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ABSTRACT 

This paper proposes a new structure of the hybrid neural controller based on the identification 

model for nonlinear systems. The goal of this work is to employ the structure of the Modified 

Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer 

Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as 

an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight 

parameters of the hybrid neural structure with its serial-parallel configuration are adapted by 

using the Back propagation learning algorithm. The ability of the proposed hybrid neural 

structure for nonlinear system has achieved a fast learning with minimum number of epoch, 

minimum number of neurons in the hybrid network, high accuracy in the output without 

oscillation response as well as useful model for a one step ahead prediction controller for the 

nonlinear CSTR system that is used in the MATLAB simulation. 

Key Words: NARMA-L2Model, MLP neural Network, Modified Elman Neural Network, 

Back Propagation Algorithm, Nonlinear CSTR System. 
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 احمد صباح الاعرجي

 أستاذ مساعد دكتور

 التكنولوجيةالجامعة  -قسم هندسة السيطرة والنظم
 

 زنكنهالجعفرشيماء 

 ماجستير

 الجامعة التكنولوجية -قسم هندسة السيطرة والنظم

 الخلاصة

النموذج التعريفي للمنظومات اللاخطية. ان الهدف منن  أساسمبنيا على  مسيطر عصبي هجينهيكل جديد ليقترح ث أن هذا البح

بند  منن ومنوذج تعندد  NARMA-L2فني هيكنل   MENNالمعدلة هذا العمل هو توظيف هيكل النموذج الشبكة العصبية ايلمن

لكنني يكنون هيكننل عصنبي هجنين جدينند والنذخ يمكننن اسنتمدام  كنمنوذج معننرف ومسنيطر  خطنني  MLPالطبقنات بيرسنبترون 

التننوازخ قنند تكيننف باسننتمدا  -العناصننر لهيكننل العصننبي الهجننين مننو هيكننل التننوالي أوزانللمنظومننات المطيننة و اللاخطيننة. ان 

ترح للمنظومات اللاخطية قد حقق سرعة تعلم مو . ان امكاوية هذا الهيكل العصبية الهجين المقخوارزمية التعلم ا وتشار العكسي
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وبندون تذبنذا ا سنتجابة  اقل عدد من دورات التعلم وكذلك اقل عدد للعقد الشنبكة العصنبية الهجيننة منو دقنة عالينة فني ا خنراج

خ اسنتمد  فني ضافة الى ذلك استمدا  النموذج كمسيطر تنبوئي لمطوة واحدة لنظا  اللاخطية لمزان مفاعل مسنتمر ا انارة النذإ

 الحقيبة البرمجية ماتلاا. 

, خوارزمية ا وتشار  MENN, الشبكة العصبية  MLP, الشبكة العصبية NARMA-L2وموذج : الرئيسية الكلمات

 CSTRالنظا  اللاخطية العكسي, 

 

1. INTRODUCTION 

Nowadays, Artificial Neural Networks (ANNs) are great tools for machine learning with 

applications in many areas comprising pattern recognition, diagnostic, optimization, system 

identification, and control...etc., Al-Dunainawi, et al., 2017. The neural network models can be 

utilized in control strategies that demand a global model of the system forward or inverse 

dynamics, and these models are obtainable in the form of neural networks, which have been 

trained using neural based system identification techniques, Astrov and Berezovski, 2015. 

Therefore, the artificial neural network controllers have been effectively introduced to improve 

the performance of nonlinear control systems by comparing with conventional controllers in 

terms of no exact mathematical model needed Astrov and Berezovski, 2015. 

Generally, the Nonlinear Autoregressive Moving Average (NARMA) neural network model has 

been applied successfully for identifying and controlling different types of the dynamic systems, 

George and Basu, 2012, such as: 

George, 2008, utilized the application of NARMA-L2 controller for the speed control of 

Separately Excited DC Motor by using the conventional controllers and compared the 

performance of the proposed controller based on NARMA-L2 neural network with the 

traditional one which is sim-power systems based chopper controller DC motor model and 

simulated model by using MATLAB toolbox to modeling the system and the NARMA-L2 

controller has eliminated the chopper and it's  control circuit also it was capable to regulate the 

speed about the rated value. Also, Valluru, et al., 2012, compared the implementation of the 

NARMA-L2 Neuro controller with the conventional PID controller, for speed regulation of the 

series connected DC motor. NARMA- L2 controller showed that, excellent speed tracking 

performance with no overshoot. 

