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Abstract

The experimental and numerical analysis was performed on pipes suffering large plastic
deformation through expanding them using rigid conical shaped mandrels, with three different
cone angles (15, 250, 35°) and diameters (15, 17, 20) mm. The experimental test for the strain
results investigated the expanded areas. A numerical solution of the pipes expansion process was
also investigated using the commercial finite element software ANSYS. The strains were
measured for each case experimentally by stamping the mesh on the pipe after expanding, then
compared with Ansys results. No cracks were generated during the process with the selected
angles. It can be concluded that the strain decreased with greater angles of conical shape and an
increase in expansion ratio results in an increase of expansion force and a decrease in the pipe
thickness and length resulting in pipe thinning and shortening. Good agreement is evident between
experimental and ANSYS results within discrepancy (16.90017%) in the X direction and
(27.68698%) in the Y direction. Also, the stress distribution is investigated and it can be
concluded that the case of Diameter (D, cone) = 35mm and (A) = a = 15° is the optimum.
Keywords: Solid tubular expansion, Expanded pipe, analytical model, finite element analysis,
ANSYS.
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1. INTRODUCTION

Experimental, numerical and analytical solutions of pipes have attracted the attention of
many researchers in both theoretical and applied sciences. There are many technical and industrial
applications in which the pipes play an important role due to their high strength and geometric
shape. They are widely used in aerospace, marine, military, automotive, oil and gas, and other
industrial fields. One of the main applications is in the oil and gas industry, particularly in the oil-
well casing. Using a rigid conical shaped core for pipe expansion is a process of plastic
deformation of the material on the tapered part of the inserted object as in Fig.1 to change the
initial radius by extended pipe to the required value. Tahseen, et al., 2015, study included the
influence of work hardening property which makes this study with a great importance in how to
deal with this property. This study showed a good agreement between both theoretical and
practical parts, especially in determining the relative forming stress necessary for the success of
the operation that showed the relative forming stress increases as the expansion ratio and the semi-
cone angle of the mandrel increases has ranged between (0.1-0.7) of the samples tested. Noting
that the formation is influenced by the first was much larger than the second was. Whereas the
relative forming stresses decrease as the relative thickness increases for the same expansion ratio
and the semi-cone angle of the mandrel formation. Fischer, et al., 2006 in their paper dealt with a
metal forming process leading to a conical extension of circular cylindrical shells (tubes). This
forming process is called ‘flaring’. Analytical expressions are derived for determining stress and
strain fields as well as the force required for driving the expansion. The results are compared to
finite element solutions and show reasonably good agreement. Shakeri, et al., 2007, studied
theoretical solutions for the expansion of the wall of the pipes that were placed under the influence
of different types of loading. Karrech and Seibi, 2010, derived a model for predicting the stress
in the expanded area. Joseph and Jacob, 2003 and Jialing, et al., 2010, developed a process in
which elastic-plastic behavior was addressed in thick-walled cylinders. Seibi, et al., 2005,
concluded that there is a regular pressure between the pipe shape and rigid core during the
expansion process. Omar, 2011 and Omar and Tasneem, 2013, introduced theoretical and
experimental solutions to predict the variation in both length and thickness of the pipe.
Venugopal, et al., 2017, defined end forming as forming the end of tubular forms either by
inverting the tube or by expanding it. It finds application in many fields such as in the automotive
and aerospace sectors as power transmission elements, fuel lines, exhaust pipes etc. The main aim
of the present work is to expand the AA2014 alloy tubes with different die sets without any
fracture. Deform 2D software was used for performing simulations on expanding the tubes with
different die set (punch) values having different forming angles (a =15°, 30°, and 45°) and
expansion ratios (rp/r0 =1.39, 1.53 and 1.67). In the previous papers, the relation between the
angle of cone and stress are not investigated, so this paper, several sizes of pipe are used with a
different configuration, like outer diameter of cone mandrel (15,17, and 20) mm with different
mandrel angles (15°,25°, and 35°) respectively and found the strain distribution for each case.

2. NUMERICAL SIMULATIONS

Simulating of the three different cone angles (15°, 25°, and 35°), were investigated using three
diameters for mandrel cones in the values of (15, 17, and 20) mm. Commercial FEA software
ANSYS 15 was used; the stroke steps on rigid cones were defined explicitly over a time span.
Within each step, several solutions (sub-steps or timesteps) were performed to apply the pressure
gradually. At each sub-step, a number of equilibrium iterations were performed to obtain a
converged solution, ANSY'S 15.0, User guide, 2015.

