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ABSTRACT

This paper proposes a new structure of the hybrid neural controller based on the identification
model for nonlinear systems. The goal of this work is to employ the structure of the Modified
Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer
Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as
an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight
parameters of the hybrid neural structure with its serial-parallel configuration are adapted by
using the Back propagation learning algorithm. The ability of the proposed hybrid neural
structure for nonlinear system has achieved a fast learning with minimum number of epoch,
minimum number of neurons in the hybrid network, high accuracy in the output without
oscillation response as well as useful model for a one step ahead prediction controller for the
nonlinear CSTR system that is used in the MATLAB simulation.

Key Words: NARMA-L2Model, MLP neural Network, Modified EIman Neural Network,
Back Propagation Algorithm, Nonlinear CSTR System.
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1. INTRODUCTION

Nowadays, Artificial Neural Networks (ANNSs) are great tools for machine learning with
applications in many areas comprising pattern recognition, diagnostic, optimization, system
identification, and control...etc., Al-Dunainawi, et al., 2017. The neural network models can be
utilized in control strategies that demand a global model of the system forward or inverse
dynamics, and these models are obtainable in the form of neural networks, which have been
trained using neural based system identification techniques, Astrov and Berezovski, 2015.
Therefore, the artificial neural network controllers have been effectively introduced to improve
the performance of nonlinear control systems by comparing with conventional controllers in
terms of no exact mathematical model needed Astrov and Berezovski, 2015.

Generally, the Nonlinear Autoregressive Moving Average (NARMA) neural network model has
been applied successfully for identifying and controlling different types of the dynamic systems,
George and Basu, 2012, such as:

George, 2008, utilized the application of NARMA-L2 controller for the speed control of
Separately Excited DC Motor by using the conventional controllers and compared the
performance of the proposed controller based on NARMA-L2 neural network with the
traditional one which is sim-power systems based chopper controller DC motor model and
simulated model by using MATLAB toolbox to modeling the system and the NARMA-L2
controller has eliminated the chopper and it's control circuit also it was capable to regulate the
speed about the rated value. Also, Valluru, et al., 2012, compared the implementation of the
NARMA-L2 Neuro controller with the conventional PID controller, for speed regulation of the
series connected DC motor. NARMA- L2 controller showed that, excellent speed tracking
performance with no overshoot.

Hua-Min, et al., 2011, proposed off-line trained NARMA-L2 neural network to identify the
forward dynamics of the nonlinear non-minimum phase system Unmanned Aerial Vehicle
(UAV). The identification is done by redefining and inverting the output to force the real output
to approximately track the desired trajectory. A good tracking performance results were achieved
by using the proposed control scheme. Putrus, 2011, used different control strategies jacketed
Continuous Stirred Tank Reactor (CSTR) which were conventional feedback control (Pl and
PID) and neural network (NARMA-L2, and NN Predictive) controller in order to develop the
dynamic behavior and control where was done through utilizing two methods for finding the
optimum parameters. The results showed that NARMA-L2 is the best controller and it is better
than the NN Predictive in terms of Mean Square Error (MSE). Also, Jeyachandran and
Rajaram, 2014, showed that in controlling of the CSTR process NARMA-L2 neural controller
is faster and has good setpoint tracking capability as compared with the predictive neural and
Neuro-Fuzzy controllers. Kananai and Chancharoen, 2012, proposed a stiff PD with the
NARMA-L2 controller for a nonlinear arm of the robot mechanical system in order to give a
good tracking accuracy. Pedro and Ekoru, 2013 compared the performance of NARMA-L2
controller with a passive linear controller for the vehicle suspension system. The results showed
that the NARMA-L2-based active vehicle suspension system performed better than the passive
vehicle suspension system. In addition to that, Fourati and Baklouti, 2015 showed that
controlling a bioreactor system by NARMA-L2 neural control strategy was better than the use of
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the direct inverse neural controller where NARMA-L2 was able to take care of nonlinear aspect
and remove the output static error as well as it has a better trajectory tracking ability.