Hua-Min, et al., 2011, proposed off-line trained NARMA-L2 neural network to identify the 

forward dynamics of the nonlinear non-minimum phase system Unmanned Aerial Vehicle 

(UAV). The identification is done by redefining and inverting the output to force the real output 

to approximately track the desired trajectory. A good tracking performance results were achieved 

by using the proposed control scheme. Putrus, 2011, used different control strategies jacketed 

Continuous Stirred Tank Reactor (CSTR) which were conventional feedback control (PI and 

PID) and neural network (NARMA-L2, and NN Predictive) controller in order to develop the 

dynamic behavior and control where was done through utilizing two methods for finding the 

optimum parameters. The results showed that NARMA-L2 is the best controller and it is better 

than the NN Predictive in terms of Mean Square Error (MSE). Also, Jeyachandran and 

Rajaram, 2014, showed that in controlling of the CSTR process NARMA-L2 neural controller 

is faster and has good setpoint tracking capability as compared with the predictive neural and 

Neuro-Fuzzy controllers. Kananai and Chancharoen, 2012, proposed a stiff PD with the 

NARMA-L2 controller for a nonlinear arm of the robot mechanical system in order to give a 

good tracking accuracy. Pedro and Ekoru, 2013 compared the performance of NARMA-L2 

controller with a passive linear controller for the vehicle suspension system. The results showed 

that the NARMA-L2-based active vehicle suspension system performed better than the passive 

vehicle suspension system. In addition to that, Fourati and Baklouti, 2015 showed that 

controlling a bioreactor system by NARMA-L2 neural control strategy was better than the use of 
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the direct inverse neural controller where NARMA-L2 was able to take care of nonlinear aspect 

and remove the output static error as well as it has a better trajectory tracking ability. 

The motivation of this paper is taken from, Putrus, 2011, Jeyachandran and Rajaram, 2014, 

where the modeling and the controlling for nonlinear CSTR system were still to be challenged.  

The main contribution of this work is the construction of a new hybrid neural network model 

based on NARMA-L2 with Modified Elman Neural Network structure in order to improve the 

performance of modeling and controlling of the nonlinear system. The new proposed hybrid 

modeling and controller is compared with NARMA-L2 based MLP neural network in terms of: 

 Leaning speed. 

 Hidden layer node number. 

 Hybrid neural network model order. 

 Oscillation reduction 

 One step ahead controls action prediction. 

 

2. IDENTIFICATION OF DYNAMICAL SYSTEMS USING NEURAL NETWORK 

MODELING 

In general, the system identification technique is a very important in the modeling of control 

system applications also it is considered as a very essential step for analysis and controller design 

of nonlinear processes in many applications. There are five standard steps in the identification 

model based on neural network, Nells, 2001 as shown in Fig. 1. This section focuses on 

nonlinear system identification based on the NARMA-L2 neural network model structure.  

2.1 NARMA-L2 Model: 

Nonlinear Autoregressive Moving Average (NARMA) model is an accurate representation for 

the nonlinear discrete-time dynamic plant. Also, it is used to get exact input-output behavior for 

a finite-dimensional in the neighborhood of the equilibrium state. The implementation of such 

non-linearity in real-time control systems is very difficult and to overcome the computational 

complexity of the NARMA model, NARMA-L1and NARMA-L2 are introduced, Sharma, 2014. 

For practical implementation, NARMA-L2 is more convenient by using multilayer neural 

networks and is considered as the most popular neural network control architecture which is used 

to transform nonlinear system dynamics into linear dynamics by canceling the nonlinearities. 

The obvious advantage of the NARMA-L2 controller addressed as no required for additionally 

trained sub-model, the neuro-controllers, such as Model Reference Adaptive Control (MRAC) 

and Model Predictive Controller (MPC) requires an additional sub-model to be trained, Al-

Dunainawi, et al., 2017. Taylor expansion is the main difference between these two 

approximations for NARMA-L1 Taylor expansion is around (y(k), y(k-1), …, y(k-n+1), u(k)=0, 

u(k-1)=0, …, u(k-n+1)=0)  while for NARMA-L2 Taylor expansion is around the scalar  u(k)=0. 

The approximations are given as follows, Sharma, 2014: 

For the NARMA-L1 model is: 

𝑦𝑝(𝑘 + 𝑑) = 𝑓[̅𝑦𝑝, … , 𝑦𝑝(𝑘 − 1), 𝑦𝑝(𝑘 − 𝑛 + 1)] + ∑ 𝑔𝑖
𝑛−1
𝑖=1 [𝑦𝑝, … , 𝑦𝑝(𝑘 − 1), 𝑦𝑝(𝑘 − 𝑛 +

1)] × u(𝑘 − 𝑖)                             (1) 

Where, 

𝑓̅ = F[𝑦𝑝, … , 𝑦𝑝(𝑘 − 1), … 𝑦𝑝(𝑘 − 𝑛 + 1)]                         (2) 

𝑔𝑖 =
𝜕𝐹

𝜕𝑢(𝑘−𝑖)
                  (3) 
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For the NARMA-L2 model is: 