The solid coned-head was modeled as a rigid body. Contact procedure in ANSYS 15 was used
to model the complex interaction between the pipe and cone, the 2D contact element TARGE169
was used, to represent 2D (cone set) surfaces which were associated with the deformed body
(pipe) represented by 2D contact elements of CONTA175. “mandrel profile” shown in Fig. 2-A-B
was designed depending on the pipe diameter illustrated in following D,= 12.7,16 and
19mm.
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(Element PLANE182) was used for 2-D modeling of solid structures that are shown in Fig. 2.
The element can be used as either a plane element (plane stress, plane strain or “generalized plane
strain”) or an axisymmetric element. It is defined by four nodes having two degrees of freedom at
each node, translations were in the nodal x and y directions. The “element” was considered to
have plasticity, hyperelasticity, stress stiffening, large deflection, and large strain capabilities
Johnson K.l.et al 2004,

Most elements types require material properties. Depending on the application, they may be
taken as Nakasone and Yoshimoto, 2006:

o Linear or nonlinear.
. Isotropic, orthotropic, anisotropic.
. Constant temperature or temperature-dependent.

The Pipes material is copper and its properties were determined experimentally with a
coefficient of friction as 0.15 Ibraheem, 2006. The plastic response was modeled using the Von
Mises yield criterion. The element shape was specified, mapped and meshed, as in Fig. 3 which
shows the meshing. This stage is important as it is the step by which the geometrical model is
converted to a finite element model (FEM).

In studying the contact between two bodies, the surface of the first one is conventionally taken
as a contact surface while the other is considered as a target surface. The “contact -target” pair
concept has been widely used in finite element simulations, ANSYS 15, 2015. For rigid-flexible
contact, the “contact surface” is associated with the deformable body; and the “target surface”
must be the rigid surface. For flexible-flexible contact, both contact and target surfaces are
associated with deformable bodies. The contact and target surfaces constitute a “contact Pair”.
ANSYS supports both rigid-to-flexible and flexible-to-flexible surface-to-surface, contact
elements, which were used as "target surface” and a "contact surface” to form a contact pair. The
target surface is modeled with TARGE169 or TARGE 170 (for 2-D or 3-D, respectively),
Johnson, 2004.

3. EXPERIMENTAL PART
3.1 Chemical Composition Test

The specimen material used is copper of commercial standards - ASTM B280 - C11000
Volume, ASM Handbook, 1990 and its purity was determined by spectrometer analysis via
atomic absorption and found to be 99.91 copper, Table 1 illustrates the chemical composition of
material and Fig. 4 represents the chemical composition apparatus in the (Standardization and
Quality Control Device).

3.2 Pipe Material Properties

In order to determine the mechanical properties of the copper pipe, a tensile test was
performed with the dimensions illustrated in Fig. 5 where (d) =16.8mm and gauge length = (4d).
Fig. 6 shows the dimensions of the specimen as given by the Standard Test Methods for
Tension Testing of Metallic Materials 2015. Fig. 7 illustrates the stress-strain curve from which
the important mechanical properties of pipe material were obtained which can be used in
numerical and experimental tests like yield stress, modulus of elasticity, ultimate stress and
tangent modulus all shown in Table 2, the experiments were conducted in the (Institute of
Technology / Baghdad, Mechanical Department).

3.3 Expanding Pipe Test

In this work, copper pipes, as described in Table 2, were tested as a model for the pipe
expansion process, where sets of three mandrels, were designed and manufactured on the basis of
different variables (diameters and angles). Lubricants were used for the purpose of obtaining the
best results in the expansion of the sample pipes. The dies were manufactured with diameters of
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(Do = 15mm, Do = 20mm and Do = 17mm). Three angles (15°, 25° 35°) were taken for each
diameter, so the total number of dies were 9 by 3 angles per-diameter. A bar saw as well as a
turning machine was used for manufacturing and experimentation. Practical tests were carried out
by taking samples with the prerequisite copper pipes to be expanded to the present diameters and
angles with the use of lubricants for smoothness and easiness of formation during the experiment.
The samples were mounted on a fixture well grabbed by the chuck of the turning machine while
the mandrel is inserted in a steady, gradual, and linear movement from the other side, as can be
observed in Fig. 8, to reach the required formation and expansion to the inner diameter of the pipe.