The motivation of this paper is taken from, Putrus, 2011, Jeyachandran and Rajaram, 2014,
where the modeling and the controlling for nonlinear CSTR system were still to be challenged.
The main contribution of this work is the construction of a new hybrid neural network model
based on NARMA-L2 with Modified EIman Neural Network structure in order to improve the
performance of modeling and controlling of the nonlinear system. The new proposed hybrid
modeling and controller is compared with NARMA-L2 based MLP neural network in terms of:

e Leaning speed.

e Hidden layer node number.

e Hybrid neural network model order.

e Oscillation reduction

e One step ahead controls action prediction.

2. IDENTIFICATION OF DYNAMICAL SYSTEMS USING NEURAL NETWORK
MODELING

In general, the system identification technique is a very important in the modeling of control
system applications also it is considered as a very essential step for analysis and controller design
of nonlinear processes in many applications. There are five standard steps in the identification
model based on neural network, Nells, 2001 as shown in Fig. 1. This section focuses on
nonlinear system identification based on the NARMA-L2 neural network model structure.

2.1 NARMA-L2 Model:

Nonlinear Autoregressive Moving Average (NARMA) model is an accurate representation for
the nonlinear discrete-time dynamic plant. Also, it is used to get exact input-output behavior for
a finite-dimensional in the neighborhood of the equilibrium state. The implementation of such
non-linearity in real-time control systems is very difficult and to overcome the computational
complexity of the NARMA model, NARMA-L1and NARMA-L2 are introduced, Sharma, 2014.
For practical implementation, NARMA-L2 is more convenient by using multilayer neural
networks and is considered as the most popular neural network control architecture which is used
to transform nonlinear system dynamics into linear dynamics by canceling the nonlinearities.
The obvious advantage of the NARMA-L2 controller addressed as no required for additionally
trained sub-model, the neuro-controllers, such as Model Reference Adaptive Control (MRAC)
and Model Predictive Controller (MPC) requires an additional sub-model to be trained, Al-
Dunainawi, et al., 2017. Taylor expansion is the main difference between these two
approximations for NARMA-L1 Taylor expansion is around (y(k), y(k-1), ..., y(k-n+1), u(k)=0,
u(k-1)=0, ..., u(k-n+1)=0) while for NARMA-L2 Taylor expansion is around the scalar u(k)=0.
The approximations are given as follows, Sharma, 2014:

For the NARMA-L1 model is:

Yk +d) = f[yp, v Yk = 1), y,(k —n + 1)] + X g [yp, e Yplk = 1), y,(k —n +

D] x ulk — i) 1)

Where,

f= F[yp,...,yp(k— D,y —n+ 1)] (2)
oF

9t = Stk (3)
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For the NARMA-L2 model is:
vk +d) = flyp, o . yp(k =+ 1), ulk — 1), ..utk —n+ D] + g[yp, . , yp(k —n+

D,ulk —1),..utk —n+ 1] x uk) (4)
Where
f= F[yp, v Yplk =1, y(k—n+1D,uk—-1),..utk—n+1 )] (5)
oF
- ou(k) (6)

The f [-] function in the NARMA-L1 model is the only function of the past values of the output y
[-] while g [-] function is a function of the past values of the output y [-] and the control effort u
[-]. But, the f [-] and g [-] functions in the NARMA-L2 model, are the functions of the past
values of both the output y [-] and control effort u [-] therefore, the NARMA-L2 model is
preferred to a universal tracking controller because its realization is simpler compared to
NARMA-L1 model, Sharma, 2014.

So the NARMA-L2 neural network model consists of two neural networks as the nonlinear
functions f[—]and g[—] as N1 [-] and N2 [-] respectively and the type of the neural network
structure is Multi-Layer-Perceptron (MLP).

Fig. 2 shows the general structure of the NRAMA-L2 model based on MLP with a serial-parallel
configuration to identify the nonlinear system.

The network’s output yields the prediction error, Zurada, 1992.
e(k+1)=y,(k+1)—ynk+1) (7)
The learning algorithm is usually based on the minimization (with respect to the network
weights) of the following objective cost function:

E =3 (e (k+1))% = ST, yi(k + 1) — yh (k + 1))? (8)
Where

np: is the number of patterns.

el: is the error of each step.

y;;: is the actual output of the plant of each step.

yt.: is the model output of the plant of each step.

From Fig. 2, the training mechanism of the N1[-] and N2[-] are applied as supervised learning
Back Propagation algorithm in order to reduce the error between the actual output y,(k + 1)and
neural model output y,,, (k + 1)and is equal to zero approximately then the model will complete
the same actual output response.