𝑦𝑝(𝑘 + 𝑑) = 𝑓[𝑦𝑝, … , 𝑦𝑝(𝑘 − 𝑛 + 1), 𝑢(𝑘 − 1), … 𝑢(𝑘 − 𝑛 + 1)] + 𝑔[𝑦𝑝, … , 𝑦𝑝(𝑘 − 𝑛 +

1), 𝑢(𝑘 − 1), … 𝑢(𝑘 − 𝑛 + 1)] × 𝑢(𝑘)                                                                                        (4) 

Where 

𝑓 = F[𝑦𝑝, … , 𝑦𝑝(𝑘 − 1), 𝑦𝑝(𝑘 − 𝑛 + 1), 𝑢(k − 1), … 𝑢(𝑘 − 𝑛 + 1 )]                                         (5) 

𝑔 =
𝜕𝐹

𝜕𝑢(𝑘)
                                                                                                                                      (6) 

   

The f [-] function in the NARMA-L1 model is the only function of the past values of the output y 

[-] while g [-] function is a function of the past values of the output y [-] and the control effort u 

[-]. But, the f [-] and g [-] functions in the NARMA-L2 model, are the functions of the past 

values of both the output y [-] and control effort u [-] therefore, the NARMA-L2 model is 

preferred to a universal tracking controller because its realization is simpler compared to 

NARMA-L1 model, Sharma, 2014. 

So the NARMA-L2 neural network model consists of two neural networks as the nonlinear 

functions 𝑓[−]and �̂�[−] as N1 [-] and N2 [-] respectively and the type of the neural network 

structure is Multi-Layer-Perceptron (MLP).   

Fig. 2 shows the general structure of the NRAMA-L2 model based on MLP with a serial-parallel 

configuration to identify the nonlinear system. 

The network’s output yields the prediction error, Zurada, 1992. 

𝑒 (𝑘 + 1) = 𝑦𝑝(𝑘 + 1) − 𝑦𝑚(k + 1)       (7) 

The learning algorithm is usually based on the minimization (with respect to the network 

weights) of the following objective cost function: 

𝐸 =
1

2
∑ (ei (𝑘 + 1))2𝑛𝑝

𝑖=1 =
1

2
∑ 𝑦𝑝

𝑖 (𝑘 + 1)𝑛𝑝
𝑖=1 − 𝑦𝑚

𝑖 (k + 1))2                                                     (8) 

Where 

 np: is the number of patterns. 

ei: is the error of each step. 

𝑦𝑝
𝑖 : is the actual output of the plant of each step. 

𝑦𝑚
𝑖 : is the model output of the plant of each step. 

 

From Fig. 2, the training mechanism of the N1[-] and N2[-] are applied as supervised learning 

Back Propagation algorithm in order to reduce the error between the actual output yp(k + 1)and 

neural model output ym(k + 1)and is equal to zero approximately then the model will complete 

the same actual output response. 

When identification of the plant is complete then g [-] can be approximated by ĝ [-] and f [-] by 

𝑓[−]  and the NARMA-L2 model of the plant can be described in Eq. (9). 

𝑦𝑚(𝑘 + 1) = 𝑓[𝑦𝑝, … , 𝑦𝑝(𝑘 − 𝑛 + 1), 𝑢(𝑘 − 1), … 𝑢(𝑘 − 𝑛 + 1 )] + ĝ[𝑦𝑝, … , 𝑦𝑝(𝑘 − 𝑛 +

1), 𝑢(𝑘 − 1), … 𝑢(𝑘 − 𝑛 + 1 )] × 𝑢(𝑘)                                                                                        (9) 

 

The Jacobian of the plant can be defined as the ĝ [-] neural network and the sign definite in the 

operation region of the plant to ensure the uniqueness of the plant inverse at that operating 

region, Jeyachandran and Rajaram, 2014, therefore, a linear relationship between the control 

effort and the output in the NARMA-L2 model. So the control effort that gives the output equal 

to the desired value is taken from the control law is as in Eq. (10). 

𝑢(𝑘 + 1) =
𝑦𝑑𝑒𝑠 (𝑘+1)−�̂�[𝑦𝑝,… ,𝑦𝑝(𝑘−𝑛+1),𝑢(𝑘−1),…𝑢(𝑘−𝑛+1)]

ĝ[𝑦𝑝,… ,𝑦𝑝(𝑘−𝑛+1),𝑢(𝑘−1),…𝑢(𝑘−𝑛+1)]
                                                           (10) 



 

121 
 

Journal  of  Engineering   Volume  25    February    2019 Number  2 
 

 

The structure of the multi-layer perceptron (MLP) neural network is shown in Fig. 3, which 

consists of three layers: the input layer, the hidden layer and the output layer, Zurada, 1992; Al-

Araji, 2009. So the network weights can be defined as follows: 

anV : is the hidden layer weight matrix. 

baW : is the output layer weight matrix. 

