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ABSTRACT 

The main aim of this research paper is investigating the effectiveness and validity of Meso-Scale 

Approach (MSA) as a modern technique for the modeling of plain concrete beams. Simply 

supported plain concrete beam was subjected to two-point loading to detect the response in flexural. 

Experimentally, a concrete mix was designed and prepared to produce three similar standard 

concrete prisms for flexural testing. The coarse aggregate used in this mix was crushed aggregate. 

Numerical Finite Element Analysis (FEA) was conducted on the same concrete beam using the 

meso-scale modeling. The numerical model was constructed to be a bi-phasic material consisting of 

cement mortar and coarse aggregate. The interface between the two consisting materials was 

assumed fully bonded interface. In the ABAQUS program, the Extended Finite Element Method 

(XFEM) was employed for the treatment of the discontinuity problems, which is accompanied by 

cracking during the fracture process of plain concrete. The behavior and response of the beam in 

both meso-scale numerical analysis and experimental test were found in a good agreement. Another 

check was added by comparing the results using thin-beam theory assuming the concrete as a 

homogenous linear-elastic material. The result of this comparison showed that the meso-scale model 

analysis lies between theoretical and experimental models. 

Key Words: concrete fracture mechanics, meso-scale modeling, Extended Finite Element Method, 

flexural analysis. 

 

 النمذجة المتوسطة المدى للعتبات الخرسانية غير المسلحةفعالية 

 
وخمُٕت حذَثت  (Meso-Scale Approach) ِخىسػ اٌّذيِمُاس  رٌ فعاٌُت وصلاحُت ِٕهح ِٓ كهى اٌخحم هزا اٌبحثاٌهذف ِٓ 

، حُ  .حدشَبُاالأحٕاء ٔمطخُٓ ٌٍىشف عتٓ اسخدابُت لىي عتٕذ بسُطت اسٕاد ت فٍ حاٌتُخشسأ عتخبحُ ححًُّ  .اٌخشسأُت عتخا ٌّٕزخت الا

ٖ فٍ هز ىسشاٌخشٓ اٌّاٌشواَ واسخعًّ  .ٔحٕاءلاخخباس الاِخشابهت خشسأُت لُاسُت  عتخا ألإٔخاج ثلاثت تخشسأخٍطتوححعُش  حصُُّ

ت ّٕزخت اٌّخىسطاٌ أسخعّايب تخشسأُاٌ عخبعتًٍ ٔفس اٌ (FEA) اٌعذدٌ بأسخعّاي غشَمت اٌعٕاصش اٌّحذدة خحًٍُاٌ اٌخٍطت. اخشٌ

ٌخّاس بُٓ اٌشواَ ا .سّٕج واٌشواَ اٌخشٓاٌ ِىٔتِادة ثٕائُت اٌطىس حخأٌف ِٓ  ٌٍخشسأت عتًٍ شىًحُ بٕاء إٌّىرج اٌعذدٌ  .اٌّذي

غشَمت اٌعٕاصش  اسخعٍّج( ABAQUS. فٍ بشٔاِح اٌـ)اٌبعط افخشض فٍ حاٌت حّاسه واًِ ِع بععهّااٌخشٓ وِىٔت اٌسّٕج 

عتًٍ  حصىيحُ اٌِشحٍت اٌخىسُش.  ٌخشسأتِشوساأثٕاء  شمكاٌخ ٌّصاحبت، وا لاسخّشاسَتٌعلاج ِشاوً اٌ (XFEM) دة اٌّىسعتاٌّحذ

إظافت  . ولذ حُوالاخخباس اٌخدشَبٍ اٌّذي فٍ وً ِٓ اٌخحًٍُ اٌعذدٌ عتًٍ ٔطاق ِخىسػ فٍ احفاق خُذت ٌٍعخب اٌخشسأُ سٍىن واسخدابت

راث حصشف خطٍ.  ِشٔتِادة ِخدأست واٌخشسأت  اْ عتًٍ افخشاض ٕحُفتاٌ عتخا لاٌ إٌظشَت إٌخائح خها ِعسٔبّما ٌٍٕخائح فحص آخش

 .إٌظشَت واٌخدشَبُت إٌخائحبُٓ  حخىسػ اٌّذي اٌّخىسػ اٌّمُاسححًٍُ ّٔىرج  ٔخائح أْ اثاٌّماسٔ هزٖ ائحأظهشث ٔخ
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1. INTRODUCTION 

Concrete is the most common material used for the structural engineering work. It mainly consists of 

cement mortar and aggregate. Most of the concrete studies are in the macro scales for the simplicity in 

analyses and tests. The structural behavior of concrete is a result of the behavior of its components. 