When identification of the plant is complete then g [-] can be approximated by g [-] and f [-] by
f[=] and the NARMA-L2 model of the plant can be described in Eq. (9).

Yk +1) = f[yp, v Yplk—=n+Dutk—1),..u(k—n+1 )] + g[yp, e Yplk—n+
D,utk—1),.u(k—n+1 )] X u(k) 9

The Jacobian of the plant can be defined as the g [-] neural network and the sign definite in the
operation region of the plant to ensure the uniqueness of the plant inverse at that operating
region, Jeyachandran and Rajaram, 2014, therefore, a linear relationship between the control
effort and the output in the NARMA-L2 model. So the control effort that gives the output equal
to the desired value is taken from the control law is as in Eq. (10).

_ Ydes (k+1)—f[yp,... ,yp(k—n+1),u(k—1),...u(k—n+1)]

uk+1) = 8lyp vpe—nt+D)ulk—1),..u(k-n+1)] >
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The structure of the multi-layer perceptron (MLP) neural network is shown in Fig. 3, which
consists of three layers: the input layer, the hidden layer and the output layer, Zurada, 1992; Al-
Araji, 2009. So the network weights can be defined as follows:

V,,: is the hidden layer weight matrix.

W, : is the output layer weight matrix.

To illustrate the calculations, the general a neuron in the hidden layer shown in Fig. 3 is
considered. For each n'" number of the input nodes of these inputs there is a weight V associated
with it. The first calculation is performed within the neuron consists of calculating the weighted
sum net, of asin Eq. (11), Zurada, 1992; Al-Araji, 2009.

nh _
net, => V,, xZ, (12)
a=1

Where nh: hidden nodes number.

Next, the output of the neuron h,is computed as a continuous sigmoid function of the net, as in
Eq. (12), Zurada, 1992 and Al-Araji, 20009.

H(net, )= 1s (12)

o et o

Once, hidden layer outputs are got, they will pass it to the output layer where a one linear neuron
is used to calculate the weighted sum (neto) of its inputs as in Eq. (13).

nh _
neto, = » W,, xh, (13)
a=1

Where
W,, : is the weight between the hidden neuron h, and the output neuron.

The one linear neuron passes the sum (neto, ) through a linear function of slope 1 as in Eq. (14).
O, = L(netc,) (14)

2.2 The proposed hybrid neural network model

The NARMA-L2 model with modified ElIman neural network structure is used to propose a new
hybrid neural network model in order to improve the performance of modeling and controlling of
the nonlinear system. Thus, the structure of the Modified Elman Neural Network (MENN) is
shown in Fig. 4. It consists of four layers as explained below, Medsker and Jain, 2001,
Abdulkarim and Garko, 2015.

e The input layer which is only a buffer layer “Scale”

e The output which represents a linear activation function and it sums the fed signals.

e The hidden layer which has nonlinear activation functions such as sigmoidal functions.

e The context layer which is used only to memorize the previous activation of the hidden layer.
From Fig. 4 it can be seen that the following equations, Al-Araji, et al., 2011.

h(k)=F[V1U(K),V2h" (k)] (15)
O(k)=Wh(k) (16)
Where,
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V 1: input units weight matrix.
V 2: context units weight matrix.
W: weight matrix.

F: is a non-linear vector function.

The output of the context unit in the modified EIman network is given by Eq. (17) as in Fig. 5:

hi(k) = ah;(k — 1) + Bh;(k — 1) (17)
Where,

h; (k): the j* context unit output.

h;(k): the j™ hidden unit output.

a: Self-connections feedback gain.

B: Weight from the hidden units to the context units at the context layer.

The value of an adopted is the same for all self-connections and is not modified by the training
algorithm. The value of a and Bare selected randomly between (0 and 1). A value of a nearer to
1 enables the context unit to aggregate more pattern outputs.

To explain the calculations in the hidden layer, firstly, it considers the general j" neuron in the
hidden layer with weight V1;; where the iis the inputs to this neuron and the j™ neuron in the
context layer with weight V2;;. So it is calculating the weighted sum j™ net of the inputs as in Eq.
(18).

net] = Z?zll Vlj,i X Xi + sz,ni+1 X hjo (18)

Then the output of the neuron h; is calculated as the continuous bipolar sigmoid function of the
net; as in Eq. (19):

2
H(netj) = W -1 (19)
For single output neural network in the output layer, it is used a single linear neuron to calculate
the weighted sum (net,) as in Eq. (20).
netoy, = 2751 Wyj X hj (20)

Where,
nh: is the number of the hidden neuro (nodes).