 

To illustrate the calculations, the general ath neuron in the hidden layer shown in Fig. 3 is 

considered. For each nth number of the input nodes of these inputs there is a weight V  associated 

with it. The first calculation is performed within the neuron consists of calculating the weighted 

sum anet  of as in Eq. (11), Zurada, 1992; Al-Araji, 2009. 





nh

a

nana ZVnet
1

                          (11) 

Where nh: hidden nodes number. 

 

Next, the output of the neuron ah is computed as a continuous sigmoid function of the anet  as in 

Eq. (12), Zurada, 1992 and Al-Araji, 2009. 

H( anet )= 1
1

2



 anet

e
             (12)

      

Once, hidden layer outputs are got, they will pass it to the output layer where a one linear neuron 

is used to calculate the weighted sum (neto) of its inputs as in Eq. (13). 

neto b  = 



nh

a

aba hW
1

               (13) 

Where 

baW  : is the weight between the hidden neuron ah  and the output neuron. 

 

The one linear neuron passes the sum (neto b ) through a linear function of slope 1 as in Eq. (14). 

)( bb netcLO                             (14) 

2.2 The proposed hybrid neural network model 
The NARMA-L2 model with modified Elman neural network structure is used to propose a new 

hybrid neural network model in order to improve the performance of modeling and controlling of 

the nonlinear system. Thus, the structure of the Modified Elman Neural Network (MENN) is 

shown in Fig. 4. It consists of four layers as explained below, Medsker and Jain, 2001, 

Abdulkarim and Garko, 2015. 

 The input layer which is only a buffer layer “Scale” 

 The output which represents a linear activation function and it sums the fed signals.  

 The hidden layer which has nonlinear activation functions such as sigmoidal functions. 

 The context layer which is used only to memorize the previous activation of the hidden layer. 

From Fig. 4 it can be seen that the following equations, Al-Araji, et al., 2011. 

h(k)=F[V1U(k),V2ℎ°(𝑘)]        (15) 

O(k)=Wh(k)        (16) 

Where, 
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V 1: input units weight matrix. 

V 2: context units weight matrix. 

W: weight matrix. 

F: is a non-linear vector function. 

 

The output of the context unit in the modified Elman network is given by Eq. (17) as in Fig. 5: 

 

ℎ𝑗
°(𝑘) = 𝛼ℎ𝑗

°(𝑘 − 1) + 𝛽ℎ𝑗(𝑘 − 1)                                                                                            (17) 

Where, 

ℎ𝑗
°(𝑘): the jth context unit output. 

ℎ𝑗(𝑘): the jth hidden unit output. 

𝛼: Self-connections feedback gain. 

𝛽: Weight from the hidden units to the context units at the context layer. 

 

The value of an adopted is the same for all self-connections and is not modified by the training 

algorithm. The value of 𝛼 and 𝛽are selected randomly between (0 and 1). A value of 𝛼 nearer to 

1 enables the context unit to aggregate more pattern outputs.  

To explain the calculations in the hidden layer, firstly, it considers the general jth neuron in the 

hidden layer with weight V1j,i where the ithis the inputs to this neuron and the jth neuron in the 

context layer with weight V2j,i. So it is calculating the weighted sum jth net of the inputs as in Eq. 

(18). 

 

𝑛𝑒𝑡𝑗 = ∑ 𝑉1𝑗,𝑖
𝑛𝑖
𝑖=1 × 𝑋𝑖 + 𝑉2𝑗,𝑛𝑖+1 × ℎ𝑗

°                                                                                      (18) 

 

Then the output of the neuron ℎ𝑗   is calculated as the continuous bipolar sigmoid function of the 

𝑛𝑒𝑡𝑗 as in Eq. (19): 

𝐻(𝑛𝑒𝑡𝑗) =
2

1−𝑒
−𝑛𝑒𝑡𝑗

− 1                                                                                                              (19) 

 

For single output neural network in the output layer, it is used a single linear neuron to calculate 

the weighted sum (𝑛𝑒𝑡𝑜) as in Eq. (20). 

𝑛𝑒𝑡𝑜𝑘 = ∑ 𝑊1,𝑗 × ℎ𝑗
𝑛𝑘
𝑗=1                                                                                                               (20) 

 

Where, 

nh: is the number of the hidden neuro (nodes). 

 

Then the linear activation function in the single neuron in the output lead to pass the sum (𝑛𝑒𝑡𝑜𝑘) 

as in Eq. (21): 

𝑂𝑘 = 𝐿(𝑛𝑒𝑡𝑘)    where    L(x) = x                                                                                               (21) 

 

The proposed new hybrid NARMA-L2 neural structure based on MENN as shown in Fig. 6 

where it is replaced MLP neural network by MENN to improve the modeling and controlling of 

nonlinear system in terms of fast leaning model with minimum number of epoch and minimum 

number of node in the hidden layer, increasing the order of the model lead to reduce the output 

oscillation and generate the best control action for one step ahead prediction. 