The mechanical behavior of the materials is a result from the behavior of the smallest particle in the 

material, which might be in the atomic scale and gradually to the bigger particles at the macro scale of 

the material. Between the atomic and the macro scales, there are many analysis scales such as the 

micro and the meso-scales. For the better and accurate understanding of the mechanical behavior of the 

materials, these small effects of the small particles should be studied, that give the macro results seen 

by the naked eye. 

The behavior of the concrete was studied in the meso-scale, which is a scale that falls between the 

macro and micro scales Murayama, 2001. In general, the meso-scale modeling can be categorized 

into two types: continuum models and lattice models. In the continuum model, concrete is considered 

as a composite material consisting of coarse aggregate particles, cement mortar, and the interface 

between them, while in the lattice model, concrete is considered as a discrete model consisting of 

lattice elements, where elements are sub-divided according to their geometry and location of either 

mortar, aggregate, or interface element, Nitka, 2015. The discrete method requires enormous effort for 

the construction of the meso-scale model of concrete. In this paper, concrete considered as a 

continuum composite material consists of coarse aggregate particles, cement mortar, and the interface 

between them. This type of modeling was adopted by Huang, Chen, and Sun, 2014, Eftekhari, et al., 

2014, and Rubin, et al., 2015. For simplicity, the interface between aggregate particles and cement 

mortar was considered as a fully bonded state i.e. the aggregate is fully bonded with the cement mortar 

and there is no fracture is expected between them. 

The meso-scale modeling has two approaches, the image based method, and the parametrization 

modeling method. In the image-based method, modeling is done by taking a two-dimensional image of 

the concrete model that is assembled to get a three-dimensional numerical model, Bentz, et al., 1994. 

This approach is more expensive and time-consuming than the parametrization approach, where the 

concrete is randomly modeled with a suitable finite element mesh, Wang, et al., 2016. In the 

parametrization method, aggregate particles can be modeled in the stochastic system i.e. the shape, 

orientation, size, and location of the particles are randomly controlled in the cement mortar space, 

which is more compatible for the meso-scale modeling. In this paper, the parametrization approach is 

for the meso-scale modeling of concrete. 

Like other brittle materials when concrete is subjected to external stresses near its strength limits, it 

will reach the fracture point. During the loading period, cracks are introduced in concrete and 

gradually propagate. There are many methods for the analysis of the concrete fracture mechanics. For 

example, the smeared crack method introduced by Rashid, 1968 in which the tensile stress of the finite 

elements is limited to a specific value depending on the tensile strength of the concrete. When this 

tensile strength is reached, a stress relaxation in the element will be introduced and a crack is 

considered and a strain-softening is obtained. However, this method has a drawback, that is the results 

are affected by the element size and refining of the mesh, Menin, et al., 2009. Another common 

method is the re-meshing method, Swenson, and Ingraffea, 1988. In this method, a re-meshing is 

produced near the crack tip for every crack propagation step. This technique is uneconomic from the 

time-consuming point of view. 

Mathematically the crack propagation and fracture analysis problems might be solved. In the last few 

decades, a numerical method was developed. Such method is the Partition of Unity (PU), which is first 

produced by Melenk and Babuska, 1996. In this method, a set of functions are defined on a certain 

domain, and the enrichment method, which is developed by Gifford and Hilton, 1978, depends on the 

enriching region. The displacement approximation in this method is considered to be the summation of 
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the finite elements standard solution ustd, and the enrichment solution uenr, as can be seen in Eq. (1) 

below: 

                                                                                                                                                (1) 

Belytschko, 1988 proposed an enrichment method that is specialized in the enriching of localized 

regions. The Extended Finite Element Method (XFEM) developed by Belytschko and Black, 1999 is 

an enrichment method that is used for discontinuities problems such as crack propagation in concrete. 

