaluating the performance of the proposed controller itself, its performance is
compared to a PID controller designed and tuned with PSO. The reason for the selection of this
controller as a reference for comparison is that a huge number of researchers dealt with it and
indicated a fair response to it. The mechanism of control of the quadcopter with the PID controller is
covered by many researchers among which are Bresciani, 2008, and Mohamed, 2014.

2. MATHEMATICAL MODEL

A nonlinear model for the kinematics and dynamics for the quadcopter is given here and based on
Newton-Euler formalism. To develop the mathematical model of the quadcopter, sensible
assumptions are established for the quadcopter to accommodate the controller design, Bouabdallah,
2007. The assumptions are as follows:
» The structure is assumed rigid.
» The structure is assumed symmetrical.
» The propellers are assumed rigid.
» The center of gravity and the body fixed frame origin are supposed to coincide.
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» Thrust and drag are proportional to the square of rotor’s speed.

2.1 Kinematic Model

In order to model the quadcopter kinematics, two frames have to be defined and as shown in
Fig.1. In this figure, B represents the body coordinate system and E represents the earth
coordinate system. The earth frame (E) is used to define the linear position (I; [m]), while the body
frame (B) is used to define the forces (F;[N]), the torques (zz[N.m]), and the angular position (or
attitude) @y of the quadcopter. The quadcopter motion can be divided into two motions: the linear
translational motion and the angular rotational motion. Thus, the model is described, respectively, in
translational and rotational subsystems by Eq.(1) and Eq.(2):

=[x v zI” 1)
op=[p 6 YI" )
The translational and rotational kinematic equations is obtained by means of the rotation R and

transfer T matrices respectively. The expression of the rotation R and transfer T matrices are and
given consequently by Eq.(3) and Eq.(4), Bresciani, 2008.

cpcld cypsOsp — sPcp cPsOcp + spse
R = |syYcO syPsOsp + cpcp spsOcp — cPse 3)
—s60 cOsg@ cOco
1 tOsep tOcop
T=10 co =S (4)

0 s@/cO cp/cO

where s, ¢, and t are abbreviations for sin, cos, and tan respectively. The translational kinematic is
written as:

[ =RV ®)
where I; and V are respectively, the linear velocity vector with respect to the earth frame E and
body frame B. The rotational kinematics can be defined as follows:

§¢=TOg (6)
where & and ©g are the angular velocity vectors with respect to the earth frame E and body frame B,
respectively.

2.2 Dynamic Model

The dynamic model of the quadcopter is derived using Newton— Euler approach. It is useful to
express the translational dynamic equations with respect to the earth frame E and rotational dynamic
equations with respect to the body frame B, Bresciani, 2008. According to the Euler’s first law of
motion for rigid body dynamics, the translational dynamic equations of the quadcopter is written as
follows:
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% 0
m|yl=] 0 |+RU, (7
VA —mg

where m represents the quadcopter mass, g is the gravity acceleration and U;is the total thrust
generated by the four rotors:

Uy =X F=bXi,w’ (8)
where b [N s is the thrust coefficient and w; (rad/sec) is the angular velocity of rotori.The
rotational motion equations are derived according to the Newton-Euler formalism:

JOp =15 —05x]0p—0px[0 0 J.02] 9)

where J is an inertia matrix of the quadcopter, J,- is an inertia of the rotors, (2, relative speed and 7z
is the moments acting on the quadcopter in the body frame.

xx

J=|0 L, 0 (10)
0 0 I,

0, =(—w; —wz+wy +w,) (11)
T(p UZ bl(W42 — WZZ)

Tp = [Te =|Us| = bl(w3? — w;?) (12)
Ty U, d(—w;? + wy?2 — w32 + w,?)

where [ [m] is the distance between the center of the quadcopter and the center of a propeller and d
[N m s is the drag coefficient. Using Eq.(7) and Eq.(9), the motion equations of quadcopter can be
derived as follows:

& + 91/)(13,3, - Izz) _ ]r

= 0.0 (13)

Ixx . Ixx I.X'.X' "

. U p(l,, — 1

9=_3+(p1/)(zz XX)+]—T.QT¢ (14)
Iyy ) Iyy Iyy

. U oL, — 1

y _ e ‘P( xx yy) (15)
IZZ 1 IZZ

Z=-g+ ;(cos 0 cosp)U; (16)

.. U

X = (siny sing + cosp sin 6 cos @) Hl (17)

.. 1

Y = (—cosysing + siny sin 6 cos (p)EUl (18)

The second term in the rotational subsystem Eq.(13) to Eq.(15) is the gyroscopic effect resulting
from the rigid body rotation in space and the third term in Eq.(13) and Eq.(14) is due to the
gyroscopic effect resulting from the rotation of the propeller. With the renaming of the control
inputs as:
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Ul [ bwi? + w2 +wa? +w,?)