The output of the model will be as in Eq. (22). 

ym(k + 1)=N1+N2×u (k)                                                                                                           (22) 
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2.3. Learning algorithm: 

The back propagation training algorithm is the most commonly used algorithm in training 

artificial neural networks (ANN), Al-Araji, et al., 2011. It performs gradient descent to adjust 

the weights of a network such that the overall network error is minimized. Conceptually, an 

epoch calculates the output of the network using feedforward pass for each training pattern and 

propagates errors signals back from the output layer towards the input layer to determine weight 

changes. 

The learning rate η which is directly proportional to the size of steps taken in the weight space is 

a very important parameter in the training process. A too small η value may lead to a very slow 

learning process while a large value may lead to a divergent behavior. A variable learning rate 

will do better if there are many local and global optima for the objective function, Abdulkarim 

and Garko, 2015. The equations of the back propagation learning algorithm for the NARMA-L2 

mode based MLP neural network are as follows: 

 The connection matrix between the hidden and output layers is: 

∆𝑊𝑘𝑗(𝑘 + 1) = −𝜂
𝜕𝐸

𝜕𝑊𝑘𝑗
                                                                                                             (23) 

𝜕𝐸

𝜕𝑊𝑘𝑗
=

𝜕𝐸

𝜕𝑛𝑒𝑡
×

𝜕𝑛𝑒𝑡

𝜕𝑊𝑘𝑗
                                                                                                                      (24) 

𝜕𝐸

𝜕𝑊𝑘𝑗
=

𝜕𝐸

𝜕𝑜𝑘
×

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡
×

𝜕𝑛𝑒𝑡

𝜕𝑊𝑘𝑗
                                                                                                            (25) 

𝜕𝐸

𝜕𝑊𝑘𝑗
=

𝜕𝐸

𝜕𝑞(𝑘+1)
×

𝜕𝑞(𝑘+1)

𝜕𝑜𝑘
×

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡
×

𝜕𝑛𝑒𝑡

𝜕𝑊𝑘𝑗
                                                                                     (26) 

∆𝑊𝑘𝑗(𝑘 + 1) = η × ℎ𝑗 × 𝑒𝑘                                                                                                       (27) 

𝑊𝑘𝑗(𝑘 + 1) = 𝑊𝑘𝑗(𝑘) + ∆𝑊𝑘𝑗(𝑘 + 1)                                                                                      (28) 

 The connection matrix between input and hidden layers is: 

∆𝑉𝑗𝑖(𝑘 + 1) = −𝜂
𝜕𝐸

𝜕𝑉𝑗𝑖
                                                                                                                (29) 

𝜕𝐸

𝜕𝑉𝑗𝑖
=

𝜕𝐸

𝜕𝑛𝑒𝑡
×

𝜕𝑛𝑒𝑡

𝜕𝑉𝑗𝑖
                                                                                                                        (30) 

𝜕𝐸

𝜕𝑉𝑗𝑖
=

𝜕𝐸

𝜕𝑜𝑘
×

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡𝑗
×

𝜕𝑛𝑒𝑡𝑗

𝜕𝑉𝑗𝑖
                                                                                                            (31) 

𝜕𝐸

𝜕𝑉𝑗𝑖
=

𝜕𝐸

𝜕𝑞(𝑘+1)
×

𝜕𝑞(𝑘+1)

𝜕𝑜𝑘
×

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡𝑘
×

𝜕𝑛𝑒𝑡𝑘

𝜕ℎ𝑗
×

𝜕ℎ𝑗

𝜕𝑛𝑒𝑡𝑗
×

𝜕𝑛𝑒𝑡𝑗

𝜕𝑉𝑗𝑖
                                                            (32) 

∆𝑉𝑗𝑖(k + 1) = η × f(𝑛𝑒𝑡𝑗)′ × 𝑈𝑖 ∑ 𝑒𝑘𝑊𝑘𝑗
𝐾
𝑘=1                                                                                                    (33) 

𝑉𝑗𝑖(𝑘 + 1) = 𝑉𝑗𝑖(𝑘) + ∆𝑉𝑗𝑖(𝑘 + 1)                                                                                             (34) 

 

The equations of the back propagation learning algorithm for the NARMA-L2 mode based 

MENN are as follows: 

 The connection matrix between the hidden and the output layers is: 

∆𝑊𝑘𝑗(𝑘 + 1) = −𝜂
𝜕𝐸

𝜕𝑊𝑘𝑗
                                                                                                             (35) 