Then the linear activation function in the single neuron in the output lead to pass the sum (net,;)
asin Eq. (21):
Oy = L(net,) where L(x)=x (21)

The proposed new hybrid NARMA-L2 neural structure based on MENN as shown in Fig. 6
where it is replaced MLP neural network by MENN to improve the modeling and controlling of
nonlinear system in terms of fast leaning model with minimum number of epoch and minimum
number of node in the hidden layer, increasing the order of the model lead to reduce the output
oscillation and generate the best control action for one step ahead prediction.

The output of the model will be as in Eq. (22).

Vm(k + 1)=N1+N2xu (k) (22)
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2.3. Learning algorithm:

The back propagation training algorithm is the most commonly used algorithm in training
artificial neural networks (ANN), Al-Araji, et al., 2011. It performs gradient descent to adjust
the weights of a network such that the overall network error is minimized. Conceptually, an
epoch calculates the output of the network using feedforward pass for each training pattern and
propagates errors signals back from the output layer towards the input layer to determine weight
changes.

The learning rate ny which is directly proportional to the size of steps taken in the weight space is
a very important parameter in the training process. A too small 1 value may lead to a very slow
learning process while a large value may lead to a divergent behavior. A variable learning rate
will do better if there are many local and global optima for the objective function, Abdulkarim
and Garko, 2015. The equations of the back propagation learning algorithm for the NARMA-L2
mode based MLP neural network are as follows:

e The connection matrix between the hidden and output layers is:
OF

AWk +1) = —n 5= (23)
0E 0E dnet
6Wk]' - dnet aij (24)
0E a_E 6& onet
aij - dog onet 6ij (25)
0E 0E dq(k+1) dog onet (26)
aij o dq(k+1) doy onet aij
AWk](k+1) :nth X ey (27)
Wy j(k + 1) = Wy;j(k) + AW,;(k + 1) (28)
e The connection matrix between input and hidden layers is:
AVji(k +1) = - 2= (29)
ji
0E 0E onet
Wji - dnet X ani (30)
OE _ 0E 9ok onet;
ani - dog x anet]- X ani (31)
0E _  0E dq(k+1) doy dnety Oh; onet; (32)
ani - aq(k+1) doy dnety ahj anetj ani
AV;i(k+ 1) =1 x f(net;)' X U; Xx—q exWy; (33)

The equations of the back propagation learning algorithm for the NARMA-L2 mode based
MENN are as follows:
e The connection matrix between the hidden and the output layers is:

Aij(k +1)=—-ng M (35)
0E 0E onet

aij - dnet X 6ij (36)
0E 6_E 6& onet

6ij - dog X onet X 6ij (37)
0E 0E dq(k+1) dog onet (38)

oWy 0q(k+1) doy onet " OWy;

AWk](k + 1) =nX h] X ey (39)
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e The connection matrix between context and hidden layers is as follows:
OE
AVCic(k+1) =—n ave,, (41)
0E 0E dnet
avCjc  dmet  AVCj (42)
0E a_E dog dnet.
avCjc  do ~ dnet, X avCje (43)
0E _ 0E aq(k+1) % doy dnety 5 Ohj dnet, (44)
ovCj.  dq(k+1) doy onety oh; dnet,  9VCjc
AVﬂ(k + 1) =nX f(netj)' X Ui leg=1 ekaj (45)
VCie(k+1) =VCi.(k) + AVCjc(k + 1) (46)
e The connection matrix between input layer and hidden layer is:
)3
AVl +1) = —n g (47)
0E 0E onet
ani - onet ani (48)
0E _ 0F doy onet;
ani o doy 6netj ani (49)
6_E _ 0E dq(k+1) % doy % dnety, 5 Oh; onet; (50)
ani aq(k+1) doy dnety 6hj anetj ani
AVCi.(k+ 1) = n x f(net;)’ X hQ Yx_; e Wy; (51)
Vii(k + 1) = V;;(k) + AV;;(k + 1) (52)

3. SIMULATION RESULTS

In this section, the nonlinear Continuous Stirred Tank Reactor (CSTR) process is taken to
execute the identification algorithm in order to construct the model and controller design based
on the NARMA-L2 neural network by using two structures that were explained in section two.
The mathematical model of the CSTR is defined by Eq. (53) and Eq. (54) that have been taken
from Al-Araji, 2015; Dagher and Al-Araji, 2013. The parameters of the CSTR model can be
defined in nominal operating condition as in Table 1.