U, bl(w,* —w,?)

U= = 19
U3 bl(W32 - le) ( )
Us d(—wi? + wy?2 — ws? + w,?)

The rotors velocities are required to be calculated from the control inputs, an inverse relationship
between the control inputs and the rotors' velocities are required.

(w.2 = L Ly, L
W1 4b 1 zm 201 U3 4d Us
W2 = _Ul UZ + U4
< Zbl (20)
w3? = _U1 2blU3 —EUAL
1
\W‘l‘ —EUl 2_blU2+EU4

3. THE CONTROL STRATEGY

The system equations are rewritten in state space representation for controller design purposes.
The state space model adopted by the control system is X; = f(X,, U), where X, is the state vector
and U is the control input vector. The state vector is selected as X;=[¢p ¢ 0 0 Y Y ZZX XY Y] . |

the design of the controller the state variables are selected as: x; = P, X, = @ ,x3=0,x, = 0
=Y, xg =0, X =2, xg=2 ,Xg=X,X10=X,%1=Y ,x;, =Y.
The state equations can be described as:

X1
b U, + xuxgaq + a0, x4
X3
b Uz + x,x6a3 + ay0,x,
Xs
b;U, + x,x4a5
X7
— U
f&XsU) —-g + -1 COSX1C0SX3 (21)
m
Xg

Uy
—u
m X

X11
Ui

b, = by = — by = —
T L Ly, % Iy
= (sin x5 sinx; + cos xg sin x5 cos x;) (22)
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u,, = (—cos x5 sinx; + sin x5 sin x5 cos x;) (23)

From the dynamic model, it can be seen that the quadcopter is a multivariate, nonlinear,
underactuated (6 DOF and only 4 inputs), with strong coupling system. The rotational motions do
not rely on translational motion while the opposite is not true. Thus, double-loop control architecture
is designed for the flying quadcopter's attitude and position control. The inner control loop is
designed for stability and following of desired attitude. While the outer control loop is intended for
quadcopter position control. The structure diagram is presented in Fig .2.

3.1 Integral Backstepping Controller Design

The control aim is to design an appropriate control law so that the state trajectory
Xea=l0a 04 Va Zg Xa Y4]" of the quadcopter system can track a desired reference
trajectory. The description of the control system design of the quadcopter is similar for each one of
the six controllable degrees of freedom (DOF), for simplicity only one DOF is considered.
The methodical design of the (IBC) is described as follows:
Step 1: Defining the tracking error:

e1=@q— @ (24)

where ¢, represents a desired trajectory that is specified by a reference model. Then, the derivative
of the tracking error can be represented as:

é1=Pa— ¢ (25)
The first Lyapunov function is selected as:

1 1
Vilen, x1) = 5912 + 5/11)(12 (26)
where
0= fye@de (27)

The derivative of V; is:
Vi(er) = e1é + Ay xier = e(@q — ¢ + A1x1) (28)

If we set the virtual control(¢), of ¢ as:

(@)a = Pa+lixs + 14 (29)
where c; and A,are positive constants, then:

Vl = —C1612 <0 (30)
Step 2: Set the tracking-error of ¢ as:

e2 = (P)a— @ = Pqg +Aix1tcre1 — ¢ (1)
1 =@Pq— @ =—ix1—cre1 +(Pla— @ = —Ax1 — e + (32)

The derivative of e, is expressed as:
€y = Pg t c1(—Ax1 — creg +ep) + Aieg — b Uy — a Qx4 — X4X6ay (33)

The second Lyapunov function is chosen as:
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1 1 1
Vy(eq, ez, x1) = 5312 + 5922 + 5/11)(12 (34)

The derivative of V> is:
vV, = _01312 +e[(1+ 4, — C12)91 + Pgq — C1A1x1 + c1e; — byUp — a0, x4 — X4X60a4)] (35)