𝜕𝐸

𝜕𝑊𝑘𝑗
=

𝜕𝐸

𝜕𝑛𝑒𝑡
×

𝜕𝑛𝑒𝑡

𝜕𝑊𝑘𝑗
                                                                                                                      (36) 

𝜕𝐸

𝜕𝑊𝑘𝑗
=

𝜕𝐸

𝜕𝑜𝑘
×

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡
×

𝜕𝑛𝑒𝑡

𝜕𝑊𝑘𝑗
                                                                                                            (37) 

𝜕𝐸

𝜕𝑊𝑘𝑗
=

𝜕𝐸

𝜕𝑞(𝑘+1)
×

𝜕𝑞(𝑘+1)

𝜕𝑜𝑘
×

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡
×

𝜕𝑛𝑒𝑡

𝜕𝑊𝑘𝑗
                                                                                     (38) 

∆𝑊𝑘𝑗(𝑘 + 1) = η × ℎ𝑗 × 𝑒𝑘                                                                                                      (39) 
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𝑊𝑘𝑗(𝑘 + 1) = 𝑊𝑘𝑗(𝑘) + ∆𝑊𝑘𝑗(𝑘 + 1)                                                                                      (40) 

 The connection matrix between context and hidden layers is as follows: 

∆𝑉𝐶𝑗𝑐(𝑘 + 1) = −𝜂
𝜕𝐸

𝜕𝑉𝐶𝑗𝑐
                                                                                                           (41) 

𝜕𝐸

𝜕𝑉𝐶𝑗𝑐
=

𝜕𝐸

𝜕𝑛𝑒𝑡
×

𝜕𝑛𝑒𝑡

𝜕𝑉𝐶𝑗𝑐
                                                                                                                    (42) 

𝜕𝐸

𝜕𝑉𝐶𝑗𝑐
=

𝜕𝐸

𝜕𝑜𝑘
×

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡𝑐
×

𝜕𝑛𝑒𝑡𝑐

𝜕𝑉𝐶𝑗𝑐
                                                                                                         (43) 

𝜕𝐸

𝜕𝑉𝐶𝑗𝑐
=

𝜕𝐸

𝜕𝑞(𝑘+1)
×

𝜕𝑞(𝑘+1)

𝜕𝑜𝑘
×

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡𝑘
×

𝜕𝑛𝑒𝑡𝑘

𝜕ℎ𝑗
×

𝜕ℎ𝑗

𝜕𝑛𝑒𝑡𝑐
×

𝜕𝑛𝑒𝑡𝑐

𝜕𝑉𝐶𝑗𝑐
                                                          (44) 

∆𝑉𝑗𝑖(k + 1) = η × f(𝑛𝑒𝑡𝑗)′ × 𝑈𝑖 ∑ 𝑒𝑘𝑊𝑘𝑗
𝐾
𝑘=1                                                                              (45) 

𝑉𝐶𝑗𝑐(𝑘 + 1) = 𝑉𝐶𝑗𝑐(𝑘) + ∆𝑉𝐶𝑗𝑐(𝑘 + 1)                                                                                   (46) 

 The connection matrix between input layer and hidden layer is: 

∆𝑉𝑗𝑖(𝑘 + 1) = −𝜂
𝜕𝐸

𝜕𝑉𝑗𝑖
                                                                                                                (47) 

𝜕𝐸

𝜕𝑉𝑗𝑖
=

𝜕𝐸

𝜕𝑛𝑒𝑡
×

𝜕𝑛𝑒𝑡

𝜕𝑉𝑗𝑖
                                                                                                                        (48) 

𝜕𝐸

𝜕𝑉𝑗𝑖
=

𝜕𝐸

𝜕𝑜𝑘
×

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡𝑗
×

𝜕𝑛𝑒𝑡𝑗

𝜕𝑉𝑗𝑖
                                                                                                           (49) 

𝜕𝐸

𝜕𝑉𝑗𝑖
=

𝜕𝐸

𝜕𝑞(𝑘+1)
×

𝜕𝑞(𝑘+1)

𝜕𝑜𝑘
×

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡𝑘
×

𝜕𝑛𝑒𝑡𝑘

𝜕ℎ𝑗
×

𝜕ℎ𝑗

𝜕𝑛𝑒𝑡𝑗
×

𝜕𝑛𝑒𝑡𝑗

𝜕𝑉𝑗𝑖
                                                            (50) 

 

∆𝑉𝐶𝑗𝑐(k + 1) = η × f(𝑛𝑒𝑡𝑗)′ × ℎ𝑐
𝑜 ∑ 𝑒𝑘𝑊𝑘𝑗

𝐾
𝑘=1                                                                          (51) 

𝑉𝑗𝑖(𝑘 + 1) = 𝑉𝑗𝑖(𝑘) + ∆𝑉𝑗𝑖(𝑘 + 1)                                                                                             (52) 

 

3. SIMULATION RESULTS 

In this section, the nonlinear Continuous Stirred Tank Reactor (CSTR) process is taken to 

execute the identification algorithm in order to construct the model and controller design based 

on the NARMA-L2 neural network by using two structures that were explained in section two. 