3.4 Strain Measurement Test

The pipe was screened with an initial grid measurement of (5 *5) mm, and after the test it
can be apparent that the length of the grid had changed while the deviation was measured by the
AutoCAD program to find the change in the length, (insertion the picture of grid spacemen with
rural and making scale to the picture using reference point after that the distance is measured
between two points in the grid which represent the change in length). Then the strain is
determined, as the image was inserted and scaled then the change of the dimensions in the length
of the grid was calculated as showing Fig. 9.

4. RESULTS AND DISCUSSION

Fig 10 illustrates the strain in (X) axis with Dy cone = 15mm with o = 15°, 25°, and 35°
respectively. Where Fig. 10-a shows that the strain increases firstly and then decreases within a
distance interval of 10-20 mm then rises again till the end. Fig. 10-b had similar behavior while
Fig. 10-c indicates an increase in the strain at first then becomes approximately constant. Good
agreement is evident between Ansys results and experimental results. The discrepancy being
(15.71186%).
Fig. 11 demonstrates the behavior of the strain in the (X) axis having Do(coney=17mm
with a=15°, 25°, and 35°cnsecutively. In Fig. 11-a the curve goes approximately constant, till the
of distance 25mm then increases up to the end. While Fig. 11-b shows that strain increases
sharply then remains constant for a distance range of (10-20) mm after which it declines to the
end. Fig. 11-c the strain takes the trend of dropping down and rising again two times with the
point of 20mm being in the middle between those two parts. Again, the Ansys results prove little
difference from the practical ones as the discrepancy factor is 15.55882%.

Fig. 12 represents the strain in the (X) axis with DO ¢one = 20mm while a=15°, 25°, and 35°. Part A
is showing increasing and decreasing in a zigzag rhythm within a period of approximately 10mm
starting from 5 mm and ending at 30mm. Parts B and C have approximately the same behavior as
in the previous case. The Ansys analysis and the experimental results are almost identical. The
discrepancy is (19.42984%).

It can be noticed in Fig. 13 that the () axis resembles the strain with (Dg cone =15mm) and the
same values for o as in the above cases. It is clear that in Fig. 13-a the strain is increasing at first
before decreasing in an interval of 10-20mm to return to rising finally. Fig. 13-b shows that the
curve takes a (V) shape from a strain value of up 0.06 to the lowest point of 0.007 in a of period
10-20mm. Fig. 13-c shows a Bell-like distribution of date for a distance range of (5-15) mm, and
from a peak of 0.095 to a bottom of 0.01 strain values. The theoretical analysis is in good
coordination with the practical results. The discrepancy is (25.77037%).

Fig. 14 representing the strain on the (Y) axis having Dy cone being (17mm) and a is taken as 15°,
25° and 35° for each case. Fig. 14-a shows the strain to be almost constant within the distance
between 5-20mm to rise to a peak of 0.12 then declining to 0.01 at the end, while Fig. 14-b
behavior to be of almost fixed value till the point of 15mm where it drops sharply to 0.05 then
return to its starting value of 0.1 at the end. For the third condition in Fig. 14-c, the curve shows a
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gradual and almost steady decrease from 0.12 at the beginning (point 5mm) to 0.02 at the finish
(distance +30mm). The discrepancy is (35.59921%).

Finally, in the case of DO coe =20mm with the same three values of o as in all other
experiments, Fig. 15 illustrates the strain in (YY) axis, where, as in Fig. 15-a, it starts as almost
constant at values ranging close to (0.1-0.12), and within the distance between (5 and 20) mm, then
plunges down to 0.04 to rise a little at the end. Fig. 15-b shows that the strain decreases
dramatically by about 0.07, in the interval of (5mm) starting at the distance of 5mm, then increases
sharply within the period of 15-20mm, lastly it takes another small v shape to end at about (0.8). In
Fig. 15-c it can clearly be noticed that the strain begins from its low range of values (0.015-0.03) to
rise fast to its peak, within the period 15-20mm, then decline a little before increasing slightly again
at the end. Almost identical alignment is clear between theoretical and true values. The discrepancy
(21.69136%).

From the above figures, the increased and decreased curves in the points of deformed shape is
happening by generation the tension and compression stresses in the formed region that caused the
metal flow in the plastic zone which is the nonlinear zone, so increasing and decreasing appeared in
the response.