-E
dcC, —
Tt = o (Cap = CUD) = Ko X Cy(0) X il h (53)
atw _ q [ (CAH)XKoXCa() | [=] o PeXCp, T
% = Va (Tf T(t)) + oy X elRTO1 x —pchprVol X q, () |1 — ™ e X
(T —T®) (54)
Where,

Ca (t): is the product concentration output.
T(t): is the temperature of the reactor.
qgc(t): is the coolant flow-rate as the control signal.

Fig. 7 shows the schematic diagram of the CSTR process and the objective of the operation is to
control the concentration Ca (t) by changing a coolant flow-rate gc (t) as a control signal then the
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temperature of the reactor is changed that leads to the product concentration is controlled
Putrus, 2011; Jeyachandran and Rajaram, 2014 and Al-Araji, 2015.

The input 200 samples to CSTR model is chosen PRBS signal with high-frequency low
amplitude change and the mean value is equal to zero in order to excite all nonlinear regions of
the plant. For the open loop, the step changes in the coolant flow-rate response of the CSTR has
a highly nonlinear dynamic behavior as shown in Figs. 8 —a & b respectively. Based on Fig. 8,
there is an essential need for adding a scaling function at neural network terminals. This function
will perfom a conversion between scaled values and actual values and vice versa. This will help
to overcome numerical problems that are involved within real values,

A continuous time model representation is adopted to be numerically solved using the Runge
Kuta fourth order method 4RK where the time constant is equal to 1min and the simulation step
size for this purpose is equal to 0.1min based on Shanoon theorem.

Based on Eqg. (53) and Eq. (54), the dynamic model of the CSTR plant is described by Eq. (55)
as 3" order system depends on the high nonlinear in the dynamic behavior as shown in Fig. 8.

Ym(k + 1) = N1[y,(k), yp(k — 1), 3, (k — 2),u(k — 1),u(k — 2)] + N2[y, k), », (k —
1), y,(k — 2),u(k — 1), u(k — 2)Ju(k) (55)

Where,
N1 [-] and N2 [-] are neural networks which approximatef [—]and §[—] of Eq. (9), respectively.

Since each of N1[-] and N2[-] has five inputs based on Eg. (55) and the nodes in the NARNA-L2
neural network structure based on MLP is [5:11:1] where the number of the input node in the
input layer, the node number in the hidden layer based on 2n+land the node number in the
output layer respectively while the nodes in the NARNA-L2 neural network structure based on
MENN is [5:11:11:1] where the number of the input node in the input layer, the number of node
in the hidden layer based on 2n+1, the node number in the context layer and the node number of
in the output layer respectively.

During the training phase many times in order to find the optimal number of the node in the
hidden layer for NARMA-L2 based on MLP model was equal to 9 with the number of epoch was
equal to 600 while the optimal number of the node in the hidden layer for NARMA-L2 based on
MENN model was equal to 6 and the number of the training cycle was equal to 500, therefore,
the number of the nodes in the NARNA-L2 neural network structure based on MLP is [5:9:1]
while the numbers of the nodes in the NARNA-L2 neural network structure based on MENN is
[5:6:6:1].

Fig. 9-a shows the best response of the NARMA-L2 based MLP neural network model with the
actual plant output for learning patterns after 600 epoch and Fig. 9-b shows the excellent
response of the NARMA-L2 based MENN model with the actual plant output for learning
patterns after 500 epoch. So it can be observed that each model output following actual plant
output and without over learning problem occurred in the training cycle.

Figs. 10-a, b show the average of ten times of the MSE for the training phase in order to
investigate the optimal nodes in the hidden layer for each model.

The Jacobian of each model is shown in Fig. 11 where N2[-]: is sign definite in the region of
interest which means that the models are invertable and can be implemented for the controller as
the inverse control structure.