The mathematical model of the CSTR is defined by Eq. (53) and Eq. (54) that have been taken 

from Al-Araji, 2015; Dagher and Al-Araji, 2013. The parameters of the CSTR model can be 

defined in nominal operating condition as in Table 1. 

 

𝑑Ca

dt
=

q

Vol
(Caf − Ct(t)) − Ko × Ca(t) × e

⌈
−E

RT(t)
⌉
                                                                            (53) 

𝑑T(t)

dt
=

q

Vol
(Tf − T(t)) +

(−∆H)×Ko×Ca(t)

ρ×ρc

× e
⌈

−E

RT(t)
⌉

×
ρc×Cρc

ρc×Cρc
×Vol

× q
c
(t) [1 − e

−h0
ρc×Cρc

×qc(t)] ×

(Tcf − T(t))                                                                                                                                (54) 

 

Where, 

Ca (t): is the product concentration output. 

T(t): is the temperature of the reactor. 

qc(t): is the coolant flow-rate as the control signal. 

 

Fig. 7 shows the schematic diagram of the CSTR process and the objective of the operation is to 

control the concentration Ca (t) by changing a coolant flow-rate qc (t) as a control signal then the 
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temperature of the reactor is changed that leads to the product concentration is controlled 

Putrus, 2011; Jeyachandran and Rajaram, 2014 and Al-Araji, 2015. 

The input 200 samples to CSTR model is chosen PRBS signal with high-frequency low 

amplitude change and the mean value is equal to zero in order to excite all nonlinear regions of 

the plant. For the open loop, the step changes in the coolant flow-rate response of the CSTR has 

a highly nonlinear dynamic behavior as shown in Figs. 8 –a & b respectively. Based on Fig. 8, 

there is an essential need for adding a scaling function at neural network terminals. This function 

will perfom a  conversion between scaled values and actual values and vice versa. This will help 

to overcome numerical problems that are involved within real values, 

A continuous time model representation is adopted to be numerically solved using the Runge 

Kuta fourth order method 4RK where the time constant is equal to 1min and the simulation step 

size for this purpose is equal to 0.1min based on Shanoon theorem.  

Based on Eq. (53) and Eq. (54), the dynamic model of the CSTR plant is described by Eq. (55) 

as 3rd order system depends on the high nonlinear in the dynamic behavior as shown in Fig. 8.  

𝑦𝑚(𝑘 + 1) = 𝑁1[𝑦𝑝(𝑘), 𝑦𝑝(𝑘 − 1), 𝑦𝑝(𝑘 − 2), 𝑢(𝑘 − 1), 𝑢(𝑘 − 2)] + 𝑁2[𝑦𝑝(𝑘), 𝑦𝑝(𝑘 −

1), 𝑦𝑝(𝑘 − 2), 𝑢(𝑘 − 1), 𝑢(𝑘 − 2)]𝑢(𝑘)                                                                                    (55) 

 

Where, 

N1 [-] and N2 [-] are neural networks which approximate𝑓[−]𝑎𝑛𝑑�̂�[−] of Eq. (9), respectively. 

 

Since each of N1[-] and N2[-] has five inputs based on Eq. (55) and the nodes in the NARNA-L2 

neural network structure based on MLP is [5:11:1] where the number of the input node in the 

input layer, the node  number in the hidden layer based on 2n+1and the node number in the 

output layer respectively while the nodes in the NARNA-L2 neural network structure based on 

MENN is [5:11:11:1] where the number of the input node in the input layer, the number of node 

in the hidden layer based on 2n+1, the node number in the context layer and the node number of 

in the output layer respectively. 
During the training phase many times in order to find the optimal number of the node in the 

hidden layer for NARMA-L2 based on MLP model was equal to 9 with the number of epoch was 

equal to 600 while the optimal number of the node in the hidden layer for NARMA-L2 based on 

MENN model was equal to 6 and  the number of the training cycle was equal to 500, therefore, 

the number of the nodes in the NARNA-L2 neural network structure based on MLP is [5:9:1] 

while the numbers of the nodes in the NARNA-L2 neural network structure based on MENN is 

[5:6:6:1]. 

Fig. 9-a shows the best response of the NARMA-L2 based MLP neural network model with the 

actual plant output for learning patterns after 600 epoch and Fig. 9-b shows the excellent 

response of the NARMA-L2 based MENN model with the actual plant output for learning 

patterns after 500 epoch. So it can be observed that each model output following actual plant 

output and without over learning problem occurred in the training cycle. 

Figs. 10-a, b show the average of ten times of the MSE for the training phase in order to 

investigate the optimal nodes in the hidden layer for each model. 