It employs the PU technique for the numerical solution.  

In this paper, plain concrete beam subjected to flexural stresses was analyzed numerically in the meso-

scale model. Flexural stresses were produced by a two-point loading system. The XFEM was utilized 

for the discontinuity problem produced by the existing of the crack interface in the concrete's domain. 

ABAQUS program was used for the numerical modeling and analyzing. To examine the validity of 

numerical modeling, the results of the numerical model was compared with the experimental results of 

the same plain concrete beam subjected to the same loading. In addition, they were compared with the 

theoretical results of thin beam theory application assuming the concrete as a linear elastic material. 

2. THE EXTENDED FINITE ELEMENT METHOD (XFEM) 

The Extended Finite Element Method (XFEM), is a numerical technique used to solve the 

discontinuities problems that occur in brittle materials such as concrete, Belytschko and Black, 1999. 

These discontinuities might be a result of crack interface produced from the fracture of the material in 

a certain region of the domain, or might be a material interface that produced in a composite material 

located at the interface zone between the two materials, (aggregate particles and cement mortar), 

Khoei, 2015. 

The XFEM is based on the PU method. In spite the XFEM uses a localized enrichment function, an 

enrichment of nodes is developed nearby the discontinuity. The enrichment is done mathematically by 

the use of the enrichment functions. The basic equation of the XFEM solution is shown in Eq. (2), 

Khoei, 2015: 

 

 (𝑥)  ∑ 𝑁𝑖(𝑥) ̅𝑖
𝑁
𝑖=1  ∑ �̅�𝑖(𝑥)(∑ 𝑝𝑗(𝑥)𝑀

𝑗=1 �̅�𝑖𝑗)
𝑁
𝑖=1                                                                             (2) 

where; 

 (𝑥) : displacement of the domain. 

N: the total number of nodes of the standard finite element domain. 

𝑁𝑖(𝑥) : shape function of the standard nodes. 

 ̅𝑖 : degree of freedom of the standard nodes. 

�̅�𝑖(𝑥) : shape function of the enriched nodes. 

𝑝𝑗(𝑥) : enrichment function. 

�̅�𝑖𝑗 : degree of freedom of the enriched nodes. 

M: number of enrichment nodes. 

 

There are two major types of discontinuities in the concrete structure. The weak discontinuity and 

strong discontinuity, Khoei, 2015. The weak discontinuity is described by the interface between 

aggregate particles and cement mortar, while the strong discontinuity is described by the crack 

interface in the domain. 

3. ENRICHMENT FUNCTIONS 

The enrichment functions are the basis of the XFEM approximation. There are many types of 

enrichment functions, that are included in the solution according to their functionality. Such 
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enrichment function is the Heaviside enrichment function H(x), Moe¨ s N., 1999. This function is used 

for the strong discontinuities problems as shown below. 

Let a domain Ωbe considered with crack interface that split the domain into a positive region Ω
+

and a 

negative region Ω
–
by the interface Г as shown in Fig. 1. The Heaviside enrichment function for this 

domain can be illustrated in Eq. (3): 

 

Figure 1. Body domain crossed by crack discontinuity. 

 

𝐻(𝑥)  {1 𝑥 ∈ Ω+

0 𝑥 ∈ Ω−                                                                                                                              (3) 

The most important matter in the analysis of the fracture mechanics is the representation of the crack 

geometry in the domain. The XFEM facilities this representation by the use of the Level Set Method 

(LSM), which is a function used for the tracking of the crack and the crack tip geometry, Sethian, 

1999. The basic idea of the LSM is to define a level set function φ(x) that the discontinuity is at zero 

level set function. The LSM can be defined in Eq. (4) shown below: 

 

𝜑(𝑥)  ∥ 𝑥 − 𝑥Γ ∥ 𝑠𝑖𝑔𝑛(𝑛Γ(𝑥 − 𝑥Γ))                                                                                                                                   

(4) 

 

where xГ is the projection of the point x on the interface, and nГ is the vector from the point x to the 

interface. The symbol ||  || denotes the distance between xГ and x, the term sign represents a function 

that takes three values (-1), (0), or (1). Eq. (4) shown above is also called the signed distance. 