Step 3: For satisfying V; (e;, e;, x1) < 0, the control input U, is selected as:
1 .
U; = b_l((l + A —c1P)es + Pg — A + (¢ + cr)ex — a0y — X4Xe04) (36)

V1(e1»92;)(1) = —c1e12 - Czez2 (37)

where c, a positive constant and the term c,e, is added to stabilize the tracking error e;.
Vo(er,epx1) <0, Vi(er, ey x1) is a negative semi-definite. Therefore, the control law will
asymptotically stabilize the system.
The same steps are followed to extract Us, Us, U, u, and u,,.
For pitch control (6)
e;=60;—106
e, = (e)d —0 =05+ A0, +c3e3+6 (38)

X2 = Jyes (@ dr

Us = b_t((l + A — c32)es + 04 — c3do)z + (€3 + Ca)es — Ay Xy — X3X603) (39)
For yaw control (i)
. €s = }/Jd -y .
66=(1/J)d—1l):1l)d+13)(3+cses+¢ (40)

X3 = fot es (1) dt
Uy = b_13((1 + A3 — c5D)es + Pg — CsAzxs + (€5 + Co)es — XX405) (41)

For linear Z motion control

37 ::Za _'Z
eSZ(Z)d_Z':Z'd+A4X4+C7e7+Z. (42)
t
X4 = fo €y (T) dr

U, = L((l + Ay —cr2)es + Zg — crAaxa + (c; + cg)eg + ) (43)

COSX1C0O0SX3

For linear X motion control
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eg=Xd—X
€10 = (X)d —X :Xd+/15)(5 +C939+X (44)

X5 = Iy e0 (D) dt

Uy = Uﬂl((l + A5 — co?)eg + X4 — Colsxs + (co + C10)e10) (45)
For linear Y motion control
e11 = Yd —-Y
€1y = (Y)d - Y = Yd + A6X6 + C11€11 + Y (46)

t
Xe = fo e1 (1) dr
Uy = Uﬂl((l + A6 — c117)eq1 + Va — c1ideXs + (c11 + Crz)err) (47)

where (c3, ¢4, Cs, Cg, C7, Cg, Co, C10, C11, C125 A2, A3, A4, A5, Ag) are positive constants. From Eq.(22) and
Eq.(23) ¢, and 6, can be found:
@q = arcsin(u, sing — u,, cosy) (48)

Uy COSYg + Uy, Sim,bd)

0, = arcsin(
coSQq

(49)

3.2 Tuning Using PSO

The PSO is a kind of swarm intelligence methods and a population-based algorithm that is
normally used as an optimization tool. Each particle of the population is a candidate solution. In
PSO, each particle navigates around the search (solution) space by updating their velocity according
to its own and the other particles searching experience. Each particle tries to imitate traits from their
successful peers to improve themselves. Further, each particle has a memory to keep tracking the
previous best position (known as pbest) and corresponding fitness. The particle with the greatest
fitness in the population is called gbest. Three steps are involved in the basic PSO algorithm,
namely, generating particles’ positions and velocities, velocity update, and finally, position update.
First, by using the design upper, Xmax and lower, Xmi, bound values, the initial positions x*and
velocities v} of particles are randomly produced, as expressed in the following equations, Rini, et
al., 2011.

xlk = Xmin + rand(xmax - xmin) (50)
vik = Xmin + rand(xmax - xmin) (51)

In Eq.(50) and Eq.(51), the subscript and the superscript mean the ith particle at iteration Kk,
respectively, while rand is a uniformly distributed random variable that can take any value between
0 and 1. The second step is to update the velocities of all particles according to the following
expression:

54



Number 5 Volume 24 May 2018 Journal of Engineering

k+1
i

vt = w.vf + ny.rand. (pbest — xlk) + n,.rand. (ghest — x¥) (52)
Three weight factors, namely: inertia weight factor w, self-confidence factor n,, and swarm
confidence factor n,, are combined in Eq.(52) to affect the particles direction. Lastly, the position of
each particle is updated using its velocity vector as Eq.(53) and illustrated in Fig.3.
xft = xk 4 pktl (53)
Repeat the three steps of (i) velocity update, (ii) position update, and (iii) fitness calculations
until a stopping criterion is reached, Rini, et al., 2011. The flowchart of the PSO program is shown
in Fig. 4.
In this work, the control parameters are calculated by minimizing a cost function defined by
using the Integral Time Absolute Error (ITAE) performance index.