The Mean Square Error (MSE) calculated for the latest epochs, which is defined by Eg. (8) can
be shown in Fig.12-a of the NRMA-L2 based MLP model while Fig.12-b of the NARMA-L2
based MENN model.
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Fig. 13-a shows the reasonable response of the NARMA-L2 based MLP neural network model
with the actual plant output for testing patterns whileFig. 13-b shows the excellent response of
the NARMA-L2 based MENN model with the actual plant output for the same testing set.

Three different values are used as step change desired output during 300 samples in order to
confirm the proposed hybrid NARMA-L2 based MENN model has the ability to be a controller
for tracking the desired output. Fig. 14 can be observed that the actual output of the CSTR plant
is excellent at tracking the desired output and it has small overshoot without oscillation in the
output as well as the steady state error equal to zero when it is used NARMA-L2 based on
MENN model while the output of the plant has high overshoot and error in the steady state when
it is used NARMA-L2 based on MLP model.

Fig. 15 shows the control action of the NARMA-L2 based on MENN model which has a small
spick action of the coolant flow-rate to track the desired concentration output and to minimize
the steady-state error to the zero value.

4. CONCLUSIONS
The numerical simulation results of a new proposed hybrid NARMA-L2 model based on MENN
with BP algorithm is presented in this paper for modeling and controlling the nonlinear CSTR
system which shows the following capabilities:
e Modifying and improving the performance of the nonlinear model output with no over-
learning problem.
e Increasing the speed of the learning model by decreasing the number of training cycles.
e Minimizing the number of nodes in the hidden layer depending on the context layer.
e Increasing the order of the hybrid neural network model depending on the self-
connections.
e Reducing the output oscillation.
e Best control action generation for one step ahead prediction which leads to excellent set
point tracking.
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Figure 1. Five standard steps of identification algorithm.
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Figure 2. NARMA-L2 identification model with serial-parallel configuration.
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Figure 6. The proposed NARMA-L2 based MENN identification model.

Cof, q, Ty
Reactant
qc(t),Tey \l/ q.(T), Te(D)
—>
—>
/
coolant 7

C.(1),q,T(t)

Product

Figure 7. The CSTR with a cooling jacket.
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Figure 8-a. The PRBS input signal used to excite the plant.
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Figure 8-b. The open loop response of the plant to the PRBS input signal.
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Figure 9-a. The response of the NARMA-L2 based MLP model with the actual plant output for
learning patterns.
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Figure 9-b. The response of the NARMA-L2 based MENN model with the actual plant output
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MENN.
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Figure 11.The plant Jacobian for learning pattern of NARMA-L2 based on MLP model and
MENN model.
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Figure 12-a. MSE for an optimal number of nodes (9 nodes) for NARMA-L2 based MLP
model.

132



Number 2 Volume 25 February 2019 Journal of Engineering

> w P
(9] w 9] L N wn
I I T I I
1 1 | | |

~
T
|

[=
wn
T

Cost Function Based MENN
—_

s
n
\

!

0 \ \ \ \ \ \ \ \ \
50 100 150 200 250 300 350 400 450 500

Number of Epoch

Figure 12-b. MSE for an optimal number of nodes (6nodes) for NARMA-L2 based MENN
model.
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Figure 13-a. The response of the NARMA-L2 based MLP model with the actual plant output for
the tasting patterns.
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Figure 13-b. The response of NARMA-L2 based MLP model with the actual plant output for the
tasting patterns.
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Figurel4. The response of the actual plant with NARMA-L2 controller based on MLP and
MENN models.
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Figure 15. The coolant flow rate control signal.
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Table 1. The parameters of the CSTR Operating Condition.

300

Parameter Description Nominal Value
Q Process flow-rate 100 I min™!
Cye Intel feed concentration 1 mol I
T Feed temperature 350K
Tet Inlet coolant temperature 350 K
Vol Reactor volume 1001
h, Heat transfer coefficient 7% 100 cal min?t K*!
ko Reaction rate constant 7.2%x 10'° min‘?
E/p Activation energy 9.95 x 10° K
AH Heat of reaction -2 X 105cal mol*
PP, Liquid densities 1000 g I
Cp.. Cy Specific heats lcalgtK*
Qe Coolant flowrate 103.41 I. min?
T Reactor temperature 440.2 K
Ca Product concentration 8.36 x 10™2mol I*
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