The Jacobian of each model is shown in Fig. 11 where N2[-]: is sign definite in the region of 

interest which means that the models are invertable and can be implemented for the controller as 

the inverse control structure. 

The Mean Square Error (MSE) calculated for the latest epochs, which is defined by Eq. (8) can 

be shown in Fig.12-a of the NRMA-L2 based MLP model while Fig.12-b of the NARMA-L2 

based MENN model. 
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Fig. 13-a shows the reasonable response of the NARMA-L2 based MLP neural network model 

with the actual plant output for testing patterns whileFig. 13-b shows the excellent response of 

the NARMA-L2 based MENN model with the actual plant output for the same testing set. 

Three different values are used as step change desired output during 300 samples in order to 

confirm the proposed hybrid NARMA-L2 based MENN model has the ability to be a controller 

for tracking the desired output. Fig. 14 can be observed that the actual output of the CSTR plant 

is excellent at tracking the desired output and it has small overshoot without oscillation in the 

output as well as the steady state error equal to zero when it is used NARMA-L2 based on 

MENN model while the output of the plant has high overshoot and error in the steady state when 

it is used NARMA-L2 based on MLP model. 

Fig. 15 shows the control action of the NARMA-L2 based on MENN model which has a small 

spick action of the coolant flow-rate to track the desired concentration output and to minimize 

the steady-state error to the zero value. 

 

4. CONCLUSIONS 

The numerical simulation results of a new proposed hybrid NARMA-L2 model based on MENN 

with BP algorithm is presented in this paper for modeling and controlling the nonlinear CSTR 

system which shows the following capabilities: 

 Modifying and improving the performance of the nonlinear model output with no over-

learning problem. 

 Increasing the speed of the learning model by decreasing the number of training cycles.     

 Minimizing the number of nodes in the hidden layer depending on the context layer. 

 Increasing the order of the hybrid neural network model depending on the self-

connections. 

 Reducing the output oscillation. 

 Best control action generation for one step ahead prediction which leads to excellent set 

point tracking. 
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Figure 2. NARMA-L2 identification model with serial-parallel configuration. 
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Figure 3. The structure of multi-layer perceptron neural networks. 
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Figure 4. The structure of modified Elman neural networks. 

 

 

 

 

 

 

 

 

 

Figure 5. The connection neuron in the hidden layer of MENN. 
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Figure 6. The proposed NARMA-L2 based MENN identification model. 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 7. The CSTR with a cooling jacket. 
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Figure 8-a. The PRBS input signal used to excite the plant. 

 
Figure 8-b. The open loop response of the plant to the PRBS input signal. 

 
Figure 9-a. The response of the NARMA-L2 based MLP model with the actual plant output for 

learning patterns. 
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Figure 9-b. The response of the NARMA-L2 based MENN model with the actual plant output 

for learning patterns. 

 
Figure 10-a.The optimal number of nodes to an average of ten times MSE of NARMA-L2 based 

MLP. 

 
Figure 10-b.The optimal number of nodes to an average of ten times MSE of NARMA-L2 based 

MENN. 
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Figure 11.The plant Jacobian for learning pattern of NARMA-L2 based on MLP model and 

MENN model. 

 

 

 
 

Figure 12-a. MSE for an optimal number of nodes (9 nodes) for NARMA-L2 based MLP 

model. 
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Figure 12-b. MSE for an optimal number of nodes (6nodes) for NARMA-L2 based MENN 

model. 

 

 

 
 

Figure 13-a. The response of the NARMA-L2 based MLP model with the actual plant output for 

the tasting patterns. 
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Figure 13-b. The response of NARMA-L2 based MLP model with the actual plant output for the 

tasting patterns. 

 

 

 

 
 

Figure14. The response of the actual plant with NARMA-L2 controller based on MLP and 

MENN models. 
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Figure 15. The coolant flow rate control signal. 

 

 

Table 1. The parameters of the  CSTR Operating Condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter Description Nominal Value 

Q Process flow-rate 100 l min-1 

Caf Intel feed concentration 1 mol l-1 

Tf Feed temperature 350 K 

Tcf Inlet coolant temperature 350 K 

Vol Reactor volume 100 l 

ha Heat transfer coefficient 7× 1010 cal min-1 K-1 

k0 Reaction rate constant 7.2× 1010 min-1 

𝐸
𝑅⁄  Activation energy 9.95 × 103 K 

∆H Heat of reaction -2 × 105cal mol-1 

ρ, ρ
c
 Liquid densities 1000 g-1 l-1 

Cρc
, Cp Specific heats 1 cal g-1 K-1 

qc Coolant flowrate 103.41 l. min-1 

T Reactor temperature 440.2 K 

Ca Product concentration 8.36 × 10−2mol l-1 