There is another technique for enrichment that is used extensively in the XFEM, which is called the 

ramp function. This function is calculated from the absolute value of the level set method (LSM) as 

shown in Eq. (5) shown below: 

 

|𝜑(𝑥)|  {
−𝜑(𝑥) 𝑖𝑓 𝜑(𝑥) < 0

 𝜑(𝑥) 𝑖𝑓 𝜑(𝑥) ≥ 0
                                                                                                            (5)                                                                                                                

 

4. LOADING SYSTEM AND MODEL DIMENSIONS 

Two point loading system for a plain concrete beam was produced for the numerical and experimental 
analysis. The dimensions, boundary conditions, and loading system are illustrated in Fig. 2. 
The dimension of the beam model was accomplished due to the British Standard for the hardened 
concrete prisms test BS 1881: Part 109, 1983. The concrete beam was notched at the mid-span length 
of the beam on the bottom face for crack initiation. In the experimental test, an electric strain gauge (of 
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a resistance 120 ohm and an effective length of 50 mm) was attached at the mid-span of the bottom 
face of the middle width of the beam for the strain measurement due to the applied load. 
 
 

 
Figure 2. Loading system of the concrete beam model. 

 

5. FINITE ELEMENT MODEL PROPERTIES AND CONSTRUCTION 

The finite element model was constructed, meshed, and analyzed using the ABAQUS program with 
the help of EXCEL sheets for the necessary calculations. In this study, concrete was modeled as a bi-
phasic material consisting of coarse aggregate particles and cement mortar. The total quantity of the 
coarse aggregate particles for the two-dimensional area of the beams was computed from the mix 
design of the concrete. This quantity was sub-divided according to the grading percentage of the 
coarse aggregate. The area percentage of each aggregate particle size is shown in Table 1 below: 
 

Table 1. Percentage of coarse aggregate particles for each size segment. 

Particle 
Size Range, 

mm 

Percentage 
of The 

Total Area, 
% 

37.5-20 3.20 

20-10 72.33 
10-4.75 23.55 

4.75-2.36 0.92 
 
The quantities of concrete used for beam production are shown in Table 2. 
 

Table 2.Concrete mix design quantities for the beam models. 

Material Quantity 

Cement, kg/m
3 

342 
Mixing Water, kg/m

3
 205 

Coarse Aggregate, kg/m
3
 976 

Fine Aggregate, kg/m
3
 775 

Estimated air Voids, % 2 
 
The coarse aggregate used for the numerical was modeled like as crushed aggregate, by assuming 
polygon shapes for the coarse aggregate particles. The air voids in the numerical model were assumed 
to be circular in shape with a diameter of 4 mm, Wang, et al., 2015. 

The size of the coarse aggregate particles was selected randomly between the range limits of each 
aggregate size segment as shown in Table 1. The orientation and coordinate of each aggregate particle 
were also selected randomly in the two-dimensional model. 
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The properties of the cement mortar and the aggregate particles used for the numerical analysis are 
illustrated in Table 3 shown below: 
 

Table 3.Meso-scale material properties. 

Material 
Modulus of 
Elasticity, 

MPa 

Poisson's 
Ratio 

Max. Tensile 
Stress, MPa 

Fracture 
Energy, N-
mm/mm

2 

Cement 
Mortar

 25000 0.2 1.894 0.06 

Aggregate 75000 0.2 - - 
 
The properties of the material shown in Table 3 were a quote from Wang et. al. 2015. The maximum 
tensile stress shown in Table 3, is defined as the maximum stress located at the crack tip before the 
loading is exhibited. It was assumed to be equal to the maximum tensile splitting strength of the 
concrete, which was measured in the laboratory according to ASTM C496-04, 2004. The splitting 
strength of the concrete was (𝑓  1.894) MPa for a compressive strength of(𝑓 

  27.5) MPa. 
The numerical modeling of the plain concrete beam by the meso-scale method is illustrated in Fig. 3 
shown below; 

 
Figure 3.Meso-scale numerical model for the plain concrete beam. 