ITAE = [ tle(t)|dt (54)

The ITAE performance index has the benefits of producing smaller overshoots and oscillations
than the IAE (integral of the absolute error) or the ISE (integral square error) performance indices.
In this work, the following values are assigned for controller parameter optimization:

» Population/swarm size = 30.

» The number of maximum iterations = 30.

» The self, swarm confident and inertia weight factors, n,and n, = 2 and w =1.5.
» The simulation time is equal to 10 seconds.

The variation of the fitness function with the number of iterations for IBC is shown in Figs.5 to 9.
The optimal parameters of the controllers of the quadcopter system are listed in Table.1.

4. THE SIMULATION RESULTS AND DISCUSSION

In this section, the quadcopter model and the designed controllers will be simulated. The work is
implemented in the Matlab/Simulink simulation environment. The quadcopter system is modeled
with Simulink and the PSO algorithm is applied in Matlab. The model parameters values of the
quadcopter system are recorded in Table. 2.

To judge the effectiveness of the designed optimal integral backstepping controller, three
simulation tests have been performed on the quadcopter. In the first simulation test, the control goal
is to take the quadcopter to a specific point in the space. The desired position/yaw is given by
(Xa.Ya.Zqa.¥q) = (1, 1, 1, 0). As mentioned earlier, the pitch and roll desired angles are generated by
the position controllers. The performance of the designed IBC controller is compared with the
performance of a PID controller. The PID is not the main issue here and it is designed for
comparison purposes, and its parameters are tuned using PSO. Figs. 10 to 14 show the responses for
attitude states. In the transient response of ¢ and 8 angles, the controllers show different behaviors.
In case of the IBC controller, the actual trajectory conformed to the desired trajectory after 0.26
second, while in case of the PID controller, there was a lag between the actual trajectory and the
desired one. The two controllers showed almost identical responses for i angle. Figs. 15 to 17 show
the responses for position states. A comparison using these figures between the IBC and the PID
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indicated that the IBC is with 13.3% and 30.5% lesser settling time for X and Y consequently and
indicated that the PID is with 40% lesser settling time for Z. Moreover, both controllers gave zero
overshoot and zero steady state error. The responses characteristics are summarized in Table 3. The
control actions (U, through U,) which represent the desired thrust force and torques for are shown in
Figs. 18 to 20. In the second test, the objective is to test the ability of the proposed controller to
track the path whether this path is linear, as the path shown in Fig.21 which took 35 seconds, or
curved (critical maneuvers) as show in Fig. 22. The desired trajectory is generated using command
signals for X, Y, and Z and as shown in Figs.23 to 25. These figures also show the actual responses
for Z, X and Y from which the actual path is composed. After 1, 2.5 and 1.5 seconds from ordering
the trajectory, the actual responses of Z, X and Y, consequently, settled for the IBC controller. The
PID controller could not perform this critical maneuver. Finally, the performance of the scheme is
investigated in the presence external disturbance problem. Here, a disturbance is added to the
quadcopter model in the form of additional forces acting on it to give the effect of running a
quadcopter in an outdoor environment. The forces are added to the right hand side of the system's
translational equations of motion Eq.(7) as Gaussian noise with zero mean and with a maximum
value of 1 Newton. The simulation result of position tracking for the IBC approach in the presence
of external disturbances is shown in Fig. 26. The results of the last test showed the robustness of the
proposed controller against an external disturbance which represents the effect of running a
quadcopter in an outdoor environment.

5. CONCLUSIONS
In this paper, an integral backstepping control algorithm has been designed to realize position and

attitude control of a quadcopter. The controller consists of two portions: position control and attitude
control. The position controller is used to track the desired trajectory in the Cartesian coordinate
while the attitude controller is used to track the desired angles (¢, and 8,;) obtained from the
position controller and the desired yaw angle. The particle swarm optimization (PSO) has been used
to determine the optimal values of the IBC conntroller parameters. Also, a PID controller has been
designed and optimized using PSO to be used for performance comparison purposes with the IBC
controller. The obtained results indicated:

» The ability of the IBC controller to control the QC stably when working in the near hovering
case or in critical maneuvering case. In contrast, the PID controller failed in the maneuvering
case. Compared to the PID controller, the IBC controller allows the system to operate outside the
linear region (the hovering condition), as it is itself a nonlinear controller, and so does not need
to simplify the dynamical model (ignoring coupling terms) as the case for the design of linear
controllers.