The variation in the strain caused is due to friction forces with the pipe wall because of the
applying load. Also, it can be concluded that the strain in the X and Y-axis decreased with
increasing the angle of conical shape. An increase in expansion ratio results in an increase of
expansion force and a decreasing in the pipe thickness and length resulting in pipe thinning and
shortening. The average discrepancy between the experimental and numerical results is
(16.90017%) in the X direction and (27.68698%) in the Y direction. Figs 17, 18, 19, 20, 21, and 22
show the strain distribution in the X and the Y axis at the various conditions of experimentation.

Figs 22, 23, and 24 show the equivalent stress distribution in the X and the Y axis at the various
conditions of experimentation. It can be observed that Diameter (D, cone) = 35mm and (A) = a =
15° had the less equivalent stress, i.e. this case is the optimum.

5. CONCLUSIONS

1- Good agreement is evident between experimental and ANSYS results within a discrepancy
of (16.90017%) in the X direction and (27.68698%) in the Y direction.

2- The strain decreases with greater angle of the conical shape.
3- The higher the expansion ratio, the greater the expansion force, but with lesser pipe
thickness and length.

It can be concluded that the case of Diameter (D, cone) = 35mm and (A) = a = 15° is the
optimum.
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Figure 1. Mandrel die profile configuration. (A) dimensions of rigid profile (B) section of rigid

pipe.
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Table 1. The chemical composition of copper pipe
Elem. Cu Zn Pb Sn P Si S As Ag Bi Cd Sb Se Te Au
0.000
Expr. | 99.91 | 0.008 | 0.003 | 0.008 | 0.019 | 0.013 | 0.005 | 0.007 | 0.003 | 0.002 | 0.001 | 0.008 . 0.006 | 0.004
Stand. | 99.90 | - - - - - - - - - - - - -

Figure 4. Atomic Absorption Spectroscopy.

112




Number 8 Volume 24  August 2018 Journal of Engineering

Figure 5. Tensile Test Machine and specimen.

Table 2. The mechanical properties of the copper pipe.

Modulus of Elasticity ( E ) 124GPa

Tangent Modulus of Elasticity (

E 0.8 E GPa
T)

Yield Stress ( 6Y ) 105 MPa

Ultimate tensile 203.8Mpa

Poisson’s Ratio ( V) 0.34

24" ‘

testing machine
jaws should not
extend beyond this
limit

§

NN

-
e e o o e e

I

%
>
I

Figure 6. Dimensions of the specimen.
(d=16.8 and gauge length = 4d)
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Figure 8. Steps for expanding pipe.
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"Figure 18. Pipe strain in (X) axis with Do cone = 20mm and (A)=0=15°, (B)=a=25°,(C) =a=35°
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Figure 20. Pipe strain in (Y) axis with Do cone =17mm and (A) =0=15°, (B)=a=25°, (C)=0=35°

— ANSYS| [ s ANSYS
= R15.0| | seeese R15.0
TIME=100 SUB =208 :
EFIOY  (AVE) 1€ 2017 TnE=100 JUL 15 2017
R3YE=0 01:40:23 PeTOY  (AVE 14:21:42
D =13
0 = 148612
2 = cossaz I
/ *
o 1
u s
— R
~-Lessna ~itzses —-0Eats BT —.taesls oy o m TE o
-tz -.10z88 oz -.ostst -.oomeez B e ssezs oz T e S
Do=20mm , Rlpha=15 Do=20mm , Alpha=25
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Table 3. the equivalent stress distribution on X and Y axis at the various conditions of
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experimentation.

Diameter

15mm

17mm

20mm

Stress

max. Equivalent
Stress (MPa)

max. Equivalent
Stress (MPa)

max. Equivalent
Stress (MPa)

Angle

o=15°

20399.5

22697.4

24619.5

a=25°

12817.9

16020.6

15121.6

a=35°

10927.4

14414

13669.9
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Figure 22. equivalent stress of pipe with D, cone =15mm and (A)=a=15°, (B)=0=25°, (C)=0=35°
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Figure 23. equivalent stress of Pipe with D, cone =17mm and (A)=0a=15°, (B)=0=25°, (C)=0=35°
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Figure 24. equivalent stress of Pipe with D, cone =20mm and (A)=0=15°, (B)=a=25°, (C)=a=35°
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