6. RESULTS AND DISCUSSION 

A plain concrete beam subjected to flexural was modeled in the meso-scale for the fracture analysis 
using the XFEM. In addition, an experimental test specimen was fabricated and tested to compare the 
results of the numerical analysis with the experimental test results. In the experimental test, three 
similar specimens were made with the same mix design proportions, and the average results were 
considered. Also, a splitting and compressive tests were made for tensile, and compressive strengths 
respectively. Plate.1 below shows the loading machine during the testing period of the concrete beam. 
 

 
Plate 1. Laboratory testing machine for the plain concrete beam. 
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The average applied failure load in the experimental test was 20.99 kN, while in the finite element 
model, the maximum applied load was 21.20 kN. The load versus strain curves in the experimental, 
numerical, and theoretical analyses for the concrete beam are shown in Fig. 4: 
 

 
Figure 4.Load vs. strain for the experimental, numerical, and theoretical analysis. 

 
Theoretical values were calculated according to the Bernoulli's thin beam theory which illustrated in 
Eq. (6): 
 

   
 

  
 

𝑀  

    
                                                                                                                                (6) 

 

Where; 

  : concretetensile strain in (mm/mm). 

 : concrete bending stress in (MPa). 

Ec: modulus of elasticity of concrete in (MPa), which is equal to   00√    according to ACI 318-14, 

2014, where 𝑓 
  is the compressive strength of the concrete in (MPa). 

M: bending moment produced by the externally applied forces in (N-mm). 

C: the distance between the neutral axis to the outer face of the beam in (mm). 

I: the moment of inertia of the cross-section area in (mm
4
). 

 
As shown in Fig. 4, the strain magnitudes of the finite element meso-scale model have a good 
agreement with these of theoretical solution. While the experimental test exhibited a decrease in strain 
magnitudes in comparison with the theoretical and numerical results. This is may be attributed to the 
approximation in estimating of some of the concrete properties. 

The bending stress distribution along the concrete beam predicted by numerical analysis is shown in 
Fig. 5 below. As shown in this figure, the bending stress along the beam span has a coarse curve. The 
coarseness in the bending stress curves is a result of the non-homogeneity of the concrete material, 
which is produced from extremely difference in strength components (coarse aggregate particles and 
the cement mortar). Moreover, the bending stress curve vanishes at the mid-span of the beam, where 
the crack was initiated and propagated later. 

The existing of the air voids in the numerical beam model produced a stress concentration zone 
surrounding these voids, consequently increasing the probability of crack development and 
propagation. Fig. 6 shows the effect of the air voids existence on the distribution of the bending stress 
inside the concrete. 
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Figure 5.Meso-scale bending stress diagram along the concrete beam. 

 

 
Figure 6.Meso-scale bending stress diagram along the concrete beam. 

 

7. CONCLUSIONS 

The two-dimensional plane stress numerical analysis was applied to plain concrete beam subjected to a 
two-point loading case for fracture response detection. The meso-scale model was employed for the 
finite element model construction of the concrete. The concrete was assumed to be consisting of 
aggregate and cement mortar. The interface between the two components was assumed to be fully 
bonded. XFEM was employed for the analysis of the crack propagation in the concrete beam. the 
numerical analysis was done using the ABAQUS program. Moreover, an experimental specimen was 
done for the comparison between the numerical and the experimental results. From the numerical, 
theoretical, and experimental results, the following conclusions were drawn: 
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1. The meso-scale model of the concrete was found as a good approach that takes the non-
homogeneity of the concrete into account and shows the importance of the non-homogeneity 
on the macro behavior of the concrete. 

2. The XFEM is a powerful tool used in the FE analysis of the crack evolution and propagation of 
concrete under flexural. 

3. The coarse aggregate particles which are floating in cement mortar affects the total behavior of 
the concrete and might increase its strength in some solo case when the particle opposed the 
crack propagation path. 

4. The existence of the air voids inside the concrete introduces a stress concentration in the 
vicinity of them result in a decrease, in overall concrete strength. 

5. The results of the electric strain gage may effect by many factors such as the existing of the air 
voids around the area where the strain gage was attached.  
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