> A Detter capability for the IBC controller in following up changes in pitch (8) and roll (¢)
angles. For the given tests, the IBC controller managed to follow up and conforming the changes
of pitch (6) angle within 0.26 seconds and roll (¢) angle within 0.26 seconds. On the other
hand, the PID controlled failed in the follow up process and indicated a lag between the actual
pitch (8) and roll (¢) angles and the desired ones. For the given tests, this lag for example
reached 83.8 % of the desired and 35.6 % of the desired ¢.

» The given tests for step responses indicated 13.3% and 30.5% lesser settling time for X and Y,
consequently, for the IBC controller compared to those for the PID controller.
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» The robustness of the designed IBC controller against external disturbances which represent the
effect of running a quadcopter in an outdoor environment.
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Tablel. Optimal parameters of controllers.

Controller IBC Parameters PID Parameters
Signal
X- Signal ¢y = 2.0386 c;, = 1.9000 A5 = 0.0007 P, =14.42351, = 0.0014 D, = 8.2480
Y- Signal €11 = 24006 c¢;, = 2.2324 A, = 0.0027 | P, = 15.8556 1, =0.0462 D, =11.0861
Z- Signal c; = 3.5462 cg = 3.3167 A, = 0.0005 P; = 19.6252 I; = 0.0051 D, = 6.9100
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Phi- Signal ¢; = 17.8583 ¢, = 19.9880 A, = 0.0019 | P, =19.3134 1,=0.0002 D, =10.5147
Theta- Signal c3 = 18.7340 ¢, = 19.2909 A, = 0.0008 | P; = 19.2005 Is = 0.0012 Ds = 9.9962
Psi- Signal cs =2 ¢, =12 A3 =0.05 P, =15.5 I, =0.01 Ds=26
Table 2. Parameters of the quadcopter.
Parameter Description | Value Unit
Ly, Inertia on x-axis 7.5e-3 kg.m?
Ly, Inertia on y-axis 7.5e-3 kg.m?
L, Inertia on z-axis 1.3e-2 kg.m?
l Arm length 0.23 m
M Quadcopter mass 0.650 kg
b Thrust coefficient | 3.13e-5 N.s?
d Drag coefficient 7.5e-7 N.m.s?
Table 3. The response characteristics values.
IBC X Y Z PID X Y Z
Settling time (sec) 2.6 2.5 2 Settling time (sec) 3 3.6 1.2
Overshoot (%) 0 0 0 Overshoot (%) 0 0 0
Steady state error 0 0 0 Steady state error 0 0 0

left

Figure 1. Quadcopter configuration.
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Figure 2.The quadcopter closed loop system.
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Figure 3. The depiction of the velocity and position updates in PSO.
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Figure 4. The flowchart of the PSO program.
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Figure 8. The convergence of fitness function for the Y signal in case of IBC with the number of
iterations.
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Figure 9. The convergence of fitness function for the Z signal in case of IBC with the number of
iterations.
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Figure 10. The phi signal response for the IBC controller.
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Figure 11. The theta signal response for the IBC controller.
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Figure 12. The phi signal response for the PID controller.
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Figure 13. The theta signal response for the PID controller.
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Figure 14. The psi signal response for the PID and the IBC controllers.
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Figure 15. The Z signal response for the PID and the IBC controllers.
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Figure 16. The X signal response for the PID and the IBC controllers.
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Figure 17. The Y signal response for the PID and the IBC controllers.
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Figure 18. Control action U1 for the PID and the IBC controllers.

- - e - 3 - - 3 -
o a 2 3 a 5 S 7 8 o 10
t(sec)

Figure 19. Control action U2, U3, and U4 for PID controller.
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Figure 20. Control action U2, U3, and U4 for IBC.
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Figure 23. The Z signal response for the second trajectory of the quadcopter in case of the IBC.
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Figure 24. The X signal response for the second trajectory of the quadcopter in case of the IBC.
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Figure 25. The Y signal response for the second trajectory of the quadcopter in case of the IBC.
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Figure 26. Trajectory of the quadcopter in the presence of external disturbance in case of the IBC.
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